
Asymptotic Notations Revisit



Asymptotic Complexity

• Running time of an algorithm is a function of 
input size n for large n.

• Expressed using only the highest-order term in 
the expression for the exact running time.

– Instead of exact running time, say (n2).

• Describes behavior of function in the limit.

• Written using Asymptotic Notation.
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Asymptotic Notation

•  O,, , o, 

• Defined for functions over the natural numbers.

– Ex: f(n)  =  (n2).

– Describes how f(n) grows in comparison to n2.

• Define a set of functions; in practice used to compare 
two function sizes.

• The notations describe different rate-of-growth 
relations between the defining function and the 
defined set of functions.
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O-notation

O(g(n)) = {f(n) : 
 positive constants c and n0, such 
that n   n0,

we have 0   |f(n)|  c|g(n)| }

For function g(n), we define O(g(n)), 
big-O of n, as the set:

g(n) is an asymptotic upper bound for f(n).

Intuitively: Set of all functions 
whose rate of growth is the same 
as or lower than that of g(n).

f(n) = (g(n))  f(n) = O(g(n)).
(g(n))   O(g(n)).
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-notation

(g(n)) = {f(n) : 
 positive constants c1, c2, and n0, 
such that n   n0, we have               
0  c1|g(n)|  |f(n)|  c2|g(n)|

}

For function g(n), we define (g(n)), 
big-Theta of n, as the set:

g(n) is an asymptotically tight bound for f(n).

Intuitively: Set of all functions that
have the same rate of growth as g(n).
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-notation

(g(n)) = {f(n) : 
 positive constants c1, c2, and n0, 
such that n   n0, we have               
0  c1|g(n)|  |f(n)|  c2|g(n)|

}

For function g(n), we define (g(n)), 
big-Theta of n, as the set:

Technically, f(n)  (g(n)).
Older usage,  f(n) = (g(n)).

f(n) and g(n) are nonnegative, for large n. 
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Example

• 10n2 - 3n = (n2)

• What constants for n0, c1, and c2 will work?

• Make c1 a little smaller than the leading 
coefficient, and c2 a little bigger.

• To compare orders of growth, look at the 
leading term.

• Exercise: Prove that n2/2-3n= (n2)

(g(n)) = {f(n) :  positive constants c1, c2, and n0, such 

that n   n0,    0  c1|g(n)|  |f(n)|  c2|g(n)|}
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 -notation

g(n) is an asymptotic lower bound for f(n).

Intuitively: Set of all functions 
whose rate of growth is the same 
as or higher than that of g(n).

f(n) = (g(n))  f(n) = (g(n)).
(g(n))   (g(n)).

(g(n)) = {f(n) : 
 positive constants c and n0, such 
that n   n0,

we have 0  c|g(n)|  |f(n)|}

For function g(n), we define (g(n)), 
big-Omega of n, as the set:
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Relations Between , O, 
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Relations Between , , O

• I.e., (g(n)) = O(g(n))  (g(n))

• In practice, asymptotically tight bounds are 
obtained from asymptotic upper and lower 
bounds.

Theorem :  For any two functions g(n) and f(n), 
           f(n) = (g(n)) iff 
 f(n) = O(g(n)) and f(n) = (g(n)).
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Little-o

• 𝑓 𝑛 = 𝑜 𝑔 𝑛  𝑎𝑠 𝑛 → ∞ ⇔ 𝑙𝑖𝑚𝑛→∞
𝑓 𝑛

𝑔 𝑛
= 0

• That is, for any positive constant c, there exists 
an 𝑛0 such that for all 𝑛 > 𝑛0, ∣𝑓(𝑛)∣ < 𝑐 ∣𝑔(𝑛)∣

• Intuitive meaning:

• As 𝑛 gets very large, 𝑓(𝑛) becomes insignificant in 
comparison to  𝑔(𝑛). We say, "f is little-o of g."
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Asymptotic Notations Table
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Comparing 𝑓 𝑛 = 𝑛 and 𝑔 𝑛 = 𝑛2
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Each Asymptotic Notation Holds
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Example

• Insertion sort takes (n2) in the worst case, so 
sorting (as a problem) is O(n2).  Why?

