
Asymptotic Notations Revisit

Asymptotic Complexity

• Running time of an algorithm is a function of
input size n for large n.

• Expressed using only the highest-order term in
the expression for the exact running time.

– Instead of exact running time, say (n2).

• Describes behavior of function in the limit.

• Written using Asymptotic Notation.

2

Asymptotic Notation

• O,, , o, 

• Defined for functions over the natural numbers.

– Ex: f(n) = (n2).

– Describes how f(n) grows in comparison to n2.

• Define a set of functions; in practice used to compare
two function sizes.

• The notations describe different rate-of-growth
relations between the defining function and the
defined set of functions.

3

O-notation

O(g(n)) = {f(n) :
 positive constants c and n0, such
that n  n0,

we have 0  |f(n)|  c|g(n)| }

For function g(n), we define O(g(n)),
big-O of n, as the set:

g(n) is an asymptotic upper bound for f(n).

Intuitively: Set of all functions
whose rate of growth is the same
as or lower than that of g(n).

f(n) = (g(n))  f(n) = O(g(n)).
(g(n))  O(g(n)).

4

5

-notation

(g(n)) = {f(n) :
 positive constants c1, c2, and n0,
such that n  n0, we have
0  c1|g(n)|  |f(n)|  c2|g(n)|

}

For function g(n), we define (g(n)),
big-Theta of n, as the set:

g(n) is an asymptotically tight bound for f(n).

Intuitively: Set of all functions that
have the same rate of growth as g(n).

6

-notation

(g(n)) = {f(n) :
 positive constants c1, c2, and n0,
such that n  n0, we have
0  c1|g(n)|  |f(n)|  c2|g(n)|

}

For function g(n), we define (g(n)),
big-Theta of n, as the set:

Technically, f(n)  (g(n)).
Older usage, f(n) = (g(n)).

f(n) and g(n) are nonnegative, for large n.
7

8

Example

• 10n2 - 3n = (n2)

• What constants for n0, c1, and c2 will work?

• Make c1 a little smaller than the leading
coefficient, and c2 a little bigger.

• To compare orders of growth, look at the
leading term.

• Exercise: Prove that n2/2-3n= (n2)

(g(n)) = {f(n) :  positive constants c1, c2, and n0, such

that n  n0, 0  c1|g(n)|  |f(n)|  c2|g(n)|}

9

 -notation

g(n) is an asymptotic lower bound for f(n).

Intuitively: Set of all functions
whose rate of growth is the same
as or higher than that of g(n).

f(n) = (g(n))  f(n) = (g(n)).
(g(n))  (g(n)).

(g(n)) = {f(n) :
 positive constants c and n0, such
that n  n0,

we have 0  c|g(n)|  |f(n)|}

For function g(n), we define (g(n)),
big-Omega of n, as the set:

10

11

Relations Between , O, 

12

Relations Between , , O

• I.e., (g(n)) = O(g(n))  (g(n))

• In practice, asymptotically tight bounds are
obtained from asymptotic upper and lower
bounds.

Theorem : For any two functions g(n) and f(n),
 f(n) = (g(n)) iff
 f(n) = O(g(n)) and f(n) = (g(n)).

13

Little-o

• 𝑓 𝑛 = 𝑜 𝑔 𝑛 𝑎𝑠 𝑛 → ∞ ⇔ 𝑙𝑖𝑚𝑛→∞
𝑓 𝑛

𝑔 𝑛
= 0

• That is, for any positive constant c, there exists
an 𝑛0 such that for all 𝑛 > 𝑛0, ∣𝑓(𝑛)∣ < 𝑐 ∣𝑔(𝑛)∣

• Intuitive meaning:

• As 𝑛 gets very large, 𝑓(𝑛) becomes insignificant in
comparison to 𝑔(𝑛). We say, "f is little-o of g."

14

Asymptotic Notations Table

15

Comparing 𝑓 𝑛 = 𝑛 and 𝑔 𝑛 = 𝑛2

16

Each Asymptotic Notation Holds

17

Example

• Insertion sort takes (n2) in the worst case, so
sorting (as a problem) is O(n2). Why?

• Any sort algorithm must look at each item, so
sorting is (n).

