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Task/Channel Model

« Parallel computation = set of tasks
« Task

— Program

— Local memory

— Collection of I/O ports

« Tasks interact by sending messages through
channels

« At input port task must wait until the value appears,
means task is blocked

 In this model receiving is a synchronous, while
sending is an asynchronous operation
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Task/ChanneI Model
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Foster’'s Design Methodology*

 Partitioning

« Communication (Concentration on inherent parallelism)
« Agglomeration

* Mapping (Concentration on implementation on real HW)

“It delays the machine dependent considerations at
the later stage “

*

Foster, lan. Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering, Reading, MA: Addison-Wesley, 1995
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Foster's Design Methodology

A well-known design methodology that is
used to architect and implement distributed-

memory systems (DMS) particularly on Multi
computer systems.

Parallel Computing (Unit 2.2): Rajeev Wankar



Foster's Methodology

Problem || Partioning>
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1.Partitioning

« Dividing computation and data into pieces
« Domain decomposition
— Divide data into pieces

— Determine how to associate computations with the
data

* Functional decomposition
— Divide computation into pieces

— Determine how to associate data with the
computations
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1.Partitioning

* Focus is on most frequently accessed data structure
* In the matrix, we can partition data into

— Collection of 2-D slice: resulting in a 1-D collection
of primitive tasks

— Collection of 1-D slice: resulting in a 2-D collection
of primitive tasks

— Consider each elements of the matrix individually:
3-D collection of primitive tasks
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1.Partitioning Checklist

« At least 10x more primitive tasks than processors in
target computer

* Minimize redundant computations and redundant
data storage (If not, design does not work well when
problem size increases)

* Primitive tasks roughly the same size (If not, load
balancing problem)

* Number of tasks an increasing function of problem
size (If not, not scale well)
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2.Communication

« Determine values passed among tasks
* Local communication

— A task needs values from a small number of other
tasks

— Create channels illustrating data flow
* Global communication

— Significant number of tasks contribute data to
perform a computation

— Don’t create channels for them early in design
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2.Communication Checklist

Communications are overhead in parallel algorithms,
minimizing them is an important goal

« Communication operations balanced among tasks

« Each task communicates with only small group of
neighbors

« Tasks can perform communications concurrently
« Task can perform computations concurrently
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3.Agglomeration

« Grouping tasks into larger tasks
« Goals
— Improve performance
— Maintain scalability of program
— Simplify programming
* In MPI programming, goal often is to create one
agglomerated task per processor
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Agglomeration Can Improve Performance

« Eliminate communication between primitive tasks
agglomerated into consolidated task (specially when
the tasks cannot perform their operations in parallel)

« Combine groups of sending and receiving tasks (for
reducing message latency)
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4.Mapping

* Process of assigning tasks to processors
« Centralized multiprocessor: mapping done by
operating system
« Distributed memory system: mapping done by user
« Goals of mapping
— Maximize processor utilization
— Minimize inter-processor communication
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Mapping Example

Source: M.J. Quinn
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Optimal Mapping

« Finding optimal mapping is NP-hard
« Must rely on heuristics
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Definition

* In local communication, each task
communicates with a small set of other tasks
(its “neighbors”); in contrast, global
communication requires each task to
communicate with many tasks.

* |In structured communication, a task and its
neighbors form a regular structure, such as a
tree or grid; in contrast, unstructured
communication networks may be arbitrary
graphs.
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Definition

* In static communication, the identity of
communication partners does not change over
time; in contrast, the identity of
communication partners in dynamic
communication structures may be determined by
data computed at runtime and may be highly
variable.

* In synchronous communication, producers and
consumers execute in a coordinated fashion, with
producer/consumer pairs cooperating in data
transfer operations; in contrast, asynchronous
communication may require that a consumer
obtain data without the cooperation of the
producer.

Parallel Computing (Unit 2.2): Rajeev Wankar



Decision tree to choose a mapping strategy
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Reduction

« Given associative operator @
c 3P, Pa,®...Pa,,;
« Examples

— Add

— Multiply

— And, Or

— Maximum, Minimum
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Parallel Reduction Evolution

Observations:

1. If x time required
for a task to
communicate
another task

2. Yy time is required
for addition then

3. Total time will be
(N-1)(x+y)
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Parallel Reduction Evolution

M

Observations:Total time will be now (n/2-1)(x+y)
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Parallel Reduction Evolution
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Binomial Trees

Subgraph of hypercube

Observations:

Continuing this way we have n/2 semi-root tasks
Total time will be log n
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Finding Global Sum
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Finding Global Sum
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Finding Global Sum
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Finding Global Sum
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Finding Global Sum

Binomial Tree
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Agglomeration

1.

Observations:

Number of tasks
are static

Computations
per task are trivial

Communication
pattern is regular
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Agglomeration

Observations:

1. If x time required
for a task to
communicate
another task

2. Yy time is required
for binary
operation then

3. Total time will be
(N-1)(x+y)
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Agglomeration

Observations:

1. If we have p
processors

2. Time require to
compute sub total

s ((n/p]-Dy
3. Reduction
require x+y time

4. With [logp |
communications
overall time
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Agglomeration

Total time:

(nip]-1)y + [logp |(x+y)
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