
Bulk Synchronous Parallel

1

Parallel Computing (Intro-02.1): Rajeev Wankar

What with PRAM?

• PRAM can emulate a message-passing computer by dividing
the memory into private memories with each processor

• Several PRAM based papers (fine-grained) algorithmic
techniques
• Results seem irrelevant, posterior time is away

• Performance predictions are inaccurate

• Hasn’t lead to programming languages

• Hardware doesn’t have fine-grained synchronous steps

2

Parallel Computing (Intro-02.1): Rajeev Wankar

BSP

• The Bulk Synchronous Parallel (BSP) abstract computer is
a bridging model for designing parallel algorithms.

• It serves a purpose similar to the Parallel Random Access
Machine (PRAM) model. It is generalization of PRAM model.

• BSP does not take communication and synchronization for
granted.

• An important part of analyzing a BSP algorithm rests on
quantifying the synchronization and communication
needed.

3

Parallel Computing (Intro-02.1): Rajeev Wankar

BSP-History

• BSP: Bulk-Synchronous Parallel
• Valiant, Leslie G., “A Bridging Model for Parallel Computation”,

Communications of the ACM, Aug., 1990, Vol. 33, No. 8, pp. 103-111.

• BSP is designed to be architecture independent
• Portable programs

• BSP considers at a global level (bulk) computation and
communication

• Execution time of a BSP program is computed by the local execution
time and from few parameters tied to the particular architecture that
is used

4

Parallel Computing (Intro-02.1): Rajeev Wankar

BSP

• A BSP computer consists of

• Components capable of processing and/or local memory
transactions

• a network that routes messages between pairs of such
components, and

• a hardware facility that allows for the synchronization of
all or a subset of components. I.e. Periodicity parameter
L: to facilitate synchronization at regular intervals of L
time units.

5

Parallel Computing (Intro-02.1): Rajeev Wankar

Continued..

• The components
could be processors

• The inter-
connection network
could be router

• The periodicity
parameter could be
barrier.

Virtual Processors

Local

Computation

Global

Communication

Barrier

Synchronization

6

Parallel Computing (Intro-02.1): Rajeev Wankar

Computation on BSP Model

• A computation consists of several
supersteps

• A superstep consists of:
• A computation where each

processor uses only locally held
values

• A global message transmission from
each processor to any subset of
others

• A barrier synchronization

7

Virtual Processors

Local

Computation

Global

Communication

Barrier

Synchronization

Parallel Computing (Intro-02.1): Rajeev Wankar

Computation on BSP Model

• At the end of a superstep, the
transmitted messages become
available as local data for the
next superstep

8

Virtual Processors

Local

Computation

Global

Communication

Barrier

Synchronization

Parallel Computing (Intro-02.1): Rajeev Wankar

Communication on BSP Model

• A communication is always realized in a point-to point
manner
• Thus it is not allowed for multiple processes to read or write the

same memory location in the same cycle

• All memory and communication operations in a superstep
must completely finish before any operation of the next
superstep begins

9

Parallel Computing (Intro-02.1): Rajeev Wankar

Communication on BSP Model

• In BSP, each processor has local
memory
• “One-sided”* communication

style is advocated

• There are globally-known
“symbolic addresses”

• Data may be inconsistent until
next barrier synchronization

Superstep

Sync

Superstep

Sync

*allow a process to access another process address space without any explicit participation in that

communication operation by the remote process. One-sided put and get Direct Remote Memory Access (DRMA)

calls, rather than paired two-sided send and receive message passing calls

10

Parallel Computing (Intro-02.1): Rajeev Wankar

The BSP Model

• Compute → Communicate → Synchronize → repeat

• The BSP computer is a MIMD system

• It is loosely synchronous at the superstep level
• While the PRAM model was synchronous atwhich level??

11

Parallel Computing (Intro-02.1): Rajeev Wankar

The BSP Model

• Compute → Communicate → Synchronize → repeat

• The BSP computer is a MIMD system

• It is loosely synchronous at the superstep level
• While the PRAM model was synchronous at instruction level

• Within a superstep, different processes execute
asynchronously at their own paces

12

Parallel Computing (Intro-02.1): Rajeev Wankar

BSP Basics

• A BSP program runs in supersteps:
1.Do local work (computation)

2.Send/receive messages (communication)

3.Wait until everyone is done (synchronization)

• The cost of a BSP program = computation

 + communication

 + synchronization.

