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What to learn? 

• Design Paradigms

• Algorithm Analysis

• Theory of NP-Completeness
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What to know? 

• Syllabus

➢ Download from the course web site

• Books

➢ Fundamental of Computer Algorithm by E. 

Horowitz and S. Sahni

➢ Introduction to Algorithm, Cormen et al.

➢ Or any other referenced book
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Syllabus

• UNIT-I: 

– Analysis of Algorithms: Asymptotic Notation; Best, 

worst and average case analysis of algorithms;

– Solving recurrence relations using substitution 

method, generating functions, Master’s theorem 

etc. (Basic Akra-Bazzi Theorem)

– Warm-up to complexity analysis: Heap data 

structure, priority queue application, Best, worst 

and average case analysis of a few sorting 

algorithms like heap sort, insertion, bubble, 

selection, counting and radix sort algorithms. 

– Strategies for problem solving

Algorithms: Rajeev Wankar
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Syllabus

• UNIT-II: 

– Divide and Conquer strategy: Time complexity 

analysis for Merge Sort and Quick Sort Algorithms 

• UNIT-III: 

– Greedy strategy: Theoretical foundation of greedy 

strategy: 

– Matroids Algorithms for solving problems like 

Knapsack Problem (Fractional), Minimum 

Spanning Tree problem; 

– Shortest Paths, Job Scheduling, Huffman’s code 

etc., along with proofs of corrections and 

complexity analysis
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Syllabus

• UNIT-IV: 

– Dynamic Programming strategy: Identify situations 

in which greedy and divide and conquer strategies 

may not work. 

– Understanding of optimality principle. 

– Technique of memorization. Applications to 

problems like Coin change, 0/1 and 0/n- 

Knapsack, Shortest Paths, Optimal Binary Search 

Tree (OBST), Chained Matrix Multiplication, 

Traveling Salesperson Problem (TSP) etc. 
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Syllabus

• UNIT-V: 

– Backtracking and Branch & Bound strategies: 

State space tree construction, traversal 

techniques and solving problems like 0/1 and 0/n 

knapsack, TSP, Applications of Depth First 

Search: 

– Topological sorting, Finding strongly connected 

components and game problems. 
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Syllabus

• UNIT-VI: 

– Theory of NP-Completeness: Complexity classes 

of P, NP, NP-Hard, NP-Complete, Polynomial 

reductions, Cook’s theorem. 

– Discussion of problems: Satisfiability(SAT), CNF-

SAT, Min-Vertex Cover, Max-Clique, Graph 

Coloring, NP-Completeness proofs.
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What to know? 

• Course Material (will be updated soon)

➢http://scis.uohyd.ac.in/~wankarcs/algo-25.html

➢https://rajeevwankar.wixsite.com/mysite/algorithms
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Algorithms

• Why do we need algorithms?

• To solve problems

• What is a “problem”?

• A task to be performed

• We can think of a “problem” in terms of inputs 

and matching outputs

Abu Ja’far Mohammed ibn Musa al Khowarizmi
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What is an algorithm 

Concise Oxford dictionary: “Process or rule for 

calculation”.

Webster dictionary: “Any special method for 

solving certain kind of problem”.

Computer Science: “Precise method usable by 

the computer for the solution of a problem”.
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An algorithm is composed of finite number of steps, each of 

which may require one or more operation to be performed. 

These operations must be-

Definite: it must be clear that what is to be done, “add 6 

or 3 to a is not permitted”.

Effective: each step is such that it can, in principle, be 

done by a person using pencil and paper in a 

finite amount of time.

Terminate: it must terminate after a finite amount of time.
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Study of algorithm

How to device algorithm?

To design an algorithm that is easy to 

understand, code and debug

To design an algorithm that makes efficient 

use of the computer's resources

»Space  (main memory)

»Time

»Secondary Storage

»Networks & Energy



15
Algorithms: Rajeev Wankar

Algorithm design paradigms-

• Divide and conquer

• Greedy method

• Basic search and traversal techniques

• Dynamic programming

• Backtracking

• Branch and bound
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How to express algorithms: Structured 

programming

How to validate algorithms: To show that the 

algorithm works correctly for all possible legal 

inputs.
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• Validation checks whether an algorithm solves the 

intended problem.

