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What with PRAM?

• PRAM can emulate a message-passing computer by dividing 
the memory into private memories with each processor

• Several PRAM based papers (fine-grained) algorithmic 
techniques
• Results seem irrelevant, posterior time is away 

• Performance predictions are inaccurate

• Hasn’t lead to programming languages

• Hardware doesn’t have fine-grained synchronous steps
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BSP

• The Bulk Synchronous Parallel (BSP) abstract computer is 
a bridging model for designing parallel algorithms.

• It serves a purpose similar to the Parallel Random Access 
Machine (PRAM) model. It is generalization of PRAM model.

• BSP does not take communication and synchronization for 
granted. 

• An important part of analyzing a BSP algorithm rests on 
quantifying the synchronization and communication 
needed.
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BSP-History

• BSP: Bulk-Synchronous Parallel
• Valiant, Leslie G., “A Bridging Model for Parallel Computation”, 

Communications of the ACM, Aug., 1990, Vol. 33, No. 8, pp. 103-111.

• BSP is designed to be architecture independent
• Portable programs

• BSP considers at a global level (bulk) computation and  
communication

• Execution time of a BSP program is computed by the local execution 
time and from few parameters tied to the particular architecture that 
is used
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BSP

• A BSP computer consists of

• Components capable of processing and/or local memory 
transactions 

• a network that routes messages between pairs of such 
components, and

• a hardware facility that allows for the synchronization of 
all or a subset of components. I.e. Periodicity parameter 
L: to facilitate synchronization at regular intervals of L 
time units.
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Continued..

• The components 
could be processors

• The inter-
connection network 
could be router 

• The periodicity 
parameter could be 
barrier.

Virtual Processors

Local

Computation

Global

Communication

Barrier 

Synchronization
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Computation on BSP Model

• A computation consists of several 
supersteps

• A superstep consists of:
• A computation where each 

processor uses only locally held 
values

• A global message transmission from 
each processor to any subset of 
others

• A barrier synchronization

7

Virtual Processors

Local

Computation

Global

Communication

Barrier 

Synchronization



Parallel Computing (Intro-02.1): Rajeev Wankar

Computation on BSP Model

• At the end of a superstep, the 
transmitted messages become 
available as local data for the 
next superstep
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Communication on BSP Model

• A communication is always realized in a point-to point 
manner
• Thus it is not allowed for multiple processes to read or write the 

same memory location in the same cycle

• All memory and communication operations in a superstep 
must completely finish before any operation of the next 
superstep begins
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Communication on BSP Model

• In BSP, each processor has local 
memory
• “One-sided”* communication 

style is advocated

• There are globally-known 
“symbolic addresses”

• Data may be inconsistent until 
next barrier synchronization

Superstep

Sync

Superstep

Sync

*allow a process to access another process address space without any explicit participation in that 

communication operation by the remote process. One-sided put and get Direct Remote Memory Access (DRMA) 

calls, rather than paired two-sided send and receive message passing calls
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The BSP Model

• Compute → Communicate → Synchronize → repeat

• The BSP computer is a MIMD system

• It is loosely synchronous at the superstep level
• While the PRAM model was synchronous at ....which level??
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The BSP Model

• Compute → Communicate → Synchronize → repeat

• The BSP computer is a MIMD system

• It is loosely synchronous at the superstep level
• While the PRAM model was synchronous at instruction level

• Within a superstep, different processes execute 
asynchronously at their own paces
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BSP Basics

• A BSP program runs in supersteps:
1.Do local work (computation)

2.Send/receive messages (communication)

3.Wait until everyone is done (synchronization)

• The cost of a BSP program = computation 

      + communication 

      + synchronization.
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Components (Processors)

• No need for programmers to manage memory, assign 
communication and perform low-level synchronization. 

• This is achieved by programs written with sufficient parallel 
slackness.

• When programs written for v virtual processors are run on p 
real processors with v >> p (e.g. v = p log p) then there is 
parallel slackness.