13

Parallel Computing (Intro-02.1): Rajeev Wankar

Components (Processors)

• No need for programmers to manage memory, assign
communication and perform low-level synchronization.

• This is achieved by programs written with sufficient parallel
slackness.

• When programs written for v virtual processors are run on p
real processors with v >> p (e.g. v = p log p) then there is
parallel slackness.

• Parallel slackness makes work distribution more balanced
(than in cases such as v = p OR v < p).

14

Parallel Computing (Intro-02.1): Rajeev Wankar

The BSP Model – w

• To account for load imbalance, the computation time w is
the maximum time spent on computation operations by any
processor

15

Parallel Computing (Intro-02.1): Rajeev Wankar

The BSP Model – h

• The BSP model abstracts the communication operations in a
BSP superstep by the h-relation concept

• An h-relation is an abstraction of any communication
operation, where each node sends at most h words to
various nodes and each node receives at most h words

16

Parallel Computing (Intro-02.1): Rajeev Wankar

The BSP Model – gh

• Parameter g measures the permeability of the network to continuous
traffic to uniformly random destinations

• The parameter g is defined such that an h-relation will be
delivered in time gh

• The communication overhead is gh cycles, where g is the
proportional coefficient for realizing an h-relation

• The value of g is platform-dependent, but independent of the
communication pattern

• In other words, gh is the time to execute the most time-consuming
h-relation

17

Parallel Computing (Intro-02.1): Rajeev Wankar

The BSP Model – mg

• BSP does not distinguish between sending 1 message of
length m, or m messages of length 1
• Cost is mg

18

Parallel Computing (Intro-02.1): Rajeev Wankar

The BSP Model – l

• The synchronization overhead is l, which has a lower bound
of the communication network latency (i.e., the time for a
word to propagate through the physical network) and is
always greater than zero

19

Parallel Computing (Intro-02.1): Rajeev Wankar

Barrier

• “Often expensive and should be used as sparingly as
possible”
• Developers of BSP claim that barriers are not as expensive as they

are believed to be in high performance computing community

• The cost of a barrier synchronization has two parts
• The cost caused by the variation in the completion time of the

computation steps that participate

• The cost of reaching a globally-consistent state in all processors

20

Parallel Computing (Intro-02.1): Rajeev Wankar

Barrier

• The parameter l captures the latter of these costs
• Lower bound on l is the diameter of the network

• However, it is also affected by many other factors, so that, in
practice, an accurate value of l for each parallel architecture is
obtained empirically

21

Parallel Computing (Intro-02.1): Rajeev Wankar

The two parts of barrier cost

1. Variation in completion times (load imbalance):
1. If one processor is slower (more work, more messages, slower hardware),

others must wait.

2. This is “waiting for the slowest processor.”

2. Reaching a globally consistent state:
1. Even if all processors finish at the same time, the system must ensure that:

1. All messages sent in this superstep are delivered to the right processors.

2. All processors agree that “everyone is done” and it’s safe to start the next superstep.

2. This requires synchronization overhead: exchanging small control signals,
acknowledgments, or using a global clock.

3. In real systems, this is the latency (l) part of the BSP cost model.

22

Parallel Computing (Intro-02.1): Rajeev Wankar

Parameters (in simple words)

23

p → number of processors (workers).
w → work per processor in one superstep.

• Example: how many additions/multiplications each processor does
locally.

h → number of messages a processor sends or receives in a superstep.
g → gap per message = cost of sending one word of data.

• If each message is 100 words long, cost = 100g.
l → latency = time for barrier synchronization (the “global consistency

overhead” cost).
• Like waiting for the slowest worker to arrive before moving on.

gh → total communication cost for a processor in a superstep.
• If a worker sends h words, each word costs g, total = gh.

Parallel Computing (Intro-02.1): Rajeev Wankar

The BSP Model

• h: communication time

• w: computation time

• l: synchronization time

• gh: communication overhead

• The time for a superstep is estimated by the sum

• ????

