Parallel Algorithm Design

Parallel Computing (Unit 2.2): Rajeev Wankar

Task/channel model

Case studies

Outline

 Algorithm design methodology

Parallel Computing (Unit 2.2): Rajeev Wankar

Task/Channel Model

« Parallel computation = set of tasks
« Task

— Program

— Local memory

— Collection of I/O ports

« Tasks interact by sending messages through
channels

« At input port task must wait until the value appears,
means task is blocked

 In this model receiving is a synchronous, while
sending is an asynchronous operation

Parallel Computing (Unit 2.2): Rajeev Wankar

Task/ChanneI Model

Task Channel 7

Parallel Computing (Unit 2.2): Rajeev Wankar Source_ M J Quinn

Foster’'s Design Methodology*

 Partitioning

« Communication (Concentration on inherent parallelism)
« Agglomeration

* Mapping (Concentration on implementation on real HW)

“It delays the machine dependent considerations at
the later stage “

*

Foster, lan. Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering, Reading, MA: Addison-Wesley, 1995

Parallel Computing (Unit 2.2): Rajeev Wankar

Foster's Design Methodology

A well-known design methodology that is
used to architect and implement distributed-

memory systems (DMS) particularly on Multi
computer systems.

Parallel Computing (Unit 2.2): Rajeev Wankar

Foster's Methodology

Problem || Partioning>

Parallel Computing (Unit 2.2): Rajeev Wankar Source_ M J Quinn .

1.Partitioning

« Dividing computation and data into pieces
« Domain decomposition
— Divide data into pieces

— Determine how to associate computations with the
data

* Functional decomposition
— Divide computation into pieces

— Determine how to associate data with the
computations

Parallel Computing (Unit 2.2): Rajeev Wankar

1.Partitioning

* Focus is on most frequently accessed data structure
* In the matrix, we can partition data into

— Collection of 2-D slice: resulting in a 1-D collection
of primitive tasks

— Collection of 1-D slice: resulting in a 2-D collection
of primitive tasks

— Consider each elements of the matrix individually:
3-D collection of primitive tasks

Parallel Computing (Unit 2.2): Rajeev Wankar

Domain Decompositions

O D
= 3
o o o o =
= <
5 5
S 7
®© ~
O @)
(2

N

arallel Computing (Unit 2.2): Rajeev Wankar Source_ M J Quinn 10

1.Partitioning Checklist

« At least 10x more primitive tasks than processors in
target computer

* Minimize redundant computations and redundant
data storage (If not, design does not work well when
problem size increases)

* Primitive tasks roughly the same size (If not, load
balancing problem)

* Number of tasks an increasing function of problem
size (If not, not scale well)

Parallel Computing (Unit 2.2): Rajeev Wankar

11

2.Communication

« Determine values passed among tasks
* Local communication

— A task needs values from a small number of other
tasks

— Create channels illustrating data flow
* Global communication

— Significant number of tasks contribute data to
perform a computation

— Don’t create channels for them early in design

Parallel Computing (Unit 2.2): Rajeev Wankar

12

2.Communication Checklist

Communications are overhead in parallel algorithms,
minimizing them is an important goal

« Communication operations balanced among tasks

« Each task communicates with only small group of
neighbors

« Tasks can perform communications concurrently
« Task can perform computations concurrently

Parallel Computing (Unit 2.2): Rajeev Wankar

13

3.Agglomeration

« Grouping tasks into larger tasks
« Goals
— Improve performance
— Maintain scalability of program
— Simplify programming
* In MPI programming, goal often is to create one
agglomerated task per processor

Parallel Computing (Unit 2.2): Rajeev Wankar

14

Agglomeration Can Improve Performance

« Eliminate communication between primitive tasks
agglomerated into consolidated task (specially when
the tasks cannot perform their operations in parallel)

« Combine groups of sending and receiving tasks (for
reducing message latency)

o0 — @&
(a)

s -4

Parallel Computing (Unit 2.2): Rajeev Wankar Source_ M J Quinn 15

4.Mapping

* Process of assigning tasks to processors
« Centralized multiprocessor: mapping done by
operating system
« Distributed memory system: mapping done by user
« Goals of mapping
— Maximize processor utilization
— Minimize inter-processor communication

Parallel Computing (Unit 2.2): Rajeev Wankar

17

Mapping Example

Source: M.J. Quinn

18

Optimal Mapping

« Finding optimal mapping is NP-hard
« Must rely on heuristics

Parallel Computing (Unit 2.2): Rajeev Wankar

19

Definition

* In local communication, each task
communicates with a small set of other tasks
(its “neighbors”); in contrast, global
communication requires each task to
communicate with many tasks.

