
2
Algorithms: Rajeev Wankar

By

Rajeev Wankar

wankarcs@uohyd.ac.in

School of Computer and Information Sciences

University of Hyderabad, Hyderabad

IE304 Algorithms

3
Algorithms: Rajeev Wankar

What to learn?

• Design Paradigms

• Algorithm Analysis

• Theory of NP-Completeness

4
Algorithms: Rajeev Wankar

What to know?

• Syllabus

➢ Download from the course web site

• Books

➢ Fundamental of Computer Algorithm by E.

Horowitz and S. Sahni

➢ Introduction to Algorithm, Cormen et al.

➢ Or any other referenced book

5

Syllabus

• UNIT-I:

– Analysis of Algorithms: Asymptotic Notation; Best,

worst and average case analysis of algorithms;

– Solving recurrence relations using substitution

method, generating functions, Master’s theorem

etc. (Basic Akra-Bazzi Theorem)

– Warm-up to complexity analysis: Heap data

structure, priority queue application, Best, worst

and average case analysis of a few sorting

algorithms like heap sort, insertion, bubble,

selection, counting and radix sort algorithms.

– Strategies for problem solving

Algorithms: Rajeev Wankar

6

Syllabus

• UNIT-II:

– Divide and Conquer strategy: Time complexity

analysis for Merge Sort and Quick Sort Algorithms

• UNIT-III:

– Greedy strategy: Theoretical foundation of greedy

strategy:

– Matroids Algorithms for solving problems like

Knapsack Problem (Fractional), Minimum

Spanning Tree problem;

– Shortest Paths, Job Scheduling, Huffman’s code

etc., along with proofs of corrections and

complexity analysis

Algorithms: Rajeev Wankar

7

Syllabus

• UNIT-IV:

– Dynamic Programming strategy: Identify situations

in which greedy and divide and conquer strategies

may not work.

– Understanding of optimality principle.

– Technique of memorization. Applications to

problems like Coin change, 0/1 and 0/n-

Knapsack, Shortest Paths, Optimal Binary Search

Tree (OBST), Chained Matrix Multiplication,

Traveling Salesperson Problem (TSP) etc.

Algorithms: Rajeev Wankar

8

Syllabus

• UNIT-V:

– Backtracking and Branch & Bound strategies:

State space tree construction, traversal

techniques and solving problems like 0/1 and 0/n

knapsack, TSP, Applications of Depth First

Search:

– Topological sorting, Finding strongly connected

components and game problems.

Algorithms: Rajeev Wankar

9

Syllabus

• UNIT-VI:

– Theory of NP-Completeness: Complexity classes

of P, NP, NP-Hard, NP-Complete, Polynomial

reductions, Cook’s theorem.

– Discussion of problems: Satisfiability(SAT), CNF-

SAT, Min-Vertex Cover, Max-Clique, Graph

Coloring, NP-Completeness proofs.

Algorithms: Rajeev Wankar

10
Algorithms: Rajeev Wankar

What to know?

• Course Material (will be updated soon)

➢http://scis.uohyd.ac.in/~wankarcs/algo-25.html

➢https://rajeevwankar.wixsite.com/mysite/algorithms

11
Algorithms: Rajeev Wankar

Algorithms

• Why do we need algorithms?

• To solve problems

• What is a “problem”?

• A task to be performed

• We can think of a “problem” in terms of inputs

and matching outputs

Abu Ja’far Mohammed ibn Musa al Khowarizmi

12
Algorithms: Rajeev Wankar

What is an algorithm

Concise Oxford dictionary: “Process or rule for

calculation”.

Webster dictionary: “Any special method for

solving certain kind of problem”.

Computer Science: “Precise method usable by

the computer for the solution of a problem”.

13
Algorithms: Rajeev Wankar

An algorithm is composed of finite number of steps, each of

which may require one or more operation to be performed.

These operations must be-

Definite: it must be clear that what is to be done, “add 6

or 3 to a is not permitted”.

Effective: each step is such that it can, in principle, be

done by a person using pencil and paper in a

finite amount of time.

Terminate: it must terminate after a finite amount of time.

14
Algorithms: Rajeev Wankar

Study of algorithm

How to device algorithm?

To design an algorithm that is easy to

understand, code and debug

To design an algorithm that makes efficient

use of the computer's resources

»Space (main memory)

»Time

»Secondary Storage

»Networks & Energy

15
Algorithms: Rajeev Wankar

Algorithm design paradigms-

• Divide and conquer

• Greedy method

• Basic search and traversal techniques

• Dynamic programming

• Backtracking

• Branch and bound

16
Algorithms: Rajeev Wankar

How to express algorithms: Structured

programming

How to validate algorithms: To show that the

algorithm works correctly for all possible legal

inputs.