24

Parallel Computing (Intro-02.1): Rajeev Wankar

The BSP Model

• h: communication time

• w: computation time

• l: synchronization time (2nd part)

• gh: communication overhead

• The time for a superstep is estimated by the sum
• Maxi wi + Maxi ghi + l

25

Parallel Computing (Intro-02.1): Rajeev Wankar

The BSP Model

• The BSP model allows the overlapping of the computation,
the communication, and the synchronization operations
within a superstep
• If all three types of operations are fully overlapped, the time for a

superstep becomes max(w, gh, l)

• However, the more conservative w + gh + l is typically used

26

Parallel Computing (Intro-02.1): Rajeev Wankar

Example: Maximum of n element

• Algorithm to compute the maximum of a n-elements array.
On a BSP, since there is no shared memory, we have to say
where the data are
• A[0..n-1] is distributed block-wise across p processors

• For instance, each processor can have a portion of the array
• n/p elements

• To describe an algorithm on a BSP machine, we have to
define all supersteps
• Local computing operations

• Communication operations

• Synchronization barrier
27

Parallel Computing (Intro-02.1): Rajeev Wankar

Maximum

• Superstep1
• Local computation phase

• m=-∞;

• for all A[i] in my local partition of A, m = max(m, A[i]);

• Communication phase
• if myPID != 0 send (m, 0);

• else // on P0:
• for each i in {1..p-1} recv (mi, i);

• Superstep2
• if myPID = 0 for each i in {1..p-1} m = max(m, mi)

28

Parallel Computing (Intro-02.1): Rajeev Wankar

Maximum

• Superstep1
• Local computation phase Time?

• m=-∞;

• for all A[i] in my local partition of A, m = max(m, A[i]);

• Communication phase Time?
• if myPID != 0 send (m, 0);

• else // on P0:
• for each i in {1..p-1} recv (mi, i);

• Superstep2
• if myPID = 0 for each i in {1..p-1} m = max(m, mi) Time?

29

Parallel Computing (Intro-02.1): Rajeev Wankar

Maximum

• Superstep1
• Local computation phase (n/p)

• m=-∞;

• for all A[i] in my local partition of A, m = max(m, A[i]);

• Communication phase Time?
• if myPID != 0 send (m, 0);

• else // on P0:
• for each i in {1..p-1} recv (mi, i);

• Superstep2
• if myPID = 0 for each i in {1..p-1} m = max(m, mi) Time?

30

Parallel Computing (Intro-02.1): Rajeev Wankar

Maximum

• Superstep1
• Local computation phase (n/p)

• m=-∞;

• for all A[i] in my local partition of A, m = max(m, A[i]);

• Communication phase (gh, with h = p-1)
• if myPID != 0 send (m, 0);

• else // on P0:
• for each i in {1..p-1} recv (mi, i);

• Superstep2
• if myPID = 0 for each i in {1..p-1} m = max(m, mi) Time?

31

Parallel Computing (Intro-02.1): Rajeev Wankar

Maximum

• Superstep1
• Local computation phase (n/p)

• m=-∞;

• for all A[i] in my local partition of A, m = max(m, A[i]);

• Communication phase (gh, with h=p-1, P0 receives p-1 messages)
• if myPID != 0 send (m, 0);

• else // on P0:
• for each i in {1..p-1} recv (mi, i);

• Superstep2
• if myPID = 0 for each i in {1..p-1} m = max(m, mi) Time?

32

Parallel Computing (Intro-02.1): Rajeev Wankar

Maximum

• Superstep1
• Local computation phase (n/p)

• m=-∞;

• for all A[i] in my local partition of A, m = max(m, A[i]);

• Communication phase (gh, with h=p-1, P0 receives p-1 messages)
• if myPID != 0 send (m, 0);

• else // on P0:
• for each i in {1..p-1} recv (mi, i);

• Superstep2
• if myPID = 0 for each i in {1..p-1} m = max(m, mi) p

33

Parallel Computing (Intro-02.1): Rajeev Wankar

Maximum

• Total

• Θ(n/p + g(p-1) + l + p) = Θ(n/p + gp + l)

34

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• Algorithm for inner-product with 8 processors

• Given two arrays x and y, we want to compute Σxi yi

• In a BSP program, it is crucial to define how data are split
among processors
• For instance, in this example, how the vectors' elements can be

divided?

35

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• Algorithm for inner-product with 8 processors

• Given two arrays x and y, we want to compute Σxi yi

• In a BSP program, it is crucial to define how data are split
among processors
• For instance, in this example, the vectors' elements can be divided

cyclically or in blocks

• In any case, it is better having both xi and yi on the same
processor!

36

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• Algorithm for inner-product using 8-processor BSP computer
in 4 supersteps (“small” communication):

• Superstep 1
• Computation?

