

Rheinisch-Westfälische Technische Hochschule Aachen

Lehrstuhl für Informatik V
Prof. Dr. Matthias Jarke

Mobile Web Service Discovery in JXTA/JXME

Master Thesis

Adem Toprak
Matriculation number: 248123

December 4th 2006

First Supervisor: Prof. Dr. Matthias Jarke

Lehrstuhl für Informatik V, RWTH Aachen

Second Supervisor: Prof. Dr. Wolfgang Prinz

Lehrstuhl für Informatik V, RWTH Aachen

Advisor: M. Sc. Satish Narayana Srirama

Lehrstuhl für Informatik V, RWTH Aachen

Statement

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig im Rahmen der an der RWTH

Aachen üblichen Betreuung angefertigt und keine anderen als die angegebenen Quellen und

Hilfsmittel benutzt habe.

I guarantee that this thesis is done independently, with support of the Informatik V department at

RWTH Aachen University and no other unmentioned helping resources are used.

Aachen, November, 2006

(Adem Toprak)

Abstract

The next generation devices like smart phones, PDAs and other communication gadgets are

quickly filling up the market today, creating endless possibilities for wireless communication.

Demand for related software applications is skyrocketing as well. Furthermore, recent

developments in mobile communication technologies like GPRS/EDGE/UMTS has significantly

increased the wireless data transmission speed. It has made web services usage a practical reality.

In addition, it enables cellular domain to act as a service provider as well.

Recently, the main focus of research in cellular domain has shifted to “Mobile Terminals as Web

Service clients”. Basically, Web Services are applications on the web that can be accessed and

utilized by other applications or Web Services to perform various tasks and processes. Although

Web Services are gaining rapid acceptance, the policy of web service discovery has become a

wearisome hindrance in proper implementation of its usage on the internet. The traditional

centralized UDDI registries will not adapt efficiently to the large number of services that will be

provided by the Mobile Hosts.

Another technology that has gained popularity along side wireless communication, in recent

years as a low cost individual computing, is peer-to-peer communication. This technology takes

advantage of resources like storage, cycles, content, human presence. P2P technology transports

today communication skill to a higher dimension by using the mentioned advantages.

Therefore, the purpose of this thesis work is to combine these two virtuous technologies and

introduce the best peer-to-peer solution for the Web Services discovery on mobile and normal

hosts. It will provide a solution to merge Web services and P2P technology on mobile and other

resource constrained devices. Furthermore, a proposal to establish a mobile network among web

services providers and consumers via P2P technology will also be presented. The aim of this

network will be to develop a distributed service discovery mechanism. JXTA's P2P provides

perfect solution for service (Web Service) discovery and communication among mobile users as

“peers”.