• Any sort algorithm must look at each item, so 
sorting is (n).

• In fact, using (e.g.) merge sort, sorting is (n lg n) 
in the worst case.

18



Asymptotic Notation in Equations

• Can use asymptotic notation in equations to 
replace expressions containing lower-order terms.

• For example,

4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + (n) 

= 4n3 + (n2) = (n3). How to interpret?

• In equations, (f(n)) always stands for an 
anonymous function g(n)  (f(n))

– In the example above, (n2) stands for 
3n2 + 2n + 1.
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Exponentials

• Useful Identities:

• Exponentials and polynomials
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• What is the time complexity of the segment 
that require n! + 2n operations?

n

1

2

3

4
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8

9

n!
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2n
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256

512
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For all n  4(n0) and c = 1, T(n) = O(n!)
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• If                                                    is a polynomial 
of degree m then

• Using the definition of A(n) and simple 
inequality
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Summations – Review 



Review on Summations
• Why do we need summation formulas? 

For computing the running times of iterative 
constructs (loops). 

Example:  Maximum Subvector

Given an array A[1…n] of numeric values (can be 
positive, zero, and negative) determine the 
subvector A[i…j] (1 i  j  n) whose sum of 
elements is maximum over all subvectors.

1 -2 2 2
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Review on Summations
MaxSubvector(A, n) 
 maxsum  0;
 for i  1 to n 
     do for j = i to n
        sum  0
        for k  i to j  
   do sum += A[k]
        maxsum  max(sum, maxsum)
 return maxsum

n     n    j
T(n) =    1
             i=1   j=i  k=i

NOTE:  This is not a simplified solution.  

What is the final answer? 30



Review on Summations

• Constant Series: For integers a and b, a  b,

• Linear Series (Arithmetic Series):  For n  0,

• Quadratic Series: For n  0,
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Review on Summations
• Cubic Series: For n  0,

• Geometric Series:  For real x  1,
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Review on Summations
• Linear-Geometric Series:  For n  0, real c  1,

• Harmonic Series: nth harmonic number, nI+,
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Review on Summations

• Telescoping Series:

• Differentiating Series:  For |x| < 1,
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Induction Hypothesis:

Induction Step: Assume it is true for some k
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The following algorithm adds the positive integers 
from 1 to n.

sum = 0;

for i=1 to n do

 sum = sum + i;

endfor
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The following algorithm obtains the sum given below 
for an arbitrary n:

1 × 1 + 1 × 2 + · · · + 1 × n + 2 × 1 + 2 × 2 + · · · + 2 × n + 
· · · + n × 1 + · · · + n × n

sum = 0

for i = 1 to n do

for j = 1 to n do

  sum = sum + i * j

 endfor

endfor
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The following algorithm computes the sum of the following 
series:

1 × 1 × 1 + ...+1 × 1 × n + 2 × 1 × 1 + 2 × 2 × 2 + · · · + n × n × n

sum = 0

for i = 1 to n do

 for j = 1 to i do

  for k = 1 to j do

   sum = sum + i * j * k

  endfor

 endfor

endfor
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Obtain the sum of the following series:
1 + 2 + 22 + · · · + 2k

Here,
a = the initial value = 1
r = the ratio between the two terms = 2
n = the number of terms = k − 1

Therefore, Sn can be obtained as given below.