• In fact, using (e.g.) merge sort, sorting is (n lg n)
in the worst case.

18

Asymptotic Notation in Equations

• Can use asymptotic notation in equations to
replace expressions containing lower-order terms.

• For example,

4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + (n)

= 4n3 + (n2) = (n3). How to interpret?

• In equations, (f(n)) always stands for an
anonymous function g(n)  (f(n))

– In the example above, (n2) stands for
3n2 + 2n + 1.

19

Exponentials

• Useful Identities:

• Exponentials and polynomials

nmnm

mnnm

aaa

aa

a
a

+

−

=

=

=

)(

11

)(

0lim

nb

n

b

n

aon

a

n

=

=
→

20

• What is the time complexity of the segment
that require n! + 2n operations?

n

1

2

3

4

5

6

7

8

9

n!

1

2

6

24

120

720

5040

40320

362880

2n

2

4

8

16

32

64

128

256

512

25

For all n  4(n0) and c = 1, T(n) = O(n!)

26

• If is a polynomial
of degree m then

• Using the definition of A(n) and simple
inequality

01...)(anananA m

m +++=

)()(mnnA =

01...)(anananA m

m +++

m
m

m
m n

n

a
n

a
anA 








++ − 01 ...)(

() m

m naanA 0...)(++ 1, n

Choosing c = and n0 = 1
01... aaam +++

27

Summations – Review

Review on Summations
• Why do we need summation formulas?

For computing the running times of iterative
constructs (loops).

Example: Maximum Subvector

Given an array A[1…n] of numeric values (can be
positive, zero, and negative) determine the
subvector A[i…j] (1 i  j  n) whose sum of
elements is maximum over all subvectors.

1 -2 2 2

29

Review on Summations
MaxSubvector(A, n)
 maxsum  0;
 for i  1 to n
 do for j = i to n
 sum  0
 for k  i to j
 do sum += A[k]
 maxsum  max(sum, maxsum)
 return maxsum

n n j
T(n) =    1
 i=1 j=i k=i

NOTE: This is not a simplified solution.

What is the final answer? 30

Review on Summations

• Constant Series: For integers a and b, a  b,

• Linear Series (Arithmetic Series): For n  0,

• Quadratic Series: For n  0,


=

+−=
b

ai

ab 11

2

)1(
21

1

+
=+++=

=

nn
ni

n

i




=

++
=+++=

n

i

nnn
ni

1

2222

6

)12)(1(
21 

Review on Summations
• Cubic Series: For n  0,

• Geometric Series: For real x  1,

For |x| < 1,


=

+
=+++=

n

i

nn
ni

1

22
3333

4

)1(
21 


=

+

−

−
=++++=

n

k

n
nk

x

x
xxxx

0

1
2

1

1
1 




= −
=

0 1

1

k

k

x
x

32

Review on Summations
• Linear-Geometric Series: For n  0, real c  1,

• Harmonic Series: nth harmonic number, nI+,


=

++

−

+++−
=+++=

n

i

nn
ni

c

cnccn
ncccic

1
2

21
2

)1(

)1(
2 

n
H n

1

3

1

2

1
1 ++++= 


=

+==
n

k

On
k1

)1()ln(
1

33

Review on Summations

• Telescoping Series:

• Differentiating Series: For |x| < 1,


=

− −=−
n

k

nkk aaaa
1

01

()



= −
=

0
2

1k

k

x

x
kx

34

Induction Hypothesis:

Induction Step: Assume it is true for some k

37

i

())1(1
2

++ kk

38

i

())1(1
2

++ kk

39

i

())1(1
2

++ kk

40

i

())1(1
2

++ kk

41

i

())1(1
2

++ kk

42

i

())1(1
2

++ kk

43

i

())1(1
2

++ kk

44

Hence Proved

The following algorithm adds the positive integers
from 1 to n.

sum = 0;

for i=1 to n do

 sum = sum + i;

endfor

45

The following algorithm obtains the sum given below
for an arbitrary n:

1 × 1 + 1 × 2 + · · · + 1 × n + 2 × 1 + 2 × 2 + · · · + 2 × n +
· · · + n × 1 + · · · + n × n

sum = 0

for i = 1 to n do

for j = 1 to n do

 sum = sum + i * j

 endfor

endfor

46

47

48

49

50

51

52

The following algorithm computes the sum of the following
series:

1 × 1 × 1 + ...+1 × 1 × n + 2 × 1 × 1 + 2 × 2 × 2 + · · · + n × n × n

sum = 0

for i = 1 to n do

 for j = 1 to i do

 for k = 1 to j do

 sum = sum + i * j * k

 endfor

 endfor

endfor
53

54

i

55

i

56

i

i

57

i

58

c2

c2

59

c2

c2

60

c2

c2

61

c2

c2

62

c2

c2

63

c2

c2

64

65

66

12

2

2

3

2
3

1

2

1

6

1
cncncnc +++

67

Obtain the sum of the following series:
1 + 2 + 22 + · · · + 2k

Here,
a = the initial value = 1
r = the ratio between the two terms = 2
n = the number of terms = k − 1

Therefore, Sn can be obtained as given below.

 Sn = a(1 − rk)/1 − r

68

m := 1;

for i:= 1 to n do begin

 m:= m * 2;

 for j:= 1 to m do

 {do something that is O(1)}

end;

69

m := 1;

for i:= 1 to n do begin

 m:= m * 2;

 for j:= 1 to m do

 print “hello”;

end;

70

m := 1;

for i:= 1 to n do begin

 m:= m * 2;

 for j:= 1 to m do

 print “hello”;

end;

2 + 22 + · · · + 2n = 2(1 + 21 + · · · + 2n-1) = 2*
−

=

1

0

2
n

i

i


−

=

−

−

−
=++++=

1

0

12

1

1
1

n

k

n
nk

x

x
xxxx 

())2(12*2
12

12
2 nn

n

=−=








−

−


We know that

71

Examples

• Nested Loops

• Sequential statements

• Conditional statements

• More nested loops

72

Nested Loops

• Running time of a loop equals running time of code within the
loop times the number of iterations

• Nested loops: analyze inside out

O(1)
O(n)

Nested Loops

• Running time of a loop equals running time of code within the
loop times the number of iterations

• Nested loops: analyze inside out

O(1*n) =
O(n)

Nested Loops

• Running time of a loop equals running time of code within the
loop times the number of iterations

• Nested loops: analyze inside out

O(n)

O(n)

Nested Loops

• Running time of a loop equals running time of code within the
loop times the number of iterations

• Nested loops: analyze inside out

O(n*n) =
O(n2)

Nested Loops

• Running time of a loop equals running time of code within the
loop times the number of iterations

• Nested loops: analyze inside out

• Note: Running time grows with nesting rather than the length
of the code

O(n)
O(n2)

Sequential Statements

• For a sequence S1; S2; : : : Sk of statements, running
time is maximum of running times of individual
statements

Running time is:

O(n)

O(n2)

max(O(n), O(n2)) = O(n2)

More Nested Loops

in −

()
() ()2

2
1

0 22

1
nO

nnnn
in

n

i
=

−
=

−
=−

−

=

?

81

What does the following algorithm do?
Analyze its worst-case running time, and express it using “Big-Oh" notation.

85

Solution

This algorithm computes an.

The running time
of this algorithm is O(n) because:

• the initial assignments take constant time
• each iteration of the while loop

takes constant time
• there are exactly n iterations

86

Example : Bubblesort

() =







−

−1

1

n

inO () =







−− 

−1

1

1
n

innO

Void Bubblesort(int[] A) // A[1…n]
1. begin
2. for i = 1 to n-1 do
3. for j=1 to n-i do
4. if A[j] > A[j+1] then
5. swap A[j] with A[j+1]
6. end

Line 1,6: O(1)
Line 4,5: O(1)
Line 3-5: O(n-i)

)(2nOLine 2-5:

92

Example : Polynomial Growth

2

21

nnnnnn

kkk n

==+++=

+++= ===





for k=1 to n do // pseudocode
 for j=1 to n do
 x = x + 1 // count this line or
 // count additions/assignments

()=nT “No. of additions for input size n”

93

Example : Logarithmic Growth

1. k=n;