 6

 7

Table of Contents

Table of Contents ... 7

1. Introduction .. 9
1.1. Web Services and P2P .. 9

1.2. Document Outline .. 10

2. State of the art .. 13
2.1. Web Services .. 13

2.1.1 Web Services Standards ... 13

2.1.1.1. XML and kXML ... 13

2.1.1.2. SOAP and kSOAP .. 14

2.1.1.3. WSDL ... 14

2.1.1.4. UDDI ... 15

2.2. Peer-to-peer technologies ... 16

2.2.1. Introduction to P2P ... 16

2.2.2. Development of P2P ... 17

2.2.2.1. First Generation; Centralized Systems .. 18

2.2.2.2. Second Generation; Decentralized Systems ... 19

2.2.2.3. Third Generation; Centralized Decentralized Systems 20

2.2.3. Current P2P architectures in mobile environment .. 21

2.3. Java Platform, J2ME and MIDLets .. 22

2.3.2. Configurations at J2ME .. 23

2.4. Introduction to Project JXTA ... 25

2.4.1. JXTA Architecture .. 26

2.4.2. JXTA Virtual Network ... 27

2.4.2.1 JXTA identification ID’s ... 27

2.4.2.2. JXTA Advertisements ... 28

2.4.3. Rendezvous Super-Peers ... 29

2.4.4. Relay Super-Peers ... 29

2.4.5. JXTA Protocols ... 30

2.5. Introduction to Project Lucene ... 32

2.5.1. What Lucene can do? .. 32

2.5.1.1. Lucene Background .. 33

2.5.2. Indexing and searching ... 33

2.5.2.1. What is indexing, and why is it important? .. 33

2.5.2.2. What is searching? .. 34

2.5.2.3. Creating an index .. 34

2.5.2.4. Indexing an object ... 34

3. Mobile WS-Discovery Design .. 37
3.1. Mobile Web Service Provider .. 37

3.2. Problem Domain ... 38

3.2.1. Problem Description ... 38

3.2.2. Proposed Solution ... 38

3.2. Comparing Web Services and JXTA.. 39

3.3. Combining Web Services and JXTA.. 41

3.3.1. JXTA-SOAP Model [45] .. 43

 8

3.3.2. Proxy Model ... 44

3.3.3. Port Forwarding Model ... 45

3.4. Searching Web Services and client application in JXTA ... 46

3.5. Putting All Together ... 48

4. Mobile WS-Discovery Implementation .. 51
4.1. Development Tools/Platforms .. 51

4.1.1. NetBeans ... 51

4.1.1.1. NetBeans Mobility Pack [41] .. 51

4.1.1.2. NetBeans Profiler [42] .. 52

4.1.1.3. Sun Java Wireless Toolkit ... 52

4.1.2. Eclipse ... 53

4.2. Getting started with JXTA Shell .. 54

4.3. WS-Discovery Application Development .. 55

4.3.1. Service Provider Application .. 55

4.3.2. JXTA Proxy/Relay .. 59

4.3.2.1 Searching at JXTA proxy/relay .. 59

4.3.2.2 Deep Search Mechanism at JXTA proxy/relay with Lucene 61

4.3.2.3 Deploying Web Service ... 63

4.3.2.4 Sequence diagram of the Web Service Search ... 63

4.3.3. JXME Mobile ... 64

4.3.3.1. JXME Client Mobile Application .. 66

4.3.3.2. Invocation through Pipes (port forwarding model) ... 67

5. Conclusion ... 69

6. Future Work ... 71

List of Figures ... 72

List of Examples ... 74

Appendix – Shell and Mobile Application images ... 75

Literature .. 77

 9

1. Introduction

In recent years, mobile devices such as hand-held PCs, personal digital assistants (PDAs), and

smart cellular phones have evolved rapidly. Smart cellular phones encapsulate computer

technology so fast with respect to processor power, memory and communication channel, such

that it can do almost everything that a normal personal computer does. Before we were

considering cellular phones as a client side technology as a consumer. Now we achieved one step

more and we started considering cellular phones as a mobile service provider or a server.

Web Services are emerging as a dominant paradigm for distributed computing in industry. Web

Services are enterprise applications that exchange data, share tasks, and automate processes over

the Internet. They are designed to enable applications to communicate directly and exchange

data, regardless of language, platform and location. A typical Web Service architecture consists

of three entities: service providers that create and publish Web Services, service brokers that

maintain a registry of published services and support their discovery, and service requesters that

search the service broker’s registries. A detailed discussion of Web Services is provided in

Section 2.2.

Mobile Host [1], a light Web Service provider, built on top of a normal Web server, was

developed for mobile phones. Further information of this is available at section 3.1. “Mobile Web

Services Provisioning”. Combining Web Services with Mobile technology brings us a new trend.

Web Services has a broad range of service distributions, on the other hand cellular phones has

great amount of users and it is increasing day by day. Consuming as well as providing Web

Services in cellular phones gives us high range of application areas. For instance Mobile photo

album service, allows end users to share photos rapidly and easily. Further application areas

could be found at [1].

1.1. Web Services and P2P

Using traditional Web Services standards for mobile web service discovery brings out some

drawbacks. Lets examine briefly how UDDI [4] works; service providers define their interfaces

with WSDL [3] and publish the WSDL to service registry UDDI, so that user can find them

easily. At this situation service registry plays a big role on service discovery. UDDI a master

directory for all public web services, which keeps WSDL files in a centralized server. By

introducing mobile web service provider and consumers into the Web Services market, the

amount of Web Services will increase. The increasing number of Web Services will lead to

difficulties on; discovering of exact services, up to date services, and quick response. Moreover

Centralized registries are performance bottlenecks and may result in single points of failure.

Mainly Web Services built for static networks. When we consider service discovery and registry

for mobile web service provider, we face problems with centralized UDDI registry. Mobile

networks are dynamic due to node movement. Nodes can join or leave network at any time, they

can switch from one operator to another operator over the network. Keeping up to date

information of the published services in central registries is really difficult.

 10

By involving Web Services on mobile network devices we had stated drawbacks. We had to find

a solution to stated problems. Peer-to-peer is a distributed computing model where peers act as

clients and server, there is no central server managing the network. Nodes in peer-to-peer

architecture are decentralized and distributed. Peer-to-peer technology can provide alternatives

for service discovery and communication. We have made a detailed survey among peer-to-peer

technology and found out which fits best to our thesis work. As a result we decided to use JXTA

platform [5] as a peer-to-peer solution to our thesis project. The currently available P2P systems

tend to use protocols that are proprietary and independent of other networks, incapable of

leveraging their services. This problem was solved by the project JXTA which provided a

common P2P platform that is platform and language independent.

Web Services and P2P technologies have emerged from different problem domains. Both

technologies solve the challenge of connecting consumers and providers of services across the

internet. However, the problem that must be solved lies in an open communication protocol [6].