• Parallel slackness makes work distribution more balanced 
(than in cases such as v = p OR v < p).
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The BSP Model – w

• To account for load imbalance, the computation time w is 
the maximum time spent on computation operations by any 
processor
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The BSP Model – h

• The BSP model abstracts the communication operations in a 
BSP superstep by the h-relation concept

• An h-relation is an abstraction of any communication 
operation, where each node sends at most h words to 
various nodes and each node receives at most h words
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The BSP Model – gh

• Parameter g measures the permeability of the network to continuous 
traffic to uniformly random destinations

• The parameter g is defined such that an h-relation will be 
delivered in time gh

• The communication overhead is gh cycles, where g is the 
proportional coefficient for realizing an h-relation

• The value of g is platform-dependent, but independent of the 
communication pattern

• In other words, gh is the time to execute the most time-consuming 
h-relation
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The BSP Model – mg

• BSP does not distinguish between sending 1 message of 
length m, or m messages of length 1
• Cost is mg
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The BSP Model – l

• The synchronization overhead is l, which has a lower bound 
of the communication network latency (i.e., the time for a 
word to propagate through the physical network) and is 
always greater than zero
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Barrier

• “Often expensive and should be used as sparingly as 
possible”
• Developers of BSP claim that barriers are not as expensive as they 

are believed to be in high performance computing community 

• The cost of a barrier synchronization has two parts
• The cost caused by the variation in the completion time of the 

computation steps that participate

• The cost of reaching a globally-consistent state in all processors
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Barrier

• The parameter l captures the latter of these costs
• Lower bound on l is the diameter of the network

• However, it is also affected by many other factors, so that, in 
practice, an accurate value of l for each parallel architecture is 
obtained empirically
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The two parts of barrier cost

1. Variation in completion times (load imbalance):
1. If one processor is slower (more work, more messages, slower hardware), 

others must wait.

2. This is “waiting for the slowest processor.”

2. Reaching a globally consistent state:
1. Even if all processors finish at the same time, the system must ensure that:

1. All messages sent in this superstep are delivered to the right processors.

2. All processors agree that “everyone is done” and it’s safe to start the next superstep.

2. This requires synchronization overhead: exchanging small control signals, 
acknowledgments, or using a global clock.

3. In real systems, this is the latency (l) part of the BSP cost model.
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Parameters (in simple words)

23

p → number of processors (workers).
w → work per processor in one superstep.

• Example: how many additions/multiplications each processor does 
locally.

h → number of messages a processor sends or receives in a superstep.
g → gap per message = cost of sending one word of data.

• If each message is 100 words long, cost = 100g.
l → latency = time for barrier synchronization (the “global consistency 

overhead” cost).
• Like waiting for the slowest worker to arrive before moving on.

gh → total communication cost for a processor in a superstep.
• If a worker sends h words, each word costs g, total = gh.
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The BSP Model

• h: communication time

• w: computation time

• l: synchronization time

• gh: communication overhead

• The time for a superstep is estimated by the sum

• ????
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The BSP Model

• h: communication time

• w: computation time

• l: synchronization time (2nd part)

• gh: communication overhead

• The time for a superstep is estimated by the sum
• Maxi wi + Maxi ghi + l
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The BSP Model

• The BSP model allows the overlapping of the computation, 
the communication, and the synchronization operations 
within a superstep
• If all three types of operations are fully overlapped, the time for a 

superstep becomes max(w, gh, l)

• However, the more conservative w + gh + l is typically used
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Example: Maximum of n element

• Algorithm to compute the maximum of a n-elements array. 
On a BSP, since there is no shared memory, we have to say 
where the data are
• A[0..n-1] is distributed block-wise across p processors

• For instance, each processor can have a portion of the array
• n/p elements

• To describe an algorithm on a BSP machine, we have to 
define all supersteps
• Local computing operations

• Communication operations

• Synchronization barrier
27
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Maximum

• Superstep1
• Local computation phase

• m=-∞;

• for all A[i] in my local partition of A, m = max(m, A[i]);

• Communication phase
• if myPID != 0 send (m, 0);

• else     // on P0:
• for each i in {1..p-1} recv (mi, i);

• Superstep2
• if myPID = 0 for each i in {1..p-1} m = max(m, mi)
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Maximum

• Superstep1
• Local computation phase  Time?