17
Algorithms: Rajeev Wankar

• Validation checks whether an algorithm solves the

intended problem.

• It's typically done through testing, simulation, and

analysis of behavior on a variety of inputs.

• Key Points:

• Often empirical (based on running the algorithm).

• Involves designing test cases to observe

outcomes.

• Can find bugs but cannot guarantee correctness

for all inputs.

18
Algorithms: Rajeev Wankar

• Answers the question:

“Does this algorithm appear to work as intended?”

• Example:

• Run a sorting algorithm on 1,000 test arrays and

verify all outputs are sorted.

19
Algorithms: Rajeev Wankar

• Verification is about internal correctness Proof

of correctness:

• A formal mathematical proof that the algorithm is

correct for all valid inputs.

• Based on induction, loop invariants, recurrence

relations, etc.

• Key Points:

• It is theoretical and rigorous.

• It shows that no matter the input, the algorithm will

always produce the correct result.

20
Algorithms: Rajeev Wankar

• Typically involves:

• Proving partial correctness (if it terminates,

it's correct)

• Proving total correctness (it always

terminates and gives correct result)

• Example:

• Using induction to prove that Merge Sort

always returns a sorted array and uses correct

comparisons.

21
Algorithms: Rajeev Wankar

Category Example Algorithm(s) Typical Proof Technique

Divide & Conquer Merge Sort, Quick Sort Induction

Dynamic Programming LCS, Knapsack, Floyd-Warshall
Induction + Optimal

Substructure

Greedy Algorithms Kruskal, Prim, Dijkstra
Greedy-choice & Optimal

Substructure proof

Graph Traversal BFS, DFS Loop Invariant, Reachability

Shortest Path Dijkstra, Bellman-Ford Invariants + Induction

Minimum Spanning Tree Kruskal, Prim Cut Property + Greedy choice

Backtracking N-Queens, Sudoku Solver Recursion correctness

Binary Search Search in sorted array Loop Invariant + Termination

Sorting (Comparison-based) Bubble, Insertion, Selection Loop Invariant or Induction

Union-Find (Disjoint Sets) Union by Rank, Path Compression Data structure correctness

String Matching KMP, Rabin-Karp Pattern preservation

Recursion-based Algorithms Tower of Hanoi, DFS Induction on recursion depth

22
Algorithms: Rajeev Wankar

How to express algorithms: Structured

programming

How to validate algorithms: To show that the

algorithm works correctly for all possible legal

inputs.

How to analyze algorithms: The process of

computing. How much computing time and storage

an algorithm will require is called as analysis of an

algorithm.

23
Algorithms: Rajeev Wankar

Basics of Algorithm Analysis

• How to measure efficiency

• Running time of an algorithm

• Asymptotic algorithm analysis

• Growth rate

• Upper bounds of growth rate

• Lower bounds of growth rate

•  Notation

24
Algorithms: Rajeev Wankar

How to test algorithms: It consists of two phases:

1. Debugging

2. Profiling

Debugging is a process of executing

programs on data set and to determining if

faulty results occur, and if so, to correct them.

• Space complexity

• Tradeoffs of implementations

• Analyzing Problems – Optimal solution

25
Algorithms: Rajeev Wankar

Profiling is the process of executing a correct program on

data sets and measuring time and space it takes to

compute results.

“The proof of the correctness is much more valuable than

thousands of tests, since it guarantees that the program

works correctly for all possible inputs”

26
Algorithms: Rajeev Wankar

• Why people analyze algorithms?

Analysis of algorithm

• Analyzing an algorithm is an intellectual activity,

it is a fun.

• Prediction about algorithm is gratifying activity

when we succeed.

• To device new ways to do certain task even

faster.

27
Algorithms: Rajeev Wankar

• In conventional computers, instructions are carried out

one at a time and major cost of the algorithm depends on

the operations it perform.

• Given an algorithm to be analyzed the first task is:

❖ to determine the operations to be performed and

what their relative cost is

• the second task is

❖ to determine sufficient set of data which cause

algorithm to exhibit all patterns of behavior.

28
Algorithms: Rajeev Wankar

• In producing the complete analysis of the algorithm we

distinguish between two phases- priory analysis,

posteriori analysis.

• Priori analysis: Obtain a function of relevant parameter

which bounds the computing time of the algorithm.

• Posteriori analysis: We collect actual statistics about

the algorithm consumption of time and space it requires

when executing.

29
Algorithms: Rajeev Wankar

The Random Access Machine (RAM) Model

• A CPU

• An potentially unbounded bank

of memory cells, each of which

can hold an arbitrary number or

character

0
1
2

• Memory cells are numbered, and accessing any

cell in memory takes unit time.