  Sn = a(1 − rk)/1 − r
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m := 1;

for i:= 1 to n do begin

      m:= m * 2;

      for j:= 1 to m do

            {do something that is O(1)}

end;
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m := 1;

for i:= 1 to n do begin

      m:= m * 2;

      for j:= 1 to m do

            print “hello”;

end;
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m := 1;

for i:= 1 to n do begin

      m:= m * 2;

      for j:= 1 to m do

            print “hello”;

end;
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Examples

• Nested Loops 

• Sequential statements

• Conditional statements

• More nested loops
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Nested Loops

• Running time of a loop equals running time of code within the 
loop times the number of iterations

• Nested loops: analyze inside out

O(1)
O(n)



Nested Loops

• Running time of a loop equals running time of code within the 
loop times the number of iterations

• Nested loops: analyze inside out

O(1*n) = 
O(n)



Nested Loops

• Running time of a loop equals running time of code within the 
loop times the number of iterations

• Nested loops: analyze inside out

O(n)

O(n)



Nested Loops

• Running time of a loop equals running time of code within the 
loop times the number of iterations

• Nested loops: analyze inside out

O(n*n) =
O(n2)



Nested Loops

• Running time of a loop equals running time of code within the 
loop times the number of iterations

• Nested loops: analyze inside out

• Note: Running time grows with nesting rather than the length 
of the code

O(n)
O(n2)



Sequential Statements

• For a sequence S1; S2; : : : Sk of statements, running 
time is maximum of running times of individual 
statements

Running time is:

O(n)

O(n2)

max(O(n), O(n2)) = O(n2)



More Nested Loops
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What does the following algorithm do? 
Analyze its worst-case running time, and express it using “Big-Oh" notation.
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Solution 

This algorithm computes an. 

The running time 
of this algorithm is O(n) because:

• the initial assignments take constant time
• each iteration of the while loop 

takes constant time
• there are exactly n iterations
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Example : Bubblesort 
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Void Bubblesort( int[] A ) // A[1…n] 
1. begin 
2. for i = 1 to n-1 do 
3.      for j=1 to n-i do 
4.           if A[j] > A[j+1] then 
5.              swap A[j] with A[j+1] 
6. end

Line 1,6: O(1) 
Line 4,5: O(1) 
Line 3-5: O(n-i) 

)( 2nOLine 2-5:
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Example : Polynomial Growth 

2

21

nnnnnn

kkk n

==+++=

+++= ===





for k=1 to n do    // pseudocode 
     for j=1 to n do  
          x = x + 1   // count this line or                          
                 // count additions/assignments 

( )=nT “No. of additions for input size n” 
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Example : Logarithmic Growth 

1. k=n;

2. while( k >= 1)      // top 

3.          x = x + 1;    // count this line 

4.          k = k / 2;     // k is halved 

5. end 

Iteration#           value of k (at entry) #line 3 exec’d 

1                                 n                                  1
2                                 n/2                               1
3                                 n/22                              1
4                                 n/23                                            1
…                                               …                                             …

m-1     n/2m-2        1 
m     n/2m-1    1        1
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We are interested in what m is 
(because that is the number of times line 3 is executed).  
In other words,

Example : Logarithmic Growth (cont)

To derive m, we look at the last iteration, 

(eq 1)

( )  ( ) )(lg1*1log2 nOnnT =+=

From (eq 1),
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If log2n is between m−1 and m, then the floor of 
log2n is exactly m−1.
That's the definition of the floor function:
⌊x⌋=the greatest integer less than or equal to x



Example : Insertion Sort 

InsertionSort( int[] A )                // A is an n-element array 
begin                       // Ignore function entry costs 

int i,j;         // Ignore compile time costs1. 
for j=2 to length of A do 
 key = A[j]; 
 i = j-1; 
 while i>0 and A[i] > key do
  A[i+1] = A[i] 
  i = i-1 ; 
 endwhile          // ignore goto costs
A[i+1] = key;   
endfor          // ignore goto costs

end           // ignore exit costs 

Unit Cost
(amount of work)

Times? ? O(?)
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Example : Portion of a selection sort which does the sorting

1 for (i= 0; i < n ; i++) ?

2 {

3 m = i; O(1)

4 for (j = i + 1; j <= n-1; j++) ?