• m=-∞;

• for all A[i] in my local partition of A, m = max(m, A[i]);

• Communication phase   Time?
• if myPID != 0 send (m, 0);

• else     // on P0:
• for each i in {1..p-1} recv (mi, i);

• Superstep2
• if myPID = 0 for each i in {1..p-1} m = max(m, mi)  Time?
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Maximum

• Superstep1
• Local computation phase  (n/p)

• m=-∞;

• for all A[i] in my local partition of A, m = max(m, A[i]);

• Communication phase   Time?
• if myPID != 0 send (m, 0);

• else     // on P0:
• for each i in {1..p-1} recv (mi, i);

• Superstep2
• if myPID = 0 for each i in {1..p-1} m = max(m, mi)  Time?
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Maximum

• Superstep1
• Local computation phase  (n/p)

• m=-∞;

• for all A[i] in my local partition of A, m = max(m, A[i]);

• Communication phase   (gh, with h = p-1)
• if myPID != 0 send (m, 0);

• else     // on P0:
• for each i in {1..p-1} recv (mi, i);

• Superstep2
• if myPID = 0 for each i in {1..p-1} m = max(m, mi)  Time?
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Maximum

• Superstep1
• Local computation phase  (n/p)

• m=-∞;

• for all A[i] in my local partition of A, m = max(m, A[i]);

• Communication phase (gh, with h=p-1, P0 receives p-1 messages)
• if myPID != 0 send (m, 0);

• else     // on P0:
• for each i in {1..p-1} recv (mi, i);

• Superstep2
• if myPID = 0 for each i in {1..p-1} m = max(m, mi)  Time?
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Maximum

• Superstep1
• Local computation phase  (n/p)

• m=-∞;

• for all A[i] in my local partition of A, m = max(m, A[i]);

• Communication phase (gh, with h=p-1, P0 receives p-1 messages)
• if myPID != 0 send (m, 0);

• else     // on P0:
• for each i in {1..p-1} recv (mi, i);

• Superstep2
• if myPID = 0 for each i in {1..p-1} m = max(m, mi)  p
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Maximum

• Total

• Θ(n/p + g(p-1) + l + p) = Θ(n/p + gp + l)
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Example

• Algorithm for inner-product with 8 processors

• Given two arrays x and y, we want to compute Σxi yi

• In a BSP program, it is crucial to define how data are split 
among processors
• For instance, in this example, how the vectors' elements can be 

divided?
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Example

• Algorithm for inner-product with 8 processors

• Given two arrays x and y, we want to compute Σxi yi

• In a BSP program, it is crucial to define how data are split 
among processors
• For instance, in this example, the vectors' elements can be divided 

cyclically or in blocks

• In any case, it is better having both xi and yi on the same 
processor!
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Example

• Algorithm for inner-product using 8-processor BSP computer 
in 4 supersteps (“small” communication):

• Superstep 1
• Computation?

• Communication?

• Barrier synchronization

37
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Example

• Algorithm for inner-product using 8-processor BSP computer 
in 4 supersteps (“small” communication):

• Superstep 1
• Computation: Each processor computes its local sum in w = 2N/8 

time (actually 2N-1/8) (N multiplications + N-1 additions)

• Communication: Processors 0, 2, 4, 6 send their local sums to 
processors 1, 3, 5, 7 respectively 
• Apply 1-relation here

• Barrier synchronization
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Example

• Superstep 2
• Computation?

• Communication?

• Barrier synchronization
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Example

• Superstep 2
• Computation: Processors 1, 3, 5, 7 each perform one addition (w = 

1)

• Communication: Processors 1 and 5 send their intermediate 
results to processors 3 and 7 respectively
• 1-relation is applied here

• Barrier synchronization
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Example

• Superstep 3
• Computation?

• Communication?

• Barrier synchronization
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Example

• Superstep 3
• Computation: Processors 3 and 7 each perform one addition (w = 

1)

• Communication: Processor 3 sends its intermediate result to 
processor 7
• Apply 1-relation here

• Barrier synchronization
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Example

• Superstep 4
• Computation?

• Communication?
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Example

• Superstep 4
• Computation: Processor 7 performs one addition (w= 1) to 

generate the final sum

• No more communication or synchronization is needed
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Example

• The total execution time (8 processors) is?
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Example

• The total execution time is (8 processors) is 2N/8 +3g+3l + 3 
cycles

• In general, the execution time is       supersteps on an p-
processor BSP
• How much is the parallel time on PRAM computer with p 

processors?
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Example

• The total execution time is (8 processors) is 2N/8 +3g+3l + 3 
cycles

• In general, the execution time is 2N/p + (g+l+1)logp cycles on 
an p-processor BSP
• How much is the parallel time on PRAM computer with p 

processors?