• It's typically done through testing, simulation, and 

analysis of behavior on a variety of inputs.

• Key Points:

• Often empirical (based on running the algorithm).

• Involves designing test cases to observe 

outcomes.

• Can find bugs but cannot guarantee correctness 

for all inputs.



18
Algorithms: Rajeev Wankar

• Answers the question:

“Does this algorithm appear to work as intended?”

• Example:

• Run a sorting algorithm on 1,000 test arrays and 

verify all outputs are sorted.
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• Verification is about internal correctness Proof 

of correctness:

• A formal mathematical proof that the algorithm is 

correct for all valid inputs.

• Based on induction, loop invariants, recurrence 

relations, etc.

• Key Points:

• It is theoretical and rigorous.

• It shows that no matter the input, the algorithm will 

always produce the correct result.
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• Typically involves:

• Proving partial correctness (if it terminates, 

it's correct)

• Proving total correctness (it always 

terminates and gives correct result)

• Example:

• Using induction to prove that Merge Sort 

always returns a sorted array and uses correct 

comparisons.
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Category Example Algorithm(s) Typical Proof Technique

Divide & Conquer Merge Sort, Quick Sort Induction

Dynamic Programming LCS, Knapsack, Floyd-Warshall
Induction + Optimal 

Substructure

Greedy Algorithms Kruskal, Prim, Dijkstra
Greedy-choice & Optimal 

Substructure proof

Graph Traversal BFS, DFS Loop Invariant, Reachability

Shortest Path Dijkstra, Bellman-Ford Invariants + Induction

Minimum Spanning Tree Kruskal, Prim Cut Property + Greedy choice

Backtracking N-Queens, Sudoku Solver Recursion correctness

Binary Search Search in sorted array Loop Invariant + Termination

Sorting (Comparison-based) Bubble, Insertion, Selection Loop Invariant or Induction

Union-Find (Disjoint Sets) Union by Rank, Path Compression Data structure correctness

String Matching KMP, Rabin-Karp Pattern preservation

Recursion-based Algorithms Tower of Hanoi, DFS Induction on recursion depth
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How to express algorithms: Structured 

programming

How to validate algorithms: To show that the 

algorithm works correctly for all possible legal 

inputs.

How to analyze algorithms: The process of 

computing. How much computing time and storage 

an algorithm will require is called as analysis of an 

algorithm.
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Basics of Algorithm Analysis

• How to measure efficiency 

• Running time of an algorithm

• Asymptotic algorithm analysis

• Growth rate

• Upper bounds of growth rate

• Lower bounds of growth rate

•  Notation
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How to test algorithms: It consists of two phases: 

1. Debugging 

2. Profiling 

Debugging is a process of executing 

programs on data set and to determining if 

faulty results occur, and if so, to correct them.

• Space complexity

• Tradeoffs of implementations

• Analyzing Problems – Optimal solution
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Profiling is the process of executing a correct program on 

data sets and measuring time and space it takes to 

compute results.

“The proof of the correctness is much more valuable than 

thousands of tests, since it guarantees that the program 

works correctly for all possible inputs”
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• Why people analyze algorithms?

Analysis of algorithm

• Analyzing an algorithm is an intellectual activity, 

it is a fun.   

• Prediction about algorithm is gratifying activity 

when we succeed.

• To device new ways to do certain task even 

faster.
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• In conventional computers, instructions are carried out 

one at a time and major cost of the algorithm depends on 

the operations it perform.

• Given an algorithm to be analyzed the first task is:

❖ to determine the operations to be performed and 

what their relative cost is

• the second task is

❖ to determine sufficient set of data which cause 

algorithm to exhibit all patterns of behavior.
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• In producing the complete analysis of the algorithm we 

distinguish between two phases- priory analysis, 

posteriori analysis.

• Priori analysis: Obtain a function of relevant parameter 

which bounds the computing time of the algorithm.