2. while(k >= 1) // top

3. x = x + 1; // count this line

4. k = k / 2; // k is halved

5. end

Iteration# value of k (at entry) #line 3 exec’d

1 n 1
2 n/2 1
3 n/22 1
4 n/23 1
… … …

m-1 n/2m-2 1
m n/2m-1  1 1

94

()

 

  1log

1log

log1

22

221

2

2

2

1

1

+=

−=

−





−

−

nm

mn

mnm

n

n

mm

m

m

() ()1*1111 mnT =++++= 

We are interested in what m is
(because that is the number of times line 3 is executed).
In other words,

Example : Logarithmic Growth (cont)

To derive m, we look at the last iteration,

(eq 1)

()  ())(lg1*1log2 nOnnT =+=

From (eq 1),

95

If log2n is between m−1 and m, then the floor of
log2n is exactly m−1.
That's the definition of the floor function:
⌊x⌋=the greatest integer less than or equal to x

Example : Insertion Sort

InsertionSort(int[] A) // A is an n-element array
begin // Ignore function entry costs

int i,j; // Ignore compile time costs1.
for j=2 to length of A do
 key = A[j];
 i = j-1;
 while i>0 and A[i] > key do
 A[i+1] = A[i]
 i = i-1 ;
 endwhile // ignore goto costs
A[i+1] = key;
endfor // ignore goto costs

end // ignore exit costs

Unit Cost
(amount of work)

Times? ? O(?)

96

Example : Portion of a selection sort which does the sorting

1 for (i= 0; i < n ; i++) ?

2 {

3 m = i; O(1)

4 for (j = i + 1; j <= n-1; j++) ?

5 {

6 if (A[j] < A[m]) O(1)

7 m = j; O(1)

8 }

9 if (A[i] != A[m]) O(1)

10 {

11 temp = A[i]; O(1)

12 A[i] = A[m]; O(1)

13 A[m] = temp; O(1)

14 }

15 }

97

Basic Asymptotic Efficiency Classes

102

Basic Asymptotic Efficiency Classes

103

Basic Asymptotic Efficiency Classes

104

Basic Asymptotic Efficiency Classes

105

Basic Asymptotic Efficiency Classes

106

Basic Asymptotic Efficiency Classes

107

Basic Asymptotic Efficiency Classes

108

Basic Asymptotic Efficiency Classes

109

Recurrence Relation

The recurrence relation for an algorithm can be written as

The first equation says that the algorithm looks at all n
elements in the input. c is a small positive constant. The
T(n−1) term on the right hand side says there is one fewer
element to look at in the next round. Note that the
coefficient of T(n − 1) is also 1. d is also a small
positive constant.



 +

=
otherwise d,

1 n cn 1) - T(n
nT)(

110

cn 1) - T(nnT +=)(

cn 1))-c(n2) - T(nnT ++= ()(

n) 1))-c((n2) - T(nnT ++=)(

n) 1)-(n1)-c((n3) - T(nnT +++=)(

...

...

...

T(n) = T(n − k) + c((n − (k − 1)) + · · · + (n − 1) + n)

= T(1) + c(2 + 3 + · · · + (n − 1) + n)

= d + c(1 + 2 + 3 + · · · + (n − 1) + n − 1)

111

)1)1()(−++= nn
2

1
c(dnT

)(
2

1
)(cdcn

2

1
cnnT 2 −++=

)(2nO=

112



 +

=
otherwise d,

1 n c T(n/2)
nT)(

Here, c and d are small positive constants.

cnTnT +=)2/()(

cc
n

TnT +







+=)

2
()(

2

cc
n

TnT 2)
2

()(
3

+







+=

kc
n

TnT
k

+







=)

2
()(

...

...

...

=>> = T(1) + kc

113

• We can assume that the number of elements we are
dealing with is the next perfect power of 2.

• With this assumption, we will get an upper bound on
the time consumed by the algorithm.

• With the assumption that n is a perfect power of 2,
we can write n = 2k , k ≥ 0

• which leads us to the conclusion that T(n) = log2n.