47



Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• The total execution time is (8 processors) is 2N/8 +3g+3l + 3 
cycles

• In general, the execution time is 2N/p + (g+l+1)logp cycles on 
an p-processor BSP

• This is in contrast to the time 2N/p + logp on a PRAM 
computer
• The two extra terms, logp and l logp correspond to communication 

and synchronization overheads, respectively
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Matrix Multiplication

• We want to multiply two matrices, A and B
• A(nxn) x B(nxn) = C(nxn)

• The standard algorithm uses p ≤ n2 processors
• If p= n2, then each processor can compute the value of a single 

element in C

49



Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

• Each element of C can be computed in parallel using n 
processors on a CREW PRAM
• O(log n) parallel time

• Basically, it's a SUM in parallel

• All cij can be computed in parallel using n3 processors in   
O(log n) time
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Matrix Multiplication

• In the BSP model we need to find a way of dividing the 
input among processors, and to optimize the 
communication

• Since we have only p processors every processor gets n2/p 
elements.

• To each processor we assign the sub-problem of computing a 
sub-matrix of C, of size n/√p x n/√p
• Each processor computes n/√p x n/√p = n2/p elements of C

• Thus, each processor receives in input n/√p rows of A and 
n/√p columns of B
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Matrix Multiplication

55
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Matrix Multiplication

57

Let p= 4 (p1, p2 , p3, p4)
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Matrix Multiplication
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Matrix Multiplication
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Matrix Multiplication

60

• Let us compute the number of local operations performed by 
a processor, say p4

• Given a local row and a local column of p4

 »How many sums does it perform?

 »How many multiplications does it perform?
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Matrix Multiplication

61

• Let us compute the number of local operations performed by 
a processor, say p4

• Given a local row and a local column of p4

 »How many sums does it perform   n-1

 »How many multiplications does it perform   n
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Matrix Multiplication
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• Let us compute the number of local operations performed by 
a processor, say p4

• How many row-by-column inner products p4 does perform 
locally?
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Matrix Multiplication

63

• Let us compute the number of local operations performed by 
a processor, say p4

• Summing over all inner products performed by p4

  » How many sums does it perform?

  » How many multiplications does it perform?
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Matrix Multiplication

64

• Let us compute the number of local operations performed by 
a processor, say p4

• Summing over all inner products performed by p4

  » How many sums does it perform (n-1) x n/√p x n/√p = (n-1)n2/p

  » How many multiplications does it perform n x n/√p x n/√p = n3/p
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Matrix Multiplication
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• Thus, each processor executes locally (n-1)n2/p sums + n3/p 
multiplications

• That is, (2n-1)n2/p operations



Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

66

• Now, let us analyze the complexity of the communication 
phase
• In order to execute its local operations, how many messages 

does each processor needs to receive?



Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

68

• How many of its local elements each processor needs to 
send, so that the other processors can receive the elements 
they need?

• For instance, to which processor p2 has to send the elements 
of A it locally has?
• To p1
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Matrix Multiplication

69

• In general, each processor has to 
send each one of its local values 
to how many processors?
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Matrix Multiplication
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• In general, each processor has to 
send each one of its local values 
to how many processors?

•  √p (at most)
• So, how many messages will 

send each processor in total?
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Matrix Multiplication
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• In general, each processor has to 
send each one of its local values 
to how many processors?

•  √p (at most)
• So, how many messages will 

send each processor in total?
• (2n2/p) x √p (From A and B)
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Matrix Multiplication
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• Clearly, we cannot expect to have the elements spread over 
the processors exactly as we need!!

• Thus, we can assume that the elements of A and B are 
uniformly distributed among processors
• 2n2/p for each processor

• Each processor replicates locally each one of its elements at 
most √p times
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Matrix Multiplication

73

• Finally, √p processors send the appropriated replicated 
elements to the processors that need them

• Thus, the number of transmissions, for each processor, is this 
number of messages: (2n2/p) x √p = 2n2/√p
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Matrix Multiplication

74

• The cost of this BSP algorithm is
• (2n-1)n2/p + (2n2/p1/2)g + l

• The optimal cost O(n3/p), with n2/p memory for each 
processor, is achieved when
• g = O(n/p1/2)

• l = O(n3/p)
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Example

• let’s take your BSP model matrix multiplication example with n = 8 
(matrix size 8×8) and p = 4 (4 processors). 