30
Algorithms: Rajeev Wankar

Primitive Operations

• Basic computations performed

by an algorithm

• Identifiable in pseudocode

• Largely independent from the

programming language

• Exact definition not important

(we will see why later)

• Assumed to take a constant

amount of time in the RAM

model

• Examples:

– Evaluating an

expression

– Assigning a value

to a variable

– Indexing into an

array

– Calling a method

– Returning from a

method

31
Algorithms: Rajeev Wankar

Suppose there is a statement x := x + y; we want to

determine total time it requires- we have two items of

information:

1. Statements frequency.

 2. Time for one execution.

Consider the following program segments

 x := x+y; for i:= 1 to n do for i := 1 to n do

x := x+y for j := 1 to n do

 x := x+y;

n n2
1

32
Algorithms: Rajeev Wankar

Counting Primitive Operations

• By inspecting the pseudocode, we can determine the maximum
number of primitive operations executed by an algorithm, as a
function of the input size

Algorithm arrayMax(A, n) # operations

 currentMax  A[0] 1

 for i  1 to n − 1 do n − 1

 if A[i]  currentMax then (n − 1)

 currentMax  A[i] (n − 1)

 { increment counter i } (n − 1)

 return currentMax 1

 Total 4n − 1

33
Algorithms: Rajeev Wankar

Estimating Running Time

• Algorithm arrayMax executes 4n − 1 primitive

operations in the worst case. Define:

a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation

• Let T(n) be worst-case time of arrayMax. Then

 a (4n − 1)  T(n)  b (4n − 1)

• Hence, the running time T(n) is bounded by two linear

functions

34

Growth Rates

• Suppose we are plotting a function like:

 f(n)=a⋅nk

• Taking logarithm on both sides:

 log(f(n)) =log(a) + k⋅log(n)

• This is in the form:

Y=C + kX where:

Y=log(f(n))

X=log(n)

C=log(a)

• k is the slope

Algorithms: Rajeev Wankar

35

Growth Rates

• What does it Mean?

• When we plot log(f(n)) vs log(n):

– We get a straight line if f(n) is a power function

(like n2, n3, etc.).

– The slope of that line is k, which tells you how

fast the function grows.

Algorithms: Rajeev Wankar

36

Growth Rates

Algorithms: Rajeev Wankar

Function f(n) Log-Log Plot Slope
Growth Rate

Description

f(n) = n 1
Linear growth

f(n) = n2 2
Quadratic growth

f(n) = n3 3
Cubic growth

f(n) = logn 0 (flattened line) Sublinear

In Simple Terms:

• A steeper slope → faster-growing function.

37
Algorithms: Rajeev Wankar

Growth Rates

• Growth rates of

functions:

– Linear  n

– Quadratic  n2

– Cubic  n3

• In a log-log chart, the

slope of the line

corresponds to the

growth rate of the

function 1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1E+26

1E+28

1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10

n

T
(n

)

Cubic

Quadratic

Linear

38
Algorithms: Rajeev Wankar

Constant Factors

• The growth rate is not

affected by

– constant factors or

– lower-order terms

• Examples

– 102n + 105 is a

linear function

– 105n2 + 108n is a

quadratic function 1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10

n

T
(n

)

Quadratic

Quadratic

Linear

Linear

39
Algorithms: Rajeev Wankar

Big-Oh Notation

• Given functions f(n) and

g(n), we say that f(n) is

O(g(n)) if there are

positive constants

c and n0 such that

 |f(n)|  c|g(n)| for all

n  n0

• Example: 2n + 10 is O(n)

– 2n + 10  cn

– (c − 2) n  10

– n  10/(c − 2)

– Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000

n

3n

2n+10

n

40
Algorithms: Rajeev Wankar

Big-Oh Notation

• Big-Oh gives an upper

bound on the growth of a

function.

• It tells us:

• "The algorithm will not

grow faster than this."

1

10

100

1,000

10,000

1 10 100 1,000

n

3n

2n+10

n

41
Algorithms: Rajeev Wankar

Big-Oh Example

• Example: the function n2

is not O(n)

– n2  cn

– n  c

– The above inequality

cannot be satisfied

since c must be a

constant

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n

42
Algorithms: Rajeev Wankar

What is the time complexity of the algorithm requiring n2+8n

operations?

n

1

2

3

4

5

6

7

8

9

n2

1

4

9

16

25

36

49

64

81

<

<

<

<

<

<

<

=

>

What if c = 2 ?

8n

8

16

24

32

40

48

56

64

72

2n2

2

8

18

32

50

72

98

128

162

43
Algorithms: Rajeev Wankar

What is the time complexity of the algorithm requiring n2+8n

operations?