• Posteriori analysis: We collect actual statistics about 

the algorithm consumption of time and space it requires 

when executing.
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The Random Access Machine (RAM) Model

• A CPU

• An potentially unbounded bank 

of memory cells, each of which 

can hold an arbitrary number or 

character

0
1
2

• Memory cells are numbered, and accessing any 

cell in memory takes unit time.
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Primitive Operations

• Basic computations performed 

by an algorithm

• Identifiable in pseudocode

• Largely independent from the 

programming language

• Exact definition not important 

(we will see why later)

• Assumed to take a constant 

amount of time in the RAM 

model

• Examples:

– Evaluating an 

expression

– Assigning a value 

to a variable

– Indexing into an 

array

– Calling a method

– Returning from a 

method
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Suppose there is a statement x := x + y; we want to 

determine total time it requires- we have two items of 

information:

1. Statements frequency.

 2. Time for one execution.

Consider the following program segments

  x := x+y;         for i:= 1 to n do         for i := 1 to n do

x := x+y                  for j := 1 to n do 

  x := x+y;

n                            n2
1
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Counting Primitive Operations

• By inspecting the pseudocode, we can determine the maximum 
number of primitive operations executed by an algorithm, as a 
function of the input size

Algorithm arrayMax(A, n)      # operations

 currentMax  A[0]        1

 for i  1 to n − 1 do      n − 1

  if A[i]  currentMax then   (n − 1)

   currentMax  A[i]  (n − 1)

 { increment counter i }    (n − 1)

 return currentMax         1

     Total  4n − 1
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Estimating Running Time

• Algorithm arrayMax executes 4n − 1 primitive 

operations in the worst case.  Define:

a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation

• Let T(n) be worst-case time of arrayMax. Then

  a (4n − 1)  T(n)  b (4n − 1)

• Hence, the running time T(n) is bounded by two linear 

functions
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Growth Rates

• Suppose we are plotting a function like:

 f(n)=a⋅nk

• Taking logarithm on both sides:

 log(f(n)) =log(a) + k⋅log(n)

• This is in the form:

Y=C + kX where:

Y=log(f(n)) 

X=log(n) 

C=log(a)

• k is the slope

Algorithms: Rajeev Wankar
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Growth Rates

• What does it Mean?

• When we plot log(f(n)) vs log(n):

– We get a straight line if f(n) is a power function 

(like n2, n3, etc.).

– The slope of that line is k, which tells you how 

fast the function grows.

Algorithms: Rajeev Wankar
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Function f(n) Log-Log Plot Slope
Growth Rate 

Description

f(n) = n 1
Linear growth

f(n) = n2 2
Quadratic growth

f(n) = n3 3
Cubic growth

f(n) = logn 0 (flattened line) Sublinear

In Simple Terms:

• A steeper slope → faster-growing function.
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Growth Rates

• Growth rates of 

functions:

– Linear  n

– Quadratic  n2

– Cubic  n3

• In a log-log chart, the 

slope of the line 

corresponds to the 

growth rate of the 

function 1E+0
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Quadratic
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Constant Factors

• The growth rate is not 

affected by

– constant factors or 

– lower-order terms

• Examples

– 102n + 105 is a 

linear function

– 105n2 + 108n is a 

quadratic function 1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20
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1E+24

1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10

n

T
(n

)

Quadratic

Quadratic

Linear
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Big-Oh Notation

• Given functions f(n) and 

g(n), we say that f(n) is 

O(g(n)) if there are 

positive constants

c and n0 such that

 |f(n)|  c|g(n)|  for all        

n  n0

• Example: 2n + 10 is O(n)

– 2n + 10  cn

– (c − 2) n  10

– n  10/(c − 2)

– Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000

n

3n

2n+10

n
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Big-Oh Notation

• Big-Oh gives an upper 

bound on the growth of a 

function.

• It tells us:

• "The algorithm will not 

grow faster than this."