5 {

6 if (A[j] < A[m]) O(1)

7 m = j; O(1)

8 }

9 if (A[i] !=  A[m]) O(1)

10 {

11 temp = A[i]; O(1)

12 A[i] = A[m]; O(1)

13 A[m] = temp; O(1)

14 }

15 }
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Basic Asymptotic Efficiency Classes

102



Basic Asymptotic Efficiency Classes
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Basic Asymptotic Efficiency Classes

104



Basic Asymptotic Efficiency Classes
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Basic Asymptotic Efficiency Classes
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Basic Asymptotic Efficiency Classes

107



Basic Asymptotic Efficiency Classes
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Basic Asymptotic Efficiency Classes
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Recurrence Relation

The recurrence relation for an algorithm can be written as

The first equation says that the algorithm looks at all n 
elements in the input. c is a small positive constant. The 
T(n−1) term on the right hand side says there is one fewer 
element to look at in the next round. Note that the 
coefficient of T(n − 1) is also 1. d is also a small
positive constant.
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cn  1) - T(nnT +=)(
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T(n) = T(n − k) + c((n − (k − 1)) + · · · + (n − 1) + n)

= T(1) + c(2 + 3 + · · · + (n − 1) + n)

= d + c(1 + 2 + 3 + · · · + (n − 1) + n − 1)

111



)1)1()( −++= nn
2

1
c(dnT

)(
2

1
)( cdcn

2

1
cnnT 2 −++=

)( 2nO=

112




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=
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1  n      c  T(n/2)
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cnTnT += )2/()(

cc
n

TnT +







+= )

2
()(

2

cc
n

TnT 2)
2

()(
3

+







+=

kc
n

TnT
k

+







= )

2
()(

...

...

...

=>>  = T(1) + kc

113



• We can assume that the number of elements we are 
dealing with is the next perfect power of 2. 

• With this assumption, we will get an upper bound on 
the time consumed by the algorithm.

• With the assumption that n is a perfect power of  2, 
we can write  n = 2k , k ≥ 0

• which leads us to the conclusion that T(n) = log2n.
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Solving the Recurrence 



 +

=
otherwise d,

1  n      cn  T(n/2)
nT )(
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Solving the Recurrence 



 +

=
otherwise d,

1  n      cn  T(n/2)
nT )(
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Solving the Recurrence 



 +

=
otherwise d,

1  n      cn  T(n/2)
nT )(
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Solving the Recurrence 



 +

=
otherwise d,

1  n      cn  T(n/2)
nT )(
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Solving the Recurrence 



 +

=
otherwise d,

1  n      cn  T(n/2)
nT )(
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Solving the Recurrence 



 +

=
otherwise d,

1  n      cn  T(n/2)
nT )(
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= O(n)
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a = the initial value = 1

r = the ratio between the two 
terms = ½

n = the number of terms = k − 1
Therefore,

Sn = a(1 − rk)/1 − r



Solving the Recurrence 

128



129



130



131



132



133



134



135



136



137



138



139



140



Solving the Recurrence 
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Solving the Recurrence 
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Solving the Recurrence 
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Solving the Recurrence 
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Solving the Recurrence 
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Solving the Recurrence 
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Solving the Recurrence 
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Solving the Recurrence 

We made the assumption n = 2k.   This gives
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Assignment: Solve the recurrence relation:
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Solving the Recurrence 
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Solving the Recurrence 
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Solving the Recurrence 
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Solving the Recurrence 
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Solving the Recurrence 
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Solving the Recurrence 
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Solving the Recurrence 
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Solving the Recurrence 
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Ackermann’s Function

2,for  ))1,(,1(),(
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A(i,j) j=1 j=2 j=3 j=4

i=1 21 = 2 22 = 4 23 = 8 24 = 16

i=2 22 = 4 222
 = 16 216 = 65536 265536
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 = 16 216 = 65536 265536 2265536
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Master’s theorem