• Communication?

• Barrier synchronization

37

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• Algorithm for inner-product using 8-processor BSP computer
in 4 supersteps (“small” communication):

• Superstep 1
• Computation: Each processor computes its local sum in w = 2N/8

time (actually 2N-1/8) (N multiplications + N-1 additions)

• Communication: Processors 0, 2, 4, 6 send their local sums to
processors 1, 3, 5, 7 respectively
• Apply 1-relation here

• Barrier synchronization

38

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• Superstep 2
• Computation?

• Communication?

• Barrier synchronization

39

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• Superstep 2
• Computation: Processors 1, 3, 5, 7 each perform one addition (w =

1)

• Communication: Processors 1 and 5 send their intermediate
results to processors 3 and 7 respectively
• 1-relation is applied here

• Barrier synchronization

40

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• Superstep 3
• Computation?

• Communication?

• Barrier synchronization

41

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• Superstep 3
• Computation: Processors 3 and 7 each perform one addition (w =

1)

• Communication: Processor 3 sends its intermediate result to
processor 7
• Apply 1-relation here

• Barrier synchronization

42

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• Superstep 4
• Computation?

• Communication?

43

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• Superstep 4
• Computation: Processor 7 performs one addition (w= 1) to

generate the final sum

• No more communication or synchronization is needed

44

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• The total execution time (8 processors) is?

45

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• The total execution time is (8 processors) is 2N/8 +3g+3l + 3
cycles

• In general, the execution time is supersteps on an p-
processor BSP
• How much is the parallel time on PRAM computer with p

processors?

46

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• The total execution time is (8 processors) is 2N/8 +3g+3l + 3
cycles

• In general, the execution time is 2N/p + (g+l+1)logp cycles on
an p-processor BSP
• How much is the parallel time on PRAM computer with p

processors?

47

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• The total execution time is (8 processors) is 2N/8 +3g+3l + 3
cycles

• In general, the execution time is 2N/p + (g+l+1)logp cycles on
an p-processor BSP

• This is in contrast to the time 2N/p + logp on a PRAM
computer
• The two extra terms, logp and l logp correspond to communication

and synchronization overheads, respectively

48

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

• We want to multiply two matrices, A and B
• A(nxn) x B(nxn) = C(nxn)

• The standard algorithm uses p ≤ n2 processors
• If p= n2, then each processor can compute the value of a single

element in C

49

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

• Each element of C can be computed in parallel using n
processors on a CREW PRAM
• O(log n) parallel time

• Basically, it's a SUM in parallel

• All cij can be computed in parallel using n3 processors in
O(log n) time

51

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

• In the BSP model we need to find a way of dividing the
input among processors, and to optimize the
communication

• Since we have only p processors every processor gets n2/p
elements.

• To each processor we assign the sub-problem of computing a
sub-matrix of C, of size n/√p x n/√p
• Each processor computes n/√p x n/√p = n2/p elements of C

• Thus, each processor receives in input n/√p rows of A and
n/√p columns of B

54

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

55

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

57

Let p= 4 (p1, p2 , p3, p4)

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

58

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

59

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

60

• Let us compute the number of local operations performed by
a processor, say p4

• Given a local row and a local column of p4

 »How many sums does it perform?

 »How many multiplications does it perform?

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

61

• Let us compute the number of local operations performed by
a processor, say p4

• Given a local row and a local column of p4

 »How many sums does it perform n-1

 »How many multiplications does it perform n

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

62

• Let us compute the number of local operations performed by
a processor, say p4

• How many row-by-column inner products p4 does perform
locally?

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

63

• Let us compute the number of local operations performed by
a processor, say p4

• Summing over all inner products performed by p4

 » How many sums does it perform?

 » How many multiplications does it perform?

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

64

• Let us compute the number of local operations performed by
a processor, say p4

• Summing over all inner products performed by p4

 » How many sums does it perform (n-1) x n/√p x n/√p = (n-1)n2/p

 » How many multiplications does it perform n x n/√p x n/√p = n3/p

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

65

• Thus, each processor executes locally (n-1)n2/p sums + n3/p
multiplications

• That is, (2n-1)n2/p operations

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

66

• Now, let us analyze the complexity of the communication
phase
• In order to execute its local operations, how many messages

does each processor needs to receive?

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

68

• How many of its local elements each processor needs to
send, so that the other processors can receive the elements
they need?