75

b11 b12 b13 b14 b15 b16 b17 b18

b21 b22 b23 b24 b25 b26 b27 b28

b31 b32 b33 b34 b35 b36 b37 b38

b41 b42 b43 b44 b45 b46 b47 b48

b51 b52 b53 b54 b55 b56 b57 b58

b61 b62 b63 b64 b65 b66 b67 b68

b71 b72 b73 b74 b75 b76 b77 b78

b81 b82 b83 b84 b85 b86 b87 b88

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

A B
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Step 1: Divide the work

• We have a matrix C=A×B, size 8×8, p = 4 processors, so each gets n²/p 
= 64/4 = 16 elements of C.

• Each processor computes a sub-matrix of size (n/√p) × (n/√p) = (8/2) × 
(8/2) = 4×4. So each processor works on a 4×4 block of C.

76

b11 b12 b13 b14 b15 b16 b17 b18

b21 b22 b23 b24 b25 b26 b27 b28

b31 b32 b33 b34 b35 b36 b37 b38

b41 b42 b43 b44 b45 b46 b47 b48

b51 b52 b53 b54 b55 b56 b57 b58

b61 b62 b63 b64 b65 b66 b67 b68

b71 b72 b73 b74 b75 b76 b77 b78

b81 b82 b83 b84 b85 b86 b87 b88

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

P1

P3

P2

P4

P1

P3

P2

P4
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Step 2: Input required

• To compute its 4×4 block of C, each processor needs:
• 4 rows of A, 4 columns of B

• Processor P1 (top-left block of C) needs: rows 1–4 of A and columns 1–4 of B.

• Processor P2 (top-right block of C) needs: rows 1–4 of A and columns 5–8 of B.

• Processor P3 (bottom-left block of C) needs: rows 5–8 of A and columns 1–4 of B.
• Processor P4 (bottom-right block of C) needs: rows 5–8 of A and columns 5–8 of B.
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b11 b12 b13 b14 b15 b16 b17 b18

b21 b22 b23 b24 b25 b26 b27 b28

b31 b32 b33 b34 b35 b36 b37 b38

b41 b42 b43 b44 b45 b46 b47 b48

b51 b52 b53 b54 b55 b56 b57 b58

b61 b62 b63 b64 b65 b66 b67 b68

b71 b72 b73 b74 b75 b76 b77 b78

b81 b82 b83 b84 b85 b86 b87 b88

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38
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Step 2: Input required

• To compute its 4×4 block of C, each processor needs:
• 4 rows of A, 4 columns of B

• Processor P1 (top-left block of C) needs: rows 1–4 of A and columns 1–4 of B.

• Processor P2 (top-right block of C) needs: rows 1–4 of A and columns 5–8 of B.

• Processor P3 (bottom-left block of C) needs: rows 5–8 of A and columns 1–4 of B.
• Processor P4 (bottom-right block of C) needs: rows 5–8 of A and columns 5–8 of B.
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Step 3: Local computation (per processor)

• Each processor has to compute 16 elements (4×4).

• Each element of C is an inner product of 8 terms.

• So, per processor:
• Multiplications = n×16=8×16=128

• Additions = (n−1)×16=7×16=112

• Total = 128 + 112 = 240 operations per processor.
• Multiplications =n3/p =83/4 = 512/4 = 128.

• Additions (sums) =(n−1)n2/p = 7⋅16 = 112 
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Step 4: Communication

• Each processor does not initially have all the rows/columns it needs.

• So, processors must share rows of A and columns of B with others.

• Who sends to whom?
• P1: Has rows 1–4 of A. Must share them with P2 (since P2 also needs rows 1–

4).

• P3: Has rows 5–8 of A. Must share them with P4.

• P1: Has columns 1–4 of B. Must share them with P3.

• P2: Has columns 5–8 of B. Must share them with P4.
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Step 4: Communication

• Each processor does not initially have all the rows/columns it needs.

• So, processors must share rows of A and columns of B with others.

• So:

• Each processor shares with √p = 2 processors at most.

• Messages per processor = (2n2/p)×√p = (2×64/4)×2 = 32×2 = 64

• 8 sends total; each processor sends exactly two blocks.

• Each processor shares with √p = 2 processors at most.
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Matrix Multiplication

85

• There exists a more sophisticated algorithm, by McColl and 
Valiant, that solves the problem with less messages
• n3/p + (n2/p2/3)g + l

• That is optimal when
• g = O(n/p1/3)

• l = O(n3/(p log n)
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