• Let T(n) be a monotonically increasing function 
that satisfies 

– 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑛𝑑

– 𝑇 1 = 𝑐

• Where a ≥ 1, b ≥ 2, c ≥ 0, d ≥ 1 then

• 𝑇 𝑛 = ൞

𝑂(𝑛𝑑), 𝑖𝑓 𝑎 < 𝑏𝑑

𝑂(𝑛𝑑  𝑙𝑜𝑔𝑛), 𝑖𝑓 𝑎 = 𝑏𝑑

𝑂 𝑛log
𝑏

𝑎 , 𝑖𝑓 𝑎 > 𝑏𝑑
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Master’s theorem Ex. 1

• 𝑇 𝑛 = ൞

𝑂(𝑛𝑑), 𝑖𝑓 𝑎 < 𝑏𝑑

𝑂(𝑛𝑑  𝑙𝑜𝑔𝑛), 𝑖𝑓 𝑎 = 𝑏𝑑

𝑂 𝑛log
𝑏

𝑎 , 𝑖𝑓 𝑎 > 𝑏𝑑

– 𝑇 𝑛 = 2 𝑇
𝑛

2
+ 𝑛

• Here a = 2, b = 2 d =1

• This is a = bd form 

• => 𝑇 𝑛 = 𝑂(𝑛 𝑙𝑜𝑔𝑛)
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Master’s theorem Ex. 2

• 𝑇 𝑛 = ൞

𝑂(𝑛𝑑), 𝑖𝑓 𝑎 < 𝑏𝑑

𝑂(𝑛𝑑  𝑙𝑜𝑔𝑛), 𝑖𝑓 𝑎 = 𝑏𝑑

𝑂 𝑛log
𝑏

𝑎 , 𝑖𝑓 𝑎 > 𝑏𝑑

– 𝑇 𝑛 = 3 𝑇
𝑛

2
+ 𝑛

• Here a = 3, b = 2 d =1

• This is 𝑎 > 𝑏𝑑  form 

• => 𝑇 𝑛 = 𝑂 𝑛𝑙𝑜𝑔
2
3
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Master’s theorem Ex. 3

• 𝑇 𝑛 = ൞

𝑂(𝑛𝑑), 𝑖𝑓 𝑎 < 𝑏𝑑

𝑂(𝑛𝑑  𝑙𝑜𝑔𝑛), 𝑖𝑓 𝑎 = 𝑏𝑑

𝑂 𝑛log
𝑏

𝑎 , 𝑖𝑓 𝑎 > 𝑏𝑑

– 𝑇 𝑛 =  𝑇
𝑛

2
+ 𝑛

• Here a = 1, b = 2 d =1

• This is 𝑎 < 𝑏𝑑  form 

• => 𝑇 𝑛 = 𝑂 𝑛
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Master’s theorem Ex. 4

• 𝑇 𝑛 = ൞

𝑂(𝑛𝑑), 𝑖𝑓 𝑎 < 𝑏𝑑

𝑂(𝑛𝑑  𝑙𝑜𝑔𝑛), 𝑖𝑓 𝑎 = 𝑏𝑑

𝑂 𝑛log
𝑏

𝑎 , 𝑖𝑓 𝑎 > 𝑏𝑑

– 𝑇 𝑛 = 8𝑇
𝑛

2
+ 𝑛2

• Here a = 8, b = 2 d =2

• This is 𝑎 > 𝑏𝑑  form 

• => 𝑇 𝑛 = 𝑂(𝑛𝑙𝑜𝑔
28) = O(𝑛3)
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Akra-Bazzi method

• Master’s method us unable handle certain 
cases.

• The Akra-Bazzi method is very flexible and 
allows us to solve recurrences that are not 
neatly handled by the Master Theorem, 
especially when 

– the recursive divisions are uneven or 

– when the additive term g(n) is not polynomial.
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Cont.