114

Solving the Recurrence



 +

=
otherwise d,

1 n cn T(n/2)
nT)(

115

Solving the Recurrence



 +

=
otherwise d,

1 n cn T(n/2)
nT)(

116

Solving the Recurrence



 +

=
otherwise d,

1 n cn T(n/2)
nT)(

117

Solving the Recurrence



 +

=
otherwise d,

1 n cn T(n/2)
nT)(

118

Solving the Recurrence



 +

=
otherwise d,

1 n cn T(n/2)
nT)(

119

Solving the Recurrence



 +

=
otherwise d,

1 n cn T(n/2)
nT)(

120

121

122

123

124

125

126

= O(n)

127

a = the initial value = 1

r = the ratio between the two
terms = ½

n = the number of terms = k − 1
Therefore,

Sn = a(1 − rk)/1 − r

Solving the Recurrence

128

129

130

131

132

133

134

135

136

137

138

139

140

Solving the Recurrence

141

Solving the Recurrence

142

Solving the Recurrence

143

Solving the Recurrence

144

Solving the Recurrence

145

Solving the Recurrence

146

Solving the Recurrence

147

Solving the Recurrence

We made the assumption n = 2k. This gives
148

b

a
a

c

c

b
log

log
log =

149

Assignment: Solve the recurrence relation:

150

Solving the Recurrence

151

Solving the Recurrence

152

Solving the Recurrence

153

Solving the Recurrence

154

Solving the Recurrence

155

Solving the Recurrence

156

Solving the Recurrence

157

Solving the Recurrence

158

159

160

161

162

163

164

165

166

167

168

Ackermann’s Function

2,for))1,(,1(),(

2for)2 ,1()1 ,(

1for 2),1(

−−=

−=

=

jijiAiAjiA

iiAiA

jjA j

A(i,j) j=1 j=2 j=3 j=4

i=1 21 = 2 22 = 4 23 = 8 24 = 16

i=2 22 = 4 222
 = 16 216 = 65536 265536

i=3 222
 = 16 216 = 65536 265536 2265536

 = BIG

Master’s theorem

• Let T(n) be a monotonically increasing function
that satisfies

– 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑛𝑑

– 𝑇 1 = 𝑐

• Where a ≥ 1, b ≥ 2, c ≥ 0, d ≥ 1 then

• 𝑇 𝑛 = ൞

𝑂(𝑛𝑑), 𝑖𝑓 𝑎 < 𝑏𝑑

𝑂(𝑛𝑑 𝑙𝑜𝑔𝑛), 𝑖𝑓 𝑎 = 𝑏𝑑

𝑂 𝑛log
𝑏

𝑎 , 𝑖𝑓 𝑎 > 𝑏𝑑

182

Master’s theorem Ex. 1

• 𝑇 𝑛 = ൞

𝑂(𝑛𝑑), 𝑖𝑓 𝑎 < 𝑏𝑑

𝑂(𝑛𝑑 𝑙𝑜𝑔𝑛), 𝑖𝑓 𝑎 = 𝑏𝑑

𝑂 𝑛log
𝑏

𝑎 , 𝑖𝑓 𝑎 > 𝑏𝑑

– 𝑇 𝑛 = 2 𝑇
𝑛

2
+ 𝑛

• Here a = 2, b = 2 d =1

• This is a = bd form

• => 𝑇 𝑛 = 𝑂(𝑛 𝑙𝑜𝑔𝑛)

