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Parallel Algorithm Design
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Outline

• Task/channel model

• Algorithm design methodology

• Case studies
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Task/Channel Model

• Parallel computation = set of tasks

• Task

– Program

– Local memory

– Collection of I/O ports

• Tasks interact by sending messages through 
channels

• At input port task must wait until the value appears, 
means task is blocked

• In this model receiving is a synchronous, while 
sending is an asynchronous operation
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Task/Channel Model

ChannelTask

Source: M.J. Quinn 
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Foster’s Design Methodology*

• Partitioning

• Communication (Concentration on inherent parallelism)

• Agglomeration

• Mapping (Concentration on implementation on real HW)

“It delays the machine dependent considerations at 

the later stage “

* Foster, Ian. Designing and Building Parallel Programs: Concepts and Tools for 

Parallel Software Engineering, Reading, MA: Addison-Wesley, 1995
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Foster’s Design Methodology

A well-known design methodology that is 

used to architect and implement distributed-

memory systems (DMS) particularly on Multi 

computer systems.
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Foster’s Methodology

Source: M.J. Quinn 

Problem Partioning

Mapping
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1.Partitioning

• Dividing computation and data into pieces

• Domain decomposition

– Divide data into pieces

– Determine how to associate computations with the 

data

• Functional decomposition

– Divide computation into pieces

– Determine how to associate data with the 

computations
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1.Partitioning

• Focus is on most frequently accessed data structure

• In the matrix, we can partition data into 

– Collection of 2-D slice: resulting in a 1-D collection 

of primitive tasks

– Collection of 1-D slice: resulting in a 2-D collection 

of primitive tasks

– Consider each elements of the matrix individually: 

3-D collection of primitive tasks



10
Parallel Computing (Unit 2.2): Rajeev Wankar

Domain Decompositions

Source: M.J. Quinn 
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1.Partitioning Checklist

• At least 10x more primitive tasks than processors in 

target computer

• Minimize redundant computations and redundant 

data storage (If not, design does not work well when 

problem size increases)

• Primitive tasks roughly the same size (If not, load 

balancing problem)

• Number of tasks an increasing function of problem 

size (If not, not scale well)
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2.Communication

• Determine values passed among tasks

• Local communication

– A task needs values from a small number of other 

tasks

– Create channels illustrating data flow

• Global communication

– Significant number of tasks contribute data to 

perform a computation

– Don’t create channels for them early in design



13
Parallel Computing (Unit 2.2): Rajeev Wankar

2.Communication Checklist

Communications are overhead in parallel algorithms, 

minimizing them is an important goal

• Communication operations balanced among tasks

• Each task communicates with only small group of 

neighbors

• Tasks can perform communications concurrently

• Task can perform computations concurrently
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3.Agglomeration

• Grouping tasks into larger tasks

• Goals

– Improve performance

– Maintain scalability of program

– Simplify programming

• In MPI programming, goal often is to create one 

agglomerated task per processor
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Agglomeration Can Improve Performance

• Eliminate communication between primitive tasks 

agglomerated into consolidated task (specially when 

the tasks cannot perform their operations in parallel)

• Combine groups of sending and receiving tasks (for 

reducing message latency)

Source: M.J. Quinn 
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4.Mapping

• Process of assigning tasks to processors

• Centralized multiprocessor: mapping done by 

operating system

• Distributed memory system: mapping done by user

• Goals of mapping

– Maximize processor utilization

– Minimize inter-processor communication
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Mapping Example

Source: M.J. Quinn 
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Optimal Mapping

• Finding optimal mapping is NP-hard

• Must rely on heuristics
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Definition

• In local communication, each task 
communicates with a small set of other tasks 
(its “neighbors”); in contrast, global
communication requires each task to 
communicate with many tasks. 

• In structured communication, a task and its 
neighbors form a regular structure, such as a 
tree or grid; in contrast, unstructured 
communication networks may be arbitrary 
graphs. 



21
Parallel Computing (Unit 2.2): Rajeev Wankar

Definition

• In static communication, the identity of 
communication partners does not change over 
time; in contrast, the identity of 
communication partners in dynamic
communication structures may be determined by 
data computed at runtime and may be highly 
variable. 

• In synchronous communication, producers and 
consumers execute in a coordinated fashion, with 
producer/consumer pairs cooperating in data 
transfer operations; in contrast, asynchronous
communication may require that a consumer 
obtain data without the cooperation of the 
producer. 
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Decision tree to choose a mapping strategy 
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Reduction

• Given associative operator 

• a0  a1  a2  …  an-1

• Examples

– Add

– Multiply

– And, Or

– Maximum, Minimum
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Parallel Reduction Evolution

Source: M.J. Quinn 

Observations:

1. If x time required 

for a task to 

communicate 

another task 

2. y time is required 

for addition then

3. Total time will be 

(n-1)(x+y)
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Parallel Reduction Evolution

Source: M.J. Quinn 

Observations:Total time will be now (n/2-1)(x+y)
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Parallel Reduction Evolution

Source: M.J. Quinn 
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Binomial Trees

Subgraph of hypercube

Observations:

Continuing this way we have n/2 semi-root tasks 

Total time will be log n
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Finding Global Sum

4 2 0 7

-3 5 -6 -3

8 1 2 3

-4 4 6 -1
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Finding Global Sum

1 7 -6 4

4 5 8 2
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Finding Global Sum

8 -2

9 10
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Finding Global Sum

17 8
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Finding Global Sum

25

Binomial Tree
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Agglomeration

Observations:

1. Number of tasks 

are static

2. Computations 

per task are trivial

3. Communication 

pattern is regular   
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Agglomeration

sum

sum sum

sum

Observations:

1. If x time required 

for a task to 

communicate 

another task 

2. y time is required 

for binary 

operation then

3. Total time will be 

(n-1)(x+y)
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Agglomeration

sum

sum sum

sum

Observations:

1. If we have p 

processors

2. Time require to 

compute sub total 

is

3. Reduction 

require x+y time

4. With              

communications 

overall time 

  y)1( n/p

 p log
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Agglomeration

sum

sum sum

sum

Total time:

+            (x+y)  y)1( n/p  p log