• The Akra-Bazzi method is a powerful technique 
used to determine the asymptotic (time) 
complexity of divide-and-conquer recurrence 
relations of the form:

• 𝑇 𝑥 =  σ𝑖=1
𝑘 𝑎𝑖 𝑇 𝑏𝑖𝑥 + 𝑔(𝑥)

– Where 𝑎𝑖 > 0, 
– 0 < 𝑏𝑖 < 1,
– 𝑔(𝑥) is a non-negative function that describes the 

cost outside the recursive calls

• This method generalizes the Master Theorem to 
more complex or irregular cases.
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Cont.

• Suppose the recurrence is 

• 𝑇 𝑥 =  σ𝑖=1
𝑘 𝑎𝑖 𝑇 𝑏𝑖𝑥 + 𝑔(𝑥), 𝑥 > x0

• Then, under technical conditions (which are typically 
satisfied in practice), the solution is:

• 𝑇 𝑥 = Θ 𝑥𝑝(1 + 1׬

𝑥 𝑔 𝑢

𝑢𝑝+1 𝑑𝑢)

• Where: p is the unique solution of the equation:

• σ𝑖=1
𝑘 𝑎𝑖𝑏𝑖

𝑝
=1
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Example: Use Akra-Bazzi to solve a recurrence

• Let’s solve:

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 𝑙𝑜𝑔𝑛

• This recurrence is not solvable directly by Master’s 
Theorem because of the non-polynomial f(n)=n log. 
So we apply Akra-Bazzi.

• 𝑇 𝑛 =  σ𝑖=1
𝑛 𝑎𝑖 𝑇 𝑏𝑖𝑛 + 𝑓(𝑛)

• under certain conditions (smoothness of f(n), and 
constants satisfying 0 < bi< 1, ai > 0), the solution is:

190



Cont.

• 𝑇 𝑥 = Θ 𝑥𝑝(1 + 1׬

𝑥 𝑔 𝑢

𝑢𝑝+1 𝑑𝑢)

• Where: p is the unique solution of the 
equation:

• σ𝑖=1
𝑘 𝑎𝑖𝑏𝑖

𝑝
=1

191



Step 1: Identify parameters

• From 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 𝑙𝑜𝑔𝑛

• We have a1 =2, b1 = ½, f(n) = n log n
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Step 2: Solve for p

• σ𝑖=1
𝑘 𝑎𝑖𝑏𝑖

𝑝
= 1 ֜  2

1

2

𝑝
= 1 

• ֜
1

2

𝑝
=

1

2
   ֜  𝑝 = 1
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Step 3: Plug into Akra-Bazzi formula

• 𝑇 𝑥 = Θ 𝑛1(1 + 1׬

𝑛 𝑢 𝑙𝑜𝑔 𝑢

𝑢1+1 𝑑𝑢)

•  = Θ 𝑛(1 + 1׬

𝑛  𝑙𝑜𝑔 𝑢

𝑢
𝑑𝑢)
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Step 4: Compute the integral

•  = Θ 𝑛(1 + 1׬

𝑛  𝑙𝑜𝑔 𝑢

𝑢
𝑑𝑢)

• 1׬

𝑛  𝑙𝑜𝑔 𝑢

𝑢
𝑑𝑢 =

1

2
(log 𝑛)2  (This is a standard 

integral result.)

• Let   t = 𝑙𝑜𝑔 𝑢,  so dt =
1

u
du

• Change the limit, when u = 1, t = 𝑙𝑜𝑔 1 = 0

•                                when u = n, t = 𝑙𝑜𝑔 𝑛

• I = 0׬

𝑙𝑜𝑔 𝑛
𝑡 𝑑𝑡 =

𝒕𝟐

𝟐 𝟎

𝑙𝑜𝑔 𝑛

=
1

2
(log 𝑛 )2
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Step 5: Final Result

• 𝑇 𝑛 = Θ 𝑛 (1 +
1

2
(log 𝑛 )2)

• 𝑇 𝑛 = Θ 𝑛 (log 𝑛 )2
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