• For instance, to which processor p2 has to send the elements
of A it locally has?
• To p1

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

69

• In general, each processor has to
send each one of its local values
to how many processors?

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

70

• In general, each processor has to
send each one of its local values
to how many processors?

• √p (at most)
• So, how many messages will

send each processor in total?

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

71

• In general, each processor has to
send each one of its local values
to how many processors?

• √p (at most)
• So, how many messages will

send each processor in total?
• (2n2/p) x √p (From A and B)

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

72

• Clearly, we cannot expect to have the elements spread over
the processors exactly as we need!!

• Thus, we can assume that the elements of A and B are
uniformly distributed among processors
• 2n2/p for each processor

• Each processor replicates locally each one of its elements at
most √p times

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

73

• Finally, √p processors send the appropriated replicated
elements to the processors that need them

• Thus, the number of transmissions, for each processor, is this
number of messages: (2n2/p) x √p = 2n2/√p

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

74

• The cost of this BSP algorithm is
• (2n-1)n2/p + (2n2/p1/2)g + l

• The optimal cost O(n3/p), with n2/p memory for each
processor, is achieved when
• g = O(n/p1/2)

• l = O(n3/p)

Parallel Computing (Intro-02.1): Rajeev Wankar

Example

• let’s take your BSP model matrix multiplication example with n = 8
(matrix size 8×8) and p = 4 (4 processors).

75

b11 b12 b13 b14 b15 b16 b17 b18

b21 b22 b23 b24 b25 b26 b27 b28

b31 b32 b33 b34 b35 b36 b37 b38

b41 b42 b43 b44 b45 b46 b47 b48

b51 b52 b53 b54 b55 b56 b57 b58

b61 b62 b63 b64 b65 b66 b67 b68

b71 b72 b73 b74 b75 b76 b77 b78

b81 b82 b83 b84 b85 b86 b87 b88

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

A B

Parallel Computing (Intro-02.1): Rajeev Wankar

Step 1: Divide the work

• We have a matrix C=A×B, size 8×8, p = 4 processors, so each gets n²/p
= 64/4 = 16 elements of C.

• Each processor computes a sub-matrix of size (n/√p) × (n/√p) = (8/2) ×
(8/2) = 4×4. So each processor works on a 4×4 block of C.

76

b11 b12 b13 b14 b15 b16 b17 b18

b21 b22 b23 b24 b25 b26 b27 b28

b31 b32 b33 b34 b35 b36 b37 b38

b41 b42 b43 b44 b45 b46 b47 b48

b51 b52 b53 b54 b55 b56 b57 b58

b61 b62 b63 b64 b65 b66 b67 b68

b71 b72 b73 b74 b75 b76 b77 b78

b81 b82 b83 b84 b85 b86 b87 b88

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

P1

P3

P2

P4

P1

P3

P2

P4

Parallel Computing (Intro-02.1): Rajeev Wankar

Step 2: Input required

• To compute its 4×4 block of C, each processor needs:
• 4 rows of A, 4 columns of B

• Processor P1 (top-left block of C) needs: rows 1–4 of A and columns 1–4 of B.

• Processor P2 (top-right block of C) needs: rows 1–4 of A and columns 5–8 of B.

• Processor P3 (bottom-left block of C) needs: rows 5–8 of A and columns 1–4 of B.
• Processor P4 (bottom-right block of C) needs: rows 5–8 of A and columns 5–8 of B.

77

b11 b12 b13 b14 b15 b16 b17 b18

b21 b22 b23 b24 b25 b26 b27 b28

b31 b32 b33 b34 b35 b36 b37 b38

b41 b42 b43 b44 b45 b46 b47 b48

b51 b52 b53 b54 b55 b56 b57 b58

b61 b62 b63 b64 b65 b66 b67 b68

b71 b72 b73 b74 b75 b76 b77 b78

b81 b82 b83 b84 b85 b86 b87 b88

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

P1

P3

P2

P4

P1

P3

P2

P4

Parallel Computing (Intro-02.1): Rajeev Wankar

Step 2: Input required

• To compute its 4×4 block of C, each processor needs:
• 4 rows of A, 4 columns of B

• Processor P1 (top-left block of C) needs: rows 1–4 of A and columns 1–4 of B.

• Processor P2 (top-right block of C) needs: rows 1–4 of A and columns 5–8 of B.