1

10

100

1,000

10,000

1 10 100 1,000

n

3n

2n+10

n
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Big-Oh Example

• Example: the function n2 

is not O(n)

– n2  cn

– n  c

– The above inequality 

cannot be satisfied 

since c must be a 

constant 

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n
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What is the time complexity of the algorithm requiring n2+8n 

operations? 

n

1

2

3

4

5

6

7

8

9

n2

1

4

9

16

25

36

49

64

81

<

<

<

<

<

<

<

=

>

What if c = 2 ?

8n

8

16

24

32

40

48

56

64

72

2n2

2

8

18

32

50

72

98

128

162
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What is the time complexity of the algorithm requiring n2+8n 

operations?

For all n  4(n0) and c = 2, T(n) = O(n2)
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More Big-Oh Examples

▪ 7n-2
7n-2 is O(n)

need c > 0 and n0  1 such that 7n-2  c•n for n  n0

this is true for c = 7 and n0 = 1

◼ 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)

need c > 0 and n0  1 such that 3n3 + 20n2 + 5  c•n3 for n  n0

this is true for c = 4 and n0 = 21

◼ 3 log n + log log n

3 log n + log log n is O(log n)

need c > 0 and n0  1 such that 3 log n + log log n  c•log n for n 
 n0 this is true for c = 4 and n0 = 2



45
Algorithms: Rajeev Wankar

Big-Oh Rules

• If is f(n) a polynomial of degree d, then f(n) is O(nd), 

i.e.,

1.Drop lower-order terms

2.Drop constant factors

• Use the smallest possible class of functions

– Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class

– Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
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Arithmetic Progression

• The running time of 

prefixAverages1 is

O(1 + 2 + …+ n)

• The sum of the first n 

integers is n(n + 1) / 2

– There is a simple visual 

proof of this fact

• Thus, algorithm 

prefixAverages1 runs in 

O(n2) time 0

1

2

3

4

5

6

7

1 2 3 4 5 6
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Prefix Averages

• The following algorithm computes prefix averages in linear 
time by keeping a running sum

Algorithm prefixAverages2(X, n)

 Input array X of n integers

 Output array A of prefix averages of X     #operations

 A  new array of n integers   n

 s  0     1

 for i  0 to n − 1 do    n

  s  s + X[i]    n

  A[i]  s  (i + 1)    n

 return A          1

• Algorithm prefixAverages2 runs in O(n) time 
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Theorem: If A(n) = amnm+ am-1n
m-1+ .........+a1n+ a0 is a 

polynomial of degree m then   A(n) = O(nm).

Proof is left as an exercise 

Most common computing time for the algorithms are:

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < 

O(2n)
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-notation: f(n) =      (g(n)) {read as f of n equals 

omega of g of n} iff there exist two positive 

constants c and no such that-

for all )()( ngcnf  0nn 



•Meaning

–Algorithm has lower bound to its growth rate of 

f(n)


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• Meaning

–Algorithm has lower bound to its growth rate of 

f(n)

–Big-Omega gives a lower bound on growth.

–It tells us:

–"The algorithm will run at least this fast."
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• Theta notation - 

• Definition : f(n) = (g(n))  iff there exist positive 

constants c1, c2 and no such that

                                               for all 

• Meaning

– Big-Theta gives a tight bound — both upper and 

lower. 

– It tells us:

– "The algorithm runs exactly this fast, 

asymptotically."

)()()( 21 ngcnfngc  0nn 
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Asymptotic: f(n) = ~o(g(n)) iff 1
)(

)(
lim =

→ ng

nf

n

Compare Values of n and T(n)

n 100log2n 20n + 5 3n2 +7 2
n

2 100 45 19 4

5 232 105 82 32

10 332 205 307 1024

20 432 405 1207 1048576

100 632 2005 30007 1.27*1030
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Growth Rate Graph (1)
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Growth Rate Graph(2)
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• properties of logarithms:

logb(xy) = logbx + logby

logb (x/y) = logbx - logby

logbxa = alogbx

logba = logxa/logxb

• properties of exponentials:

a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a log
a

b

bc = a c*log
a

b

• Summations  

• Logarithms and Exponents 

• Proof techniques 

• Basic probability 

Math you need to Review
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