183

Master’s theorem Ex. 2

• 𝑇 𝑛 = ൞

𝑂(𝑛𝑑), 𝑖𝑓 𝑎 < 𝑏𝑑

𝑂(𝑛𝑑 𝑙𝑜𝑔𝑛), 𝑖𝑓 𝑎 = 𝑏𝑑

𝑂 𝑛log
𝑏

𝑎 , 𝑖𝑓 𝑎 > 𝑏𝑑

– 𝑇 𝑛 = 3 𝑇
𝑛

2
+ 𝑛

• Here a = 3, b = 2 d =1

• This is 𝑎 > 𝑏𝑑 form

• => 𝑇 𝑛 = 𝑂 𝑛𝑙𝑜𝑔
2
3

184

Master’s theorem Ex. 3

• 𝑇 𝑛 = ൞

𝑂(𝑛𝑑), 𝑖𝑓 𝑎 < 𝑏𝑑

𝑂(𝑛𝑑 𝑙𝑜𝑔𝑛), 𝑖𝑓 𝑎 = 𝑏𝑑

𝑂 𝑛log
𝑏

𝑎 , 𝑖𝑓 𝑎 > 𝑏𝑑

– 𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑛

• Here a = 1, b = 2 d =1

• This is 𝑎 < 𝑏𝑑 form

• => 𝑇 𝑛 = 𝑂 𝑛

185

Master’s theorem Ex. 4

• 𝑇 𝑛 = ൞

𝑂(𝑛𝑑), 𝑖𝑓 𝑎 < 𝑏𝑑

𝑂(𝑛𝑑 𝑙𝑜𝑔𝑛), 𝑖𝑓 𝑎 = 𝑏𝑑

𝑂 𝑛log
𝑏

𝑎 , 𝑖𝑓 𝑎 > 𝑏𝑑

– 𝑇 𝑛 = 8𝑇
𝑛

2
+ 𝑛2

• Here a = 8, b = 2 d =2

• This is 𝑎 > 𝑏𝑑 form

• => 𝑇 𝑛 = 𝑂(𝑛𝑙𝑜𝑔
28) = O(𝑛3)

186

Akra-Bazzi method

• Master’s method us unable handle certain
cases.

• The Akra-Bazzi method is very flexible and
allows us to solve recurrences that are not
neatly handled by the Master Theorem,
especially when

– the recursive divisions are uneven or

– when the additive term g(n) is not polynomial.

187

Cont.

• The Akra-Bazzi method is a powerful technique
used to determine the asymptotic (time)
complexity of divide-and-conquer recurrence
relations of the form:

• 𝑇 𝑥 = σ𝑖=1
𝑘 𝑎𝑖 𝑇 𝑏𝑖𝑥 + 𝑔(𝑥)

– Where 𝑎𝑖 > 0,
– 0 < 𝑏𝑖 < 1,
– 𝑔(𝑥) is a non-negative function that describes the

cost outside the recursive calls

• This method generalizes the Master Theorem to
more complex or irregular cases.

188

Cont.

• Suppose the recurrence is

• 𝑇 𝑥 = σ𝑖=1
𝑘 𝑎𝑖 𝑇 𝑏𝑖𝑥 + 𝑔(𝑥), 𝑥 > x0

• Then, under technical conditions (which are typically
satisfied in practice), the solution is:

• 𝑇 𝑥 = Θ 𝑥𝑝(1 + 1׬

𝑥 𝑔 𝑢

𝑢𝑝+1 𝑑𝑢)

• Where: p is the unique solution of the equation:

• σ𝑖=1
𝑘 𝑎𝑖𝑏𝑖

𝑝
=1

189

Example: Use Akra-Bazzi to solve a recurrence

• Let’s solve:

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 𝑙𝑜𝑔𝑛

• This recurrence is not solvable directly by Master’s
Theorem because of the non-polynomial f(n)=n log.
So we apply Akra-Bazzi.

• 𝑇 𝑛 = σ𝑖=1
𝑛 𝑎𝑖 𝑇 𝑏𝑖𝑛 + 𝑓(𝑛)

• under certain conditions (smoothness of f(n), and
constants satisfying 0 < bi< 1, ai > 0), the solution is:

190

Cont.

• 𝑇 𝑥 = Θ 𝑥𝑝(1 + 1׬

𝑥 𝑔 𝑢

𝑢𝑝+1 𝑑𝑢)

• Where: p is the unique solution of the
equation:

• σ𝑖=1
𝑘 𝑎𝑖𝑏𝑖

𝑝
=1

191

Step 1: Identify parameters

• From 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 𝑙𝑜𝑔𝑛

• We have a1 =2, b1 = ½, f(n) = n log n

192

Step 2: Solve for p

• σ𝑖=1
𝑘 𝑎𝑖𝑏𝑖

𝑝
= 1 ֜ 2

1

2

𝑝
= 1

• ֜
1

2

𝑝
=

1

2
 ֜ 𝑝 = 1

193

Step 3: Plug into Akra-Bazzi formula

• 𝑇 𝑥 = Θ 𝑛1(1 + 1׬

𝑛 𝑢 𝑙𝑜𝑔 𝑢

𝑢1+1 𝑑𝑢)