• Processor P3 (bottom-left block of C) needs: rows 5–8 of A and columns 1–4 of B.
• Processor P4 (bottom-right block of C) needs: rows 5–8 of A and columns 5–8 of B.

78

b11 b12 b13 b14 b15 b16 b17 b18

b21 b22 b23 b24 b25 b26 b27 b28

b31 b32 b33 b34 b35 b36 b37 b38

b41 b42 b43 b44 b45 b46 b47 b48

b51 b52 b53 b54 b55 b56 b57 b58

b61 b62 b63 b64 b65 b66 b67 b68

b71 b72 b73 b74 b75 b76 b77 b78

b81 b82 b83 b84 b85 b86 b87 b88

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

P1

P3

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

C A B

Parallel Computing (Intro-02.1): Rajeev Wankar

Step 2: Input required

• To compute its 4×4 block of C, each processor needs:
• 4 rows of A, 4 columns of B

• Processor P1 (top-left block of C) needs: rows 1–4 of A and columns 1–4 of B.

• Processor P2 (top-right block of C) needs: rows 1–4 of A and columns 5–8 of B.

• Processor P3 (bottom-left block of C) needs: rows 5–8 of A and columns 1–4 of B.
• Processor P4 (bottom-right block of C) needs: rows 5–8 of A and columns 5–8 of B.

79

b11 b12 b13 b14 b15 b16 b17 b18

b21 b22 b23 b24 b25 b26 b27 b28

b31 b32 b33 b34 b35 b36 b37 b38

b41 b42 b43 b44 b45 b46 b47 b48

b51 b52 b53 b54 b55 b56 b57 b58

b61 b62 b63 b64 b65 b66 b67 b68

b71 b72 b73 b74 b75 b76 b77 b78

b81 b82 b83 b84 b85 b86 b87 b88

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

P1

P3

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

C A B

Parallel Computing (Intro-02.1): Rajeev Wankar

Step 2: Input required

• To compute its 4×4 block of C, each processor needs:
• 4 rows of A, 4 columns of B

• Processor P1 (top-left block of C) needs: rows 1–4 of A and columns 1–4 of B.

• Processor P2 (top-right block of C) needs: rows 1–4 of A and columns 5–8 of B.

• Processor P3 (bottom-left block of C) needs: rows 5–8 of A and columns 1–4 of B.
• Processor P4 (bottom-right block of C) needs: rows 5–8 of A and columns 5–8 of B.

80

b11 b12 b13 b14 b15 b16 b17 b18

b21 b22 b23 b24 b25 b26 b27 b28

b31 b32 b33 b34 b35 b36 b37 b38

b41 b42 b43 b44 b45 b46 b47 b48

b51 b52 b53 b54 b55 b56 b57 b58

b61 b62 b63 b64 b65 b66 b67 b68

b71 b72 b73 b74 b75 b76 b77 b78

b81 b82 b83 b84 b85 b86 b87 b88

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

P1

P3

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

C A B

Parallel Computing (Intro-02.1): Rajeev Wankar

Step 2: Input required

• To compute its 4×4 block of C, each processor needs:
• 4 rows of A, 4 columns of B

• Processor P1 (top-left block of C) needs: rows 1–4 of A and columns 1–4 of B.

• Processor P2 (top-right block of C) needs: rows 1–4 of A and columns 5–8 of B.

• Processor P3 (bottom-left block of C) needs: rows 5–8 of A and columns 1–4 of B.
• Processor P4 (bottom-right block of C) needs: rows 5–8 of A and columns 5–8 of B.

81

b11 b12 b13 b14 b15 b16 b17 b18

b21 b22 b23 b24 b25 b26 b27 b28

b31 b32 b33 b34 b35 b36 b37 b38

b41 b42 b43 b44 b45 b46 b47 b48

b51 b52 b53 b54 b55 b56 b57 b58

b61 b62 b63 b64 b65 b66 b67 b68

b71 b72 b73 b74 b75 b76 b77 b78

b81 b82 b83 b84 b85 b86 b87 b88

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

P1

P3

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

C A B

Parallel Computing (Intro-02.1): Rajeev Wankar

Step 3: Local computation (per processor)

• Each processor has to compute 16 elements (4×4).

• Each element of C is an inner product of 8 terms.

• So, per processor:
• Multiplications = n×16=8×16=128

• Additions = (n−1)×16=7×16=112

• Total = 128 + 112 = 240 operations per processor.
• Multiplications =n3/p =83/4 = 512/4 = 128.