* |In structured communication, a task and its
neighbors form a regular structure, such as a
tree or grid; in contrast, unstructured
communication networks may be arbitrary
graphs.

Parallel Computing (Unit 2.2): Rajeev Wankar

20

Definition

* In static communication, the identity of
communication partners does not change over
time; in contrast, the identity of
communication partners in dynamic
communication structures may be determined by
data computed at runtime and may be highly
variable.

* In synchronous communication, producers and
consumers execute in a coordinated fashion, with
producer/consumer pairs cooperating in data
transfer operations; in contrast, asynchronous
communication may require that a consumer
obtain data without the cooperation of the
producer.

Parallel Computing (Unit 2.2): Rajeev Wankar

Decision tree to choose a mapping strategy

Parallel Computing (Unit 2.2): Rajeev Wankar

25

Structured
communication
pattern

Roughly constant
computation time
per task

Join tasks to

minimize
communication.
Create one task

per processor

Static number of

tasks

Unstructured
communication
pattern

Computation
time per task
varies

Cyclically map
Use static

communications

tasks to
processors for
computational
load balancing

load
balancing

techniques

Dynamic numBer

f task

tasks. No inter task

load task
balancing scheduling

Parallel Computing (Unit 2.2): Rajeev Wankar

26

Reduction

« Given associative operator @
c 3P, Pa,®...Pa,,;
« Examples

— Add

— Multiply

— And, Or

— Maximum, Minimum

Parallel Computing (Unit 2.2): Rajeev Wankar

27

Parallel Reduction Evolution

Observations:

1. If x time required
for a task to
communicate
another task

2. Yy time is required
for addition then

3. Total time will be
(N-1)(x+y)

Parallel Computing (Unit 2.2): Rajeev Wankar Source_ M J Quinn

28

Parallel Reduction Evolution

M

Observations:Total time will be now (n/2-1)(x+y)

Parallel Computing (Unit 2.2): Rajeev Wankar Source_ M J Quinn 29

Parallel Reduction Evolution

AR

nid -1 tasks

/,::;D

/4 - 1 tasks

N

n/d -1 tasks

Ny

Parallel Computing (Unit 2.2): Rajeev Wankar Source_ M J Quinn

30

Binomial Trees

Subgraph of hypercube

Observations:

Continuing this way we have n/2 semi-root tasks
Total time will be log n

Parallel Computing (Unit 2.2): Rajeev Wankar

31

Finding Global Sum

32

Finding Global Sum

allel Computing (Unit 2.2): Rajeev Wankar

Finding Global Sum

3t

allel Computing (Unit 2.2): Rajeev Wankar

Finding Global Sum

allel Computing (Unit 2.2): Rajeev Wankar

Finding Global Sum

Binomial Tree

Parallel Computing (Unit 2.2): Rajeev Wankar

36

Agglomeration

1.

Observations:

Number of tasks
are static

Computations
per task are trivial

Communication
pattern is regular

Parallel Computing (Unit 2.2): Rajeev Wankar

37

Agglomeration

Observations:

1. If x time required
for a task to
communicate
another task

2. Yy time is required
for binary
operation then

3. Total time will be
(N-1)(x+y)

Parallel Computing (Unit 2.2): Rajeev Wankar

38

Agglomeration

Observations:

1. If we have p
processors

2. Time require to
compute sub total

s ((n/p]-Dy
3. Reduction
require x+y time

4. With [logp |
communications
overall time

Parallel Computing (Unit 2.2): Rajeev Wankar

39

Agglomeration

Total time:

(nip]-1)y + [logp |(x+y)

Parallel Computing (Unit 2.2): Rajeev Wankar

40