For all n  4(n0) and c = 2, T(n) = O(n2)

44
Algorithms: Rajeev Wankar

More Big-Oh Examples

▪ 7n-2
7n-2 is O(n)

need c > 0 and n0  1 such that 7n-2  c•n for n  n0

this is true for c = 7 and n0 = 1

◼ 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)

need c > 0 and n0  1 such that 3n3 + 20n2 + 5  c•n3 for n  n0

this is true for c = 4 and n0 = 21

◼ 3 log n + log log n

3 log n + log log n is O(log n)

need c > 0 and n0  1 such that 3 log n + log log n  c•log n for n
 n0 this is true for c = 4 and n0 = 2

45
Algorithms: Rajeev Wankar

Big-Oh Rules

• If is f(n) a polynomial of degree d, then f(n) is O(nd),

i.e.,

1.Drop lower-order terms

2.Drop constant factors

• Use the smallest possible class of functions

– Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class

– Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

46
Algorithms: Rajeev Wankar

Arithmetic Progression

• The running time of

prefixAverages1 is

O(1 + 2 + …+ n)

• The sum of the first n

integers is n(n + 1) / 2

– There is a simple visual

proof of this fact

• Thus, algorithm

prefixAverages1 runs in

O(n2) time 0

1

2

3

4

5

6

7

1 2 3 4 5 6

47
Algorithms: Rajeev Wankar

Prefix Averages

• The following algorithm computes prefix averages in linear
time by keeping a running sum

Algorithm prefixAverages2(X, n)

 Input array X of n integers

 Output array A of prefix averages of X #operations

 A  new array of n integers n

 s  0 1

 for i  0 to n − 1 do n

 s  s + X[i] n

 A[i]  s  (i + 1) n

 return A 1

• Algorithm prefixAverages2 runs in O(n) time

48
Algorithms: Rajeev Wankar

Theorem: If A(n) = amnm+ am-1n
m-1++a1n+ a0 is a

polynomial of degree m then A(n) = O(nm).

Proof is left as an exercise

Most common computing time for the algorithms are:

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) <

O(2n)

49
Algorithms: Rajeev Wankar

-notation: f(n) = (g(n)) {read as f of n equals

omega of g of n} iff there exist two positive

constants c and no such that-

for all)()(ngcnf  0nn 



•Meaning

–Algorithm has lower bound to its growth rate of

f(n)



50
Algorithms: Rajeev Wankar

• Meaning

–Algorithm has lower bound to its growth rate of

f(n)

–Big-Omega gives a lower bound on growth.

–It tells us:

–"The algorithm will run at least this fast."

51
Algorithms: Rajeev Wankar

• Theta notation - 

• Definition : f(n) = (g(n)) iff there exist positive

constants c1, c2 and no such that

 for all

• Meaning

– Big-Theta gives a tight bound — both upper and

lower.

– It tells us:

– "The algorithm runs exactly this fast,

asymptotically."

)()()(21 ngcnfngc  0nn 

52
Algorithms: Rajeev Wankar

Asymptotic: f(n) = ~o(g(n)) iff 1
)(

)(
lim =

→ ng

nf

n

Compare Values of n and T(n)

n 100log2n 20n + 5 3n2 +7 2
n

2 100 45 19 4

5 232 105 82 32

10 332 205 307 1024

20 432 405 1207 1048576

100 632 2005 30007 1.27*1030

53
Algorithms: Rajeev Wankar

Growth Rate Graph (1)

54
Algorithms: Rajeev Wankar

Growth Rate Graph(2)

55
Algorithms: Rajeev Wankar

• properties of logarithms:

logb(xy) = logbx + logby

logb (x/y) = logbx - logby

logbxa = alogbx

logba = logxa/logxb

• properties of exponentials:

a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a log
a

b

bc = a c*log
a

b

• Summations

• Logarithms and Exponents

• Proof techniques

• Basic probability

Math you need to Review

	Slide 2:
	Slide 3: What to learn?
	Slide 4: What to know?
	Slide 5: Syllabus
	Slide 6: Syllabus
	Slide 7: Syllabus
	Slide 8: Syllabus
	Slide 9: Syllabus
	Slide 10: What to know?
	Slide 11: Algorithms
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Basics of Algorithm Analysis
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: The Random Access Machine (RAM) Model
	Slide 30: Primitive Operations
	Slide 31
	Slide 32: Counting Primitive Operations
	Slide 33: Estimating Running Time
	Slide 34: Growth Rates
	Slide 35: Growth Rates
	Slide 36: Growth Rates
	Slide 37: Growth Rates
	Slide 38: Constant Factors
	Slide 39: Big-Oh Notation
	Slide 40: Big-Oh Notation
	Slide 41: Big-Oh Example
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Big-Oh Rules
	Slide 46: Arithmetic Progression
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Math you need to Review