• Additions (sums) =(n−1)n2/p = 7⋅16 = 112

82

Parallel Computing (Intro-02.1): Rajeev Wankar

Step 4: Communication

• Each processor does not initially have all the rows/columns it needs.

• So, processors must share rows of A and columns of B with others.

• Who sends to whom?
• P1: Has rows 1–4 of A. Must share them with P2 (since P2 also needs rows 1–

4).

• P3: Has rows 5–8 of A. Must share them with P4.

• P1: Has columns 1–4 of B. Must share them with P3.

• P2: Has columns 5–8 of B. Must share them with P4.

83

Parallel Computing (Intro-02.1): Rajeev Wankar

Step 4: Communication

• Each processor does not initially have all the rows/columns it needs.

• So, processors must share rows of A and columns of B with others.

• So:

• Each processor shares with √p = 2 processors at most.

• Messages per processor = (2n2/p)×√p = (2×64/4)×2 = 32×2 = 64

• 8 sends total; each processor sends exactly two blocks.

• Each processor shares with √p = 2 processors at most.

84

Parallel Computing (Intro-02.1): Rajeev Wankar

Matrix Multiplication

85

• There exists a more sophisticated algorithm, by McColl and
Valiant, that solves the problem with less messages
• n3/p + (n2/p2/3)g + l

• That is optimal when
• g = O(n/p1/3)

• l = O(n3/(p log n)

	Slide 1: Bulk Synchronous Parallel
	Slide 2: What with PRAM?
	Slide 3: BSP
	Slide 4: BSP-History
	Slide 5: BSP
	Slide 6: Continued..
	Slide 7: Computation on BSP Model
	Slide 8: Computation on BSP Model
	Slide 9: Communication on BSP Model
	Slide 10: Communication on BSP Model
	Slide 11: The BSP Model
	Slide 12: The BSP Model
	Slide 13: BSP Basics
	Slide 14: Components (Processors)
	Slide 15: The BSP Model – w
	Slide 16: The BSP Model – h
	Slide 17: The BSP Model – gh
	Slide 18: The BSP Model – mg
	Slide 19: The BSP Model – l
	Slide 20: Barrier
	Slide 21: Barrier
	Slide 22: The two parts of barrier cost
	Slide 23: Parameters (in simple words)
	Slide 24: The BSP Model
	Slide 25: The BSP Model
	Slide 26: The BSP Model
	Slide 27: Example: Maximum of n element
	Slide 28: Maximum
	Slide 29: Maximum
	Slide 30: Maximum
	Slide 31: Maximum
	Slide 32: Maximum
	Slide 33: Maximum
	Slide 34: Maximum
	Slide 35: Example
	Slide 36: Example
	Slide 37: Example
	Slide 38: Example
	Slide 39: Example
	Slide 40: Example
	Slide 41: Example
	Slide 42: Example
	Slide 43: Example
	Slide 44: Example
	Slide 45: Example
	Slide 46: Example
	Slide 47: Example
	Slide 48: Example
	Slide 49: Matrix Multiplication
	Slide 51: Matrix Multiplication
	Slide 54: Matrix Multiplication
	Slide 55: Matrix Multiplication
	Slide 57: Matrix Multiplication
	Slide 58: Matrix Multiplication
	Slide 59: Matrix Multiplication
	Slide 60: Matrix Multiplication
	Slide 61: Matrix Multiplication
	Slide 62: Matrix Multiplication
	Slide 63: Matrix Multiplication
	Slide 64: Matrix Multiplication
	Slide 65: Matrix Multiplication
	Slide 66: Matrix Multiplication
	Slide 68: Matrix Multiplication
	Slide 69: Matrix Multiplication
	Slide 70: Matrix Multiplication
	Slide 71: Matrix Multiplication
	Slide 72: Matrix Multiplication
	Slide 73: Matrix Multiplication
	Slide 74: Matrix Multiplication
	Slide 75: Example
	Slide 76: Step 1: Divide the work
	Slide 77: Step 2: Input required
	Slide 78: Step 2: Input required
	Slide 79: Step 2: Input required
	Slide 80: Step 2: Input required
	Slide 81: Step 2: Input required
	Slide 82: Step 3: Local computation (per processor)
	Slide 83: Step 4: Communication
	Slide 84: Step 4: Communication
	Slide 85: Matrix Multiplication