• = Θ 𝑛(1 + 1׬

𝑛 𝑙𝑜𝑔 𝑢

𝑢
𝑑𝑢)

194

Step 4: Compute the integral

• = Θ 𝑛(1 + 1׬

𝑛 𝑙𝑜𝑔 𝑢

𝑢
𝑑𝑢)

• 1׬

𝑛 𝑙𝑜𝑔 𝑢

𝑢
𝑑𝑢 =

1

2
(log 𝑛)2 (This is a standard

integral result.)

• Let t = 𝑙𝑜𝑔 𝑢, so dt =
1

u
du

• Change the limit, when u = 1, t = 𝑙𝑜𝑔 1 = 0

• when u = n, t = 𝑙𝑜𝑔 𝑛

• I = 0׬

𝑙𝑜𝑔 𝑛
𝑡 𝑑𝑡 =

𝒕𝟐

𝟐 𝟎

𝑙𝑜𝑔 𝑛

=
1

2
(log 𝑛)2

195

Step 5: Final Result

• 𝑇 𝑛 = Θ 𝑛 (1 +
1

2
(log 𝑛)2)

• 𝑇 𝑛 = Θ 𝑛 (log 𝑛)2

196

	Slide 1: Asymptotic Notations Revisit
	Slide 2: Asymptotic Complexity
	Slide 3: Asymptotic Notation
	Slide 4: O-notation
	Slide 5
	Slide 6: -notation
	Slide 7: -notation
	Slide 8
	Slide 9: Example
	Slide 10:  -notation
	Slide 11
	Slide 12: Relations Between Q, O, W
	Slide 13: Relations Between Q, W, O
	Slide 14: Little-o
	Slide 15: Asymptotic Notations Table
	Slide 16: Comparing f of n , equals , n and g of n , equals , n 2
	Slide 17: Each Asymptotic Notation Holds
	Slide 18: Example
	Slide 19: Asymptotic Notation in Equations
	Slide 20: Exponentials
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Summations – Review
	Slide 29: Review on Summations
	Slide 30: Review on Summations
	Slide 31: Review on Summations
	Slide 32: Review on Summations
	Slide 33: Review on Summations
	Slide 34: Review on Summations
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Examples
	Slide 73: Nested Loops
	Slide 74: Nested Loops
	Slide 75: Nested Loops
	Slide 76: Nested Loops
	Slide 77: Nested Loops
	Slide 78: Sequential Statements
	Slide 81: More Nested Loops
	Slide 85
	Slide 86
	Slide 92: Example : Bubblesort
	Slide 93: Example : Polynomial Growth
	Slide 94: Example : Logarithmic Growth
	Slide 95
	Slide 96: Example : Insertion Sort
	Slide 97
	Slide 102: Basic Asymptotic Efficiency Classes
	Slide 103: Basic Asymptotic Efficiency Classes
	Slide 104: Basic Asymptotic Efficiency Classes
	Slide 105: Basic Asymptotic Efficiency Classes
	Slide 106: Basic Asymptotic Efficiency Classes
	Slide 107: Basic Asymptotic Efficiency Classes
	Slide 108: Basic Asymptotic Efficiency Classes
	Slide 109: Basic Asymptotic Efficiency Classes
	Slide 110: Recurrence Relation
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 181: Ackermann’s Function
	Slide 182: Master’s theorem
	Slide 183: Master’s theorem Ex. 1
	Slide 184: Master’s theorem Ex. 2
	Slide 185: Master’s theorem Ex. 3
	Slide 186: Master’s theorem Ex. 4
	Slide 187: Akra-Bazzi method
	Slide 188: Cont.
	Slide 189: Cont.
	Slide 190: Example: Use Akra-Bazzi to solve a recurrence
	Slide 191: Cont.
	Slide 192: Step 1: Identify parameters
	Slide 193: Step 2: Solve for p
	Slide 194: Step 3: Plug into Akra-Bazzi formula
	Slide 195: Step 4: Compute the integral
	Slide 196: Step 5: Final Result