The objective of this project is to provide a model for web service discovery and invocation in the

JXTA P2P framework that will solve the problem of service invocation in addition to discovery.

The idea is that a JXTA Group service could be transparently implementable as a web service or

alternatively, given a reachable web service, it should be able to invoke from inside a JXTA

Group. This should be transparent to the user without the knowledge that this particular service is

a web service. This means that this service should be discovered, located, invoked similar to any

other JXTA service.

This needs two things to be enabled for implementation.

- A way to expose the definition of the web service (for example a WSDL), which fits into

the module advertisement framework so that no special platform upgrade is needed.

- A way to invoke this service, either as the dynamic client proxy generation capabilities of

some of the SOAP toolkits such as Systinet WASP [7] or a precompiled static client

proxy that would have its class name in the Module Implementation Advertisement.

The only other requirement would be the existence of the SOAP client library supporting classes

in the class path. Basically, it is about taking a client proxy and incorporating it into the JXTA

module advertisement framework and noting that the real is provided by a Web service.

1.2. Document Outline

Section 2 describes the State of Art of different technologies used in this study. Initially a

brief description of Java Platform and J2ME along with configurations and profiles explained for

restricted devices is provided. Later on Web Services and its components like (SOAP, WSDL,

UDDI, etc.) are explained. The section also describes detailed survey made among peer-to-peer

technologies, to find best p2p solution to our described problems. Moreover detailed information

given about project JXTA. Finally Lucene search technology is introduced and explained with

examples.

 11

Section 3 gives a brief information about project “mobile Web Services provisioning” and

the problem description and proposed solution stated for discovering services deployed on these

Mobile Hosts. A detailed comparison of Web Services and JXTA is made and three alternative

models are analyzed to combine Web Service and JXTA. In addition abstract information given

about searching Web Services and client applications.

Section 4 gives a detailed explanation of the implementation part pf this thesis. Initially

development tools are introduced like NetBeans, Eclipse. Then JXTA shell is described. Finally

WS-Discovery Application development is explained with detail. Moreover searching and deeps

searching mechanisms analyzed and explained with detail. JXME client mobile and invocation

through pipes are examined.

Section 5 gives a conclusion to the thesis project, and it shows how it succeeds to its

goals.

Section 6 provides information to the extension of this thesis project and provides some

ideas for future work.

 12

 13

2. State of the art

2.1. Web Services

Before going to describing of web services we should keep in mind this thesis work is only an

enhancement of a part of the thesis work “Concept, implementation and performance testing of a

mobile Web Service provider for Smart Phones”. For detailed information you can refer [27].

 Figure 1 : Web Services architecture [28].

Web Services represent the convergence between the service-oriented architecture (SOA) and the

Web, using the XML, SOAP, WSDL and UDDI open standards over an Internet protocol

backbone. XML is used to tag the data, SOAP is used to transfer the data, WSDL is used for

describing the services available and UDDI is used for listing what services are available. This

thesis work focuses on UDDI, developing P2P distributed UDDI mechanism. Web Services

stands with interaction of three modules as shown at Figure 1, these modules described as below:

• Service Provider: Service provider supply services for requestors (clients). Service

provider describes service definitions, and registers it to the service registry, and defines

how to access to this service.

• Service Requester: Service requesters ask and use services from service provider.

Service requester searches and requests services and service’s parameters from Service

registry.

• Service Registry: Stores description files of services and makes it available for search.

Service provider or requestor can search registry for service information. Service registry

keeps information about services call parameters.

2.1.1 Web Services Standards

2.1.1.1. XML and kXML

 14

Extensible Markup Language (XML) is a text based markup language designed for more flexible

and adaptable information identification. It is a metalanguage which lets definition of portable

structured data, definition of data descriptive languages such as interchange formats and

messaging protocols. Therefore XML is considered as the common language to be used between

cross-platforms of companies to get free from system dependent data representation. It uses

Document Type Definition (DTD) or XML Schema to describe the data and uses namespace to

distinguish between duplicate element types and attribute names. Although it turns to be a

standard for electronic commerce, XML has its own drawbacks. Using XML instead of binary

data makes the size of transmitted data 4 times bigger, and parsing the XML information also

consumes CPU time. Hence it uses the system resources like bandwidth, processing, storage etc

in a greedy way. Since research is concerned with resource restricted devices like smart phones,

we are going to use an alternative for the standard XML which is called kXML. It is a small

XML pull parser, specially designed for constrained environments such as Applets, Personal Java

or MIDP devices.

2.1.1.2. SOAP and kSOAP

SOAP is a lightweight protocol designed for exchanging structured information in a

decentralized, distributed environment. SOAP is a communication protocol that is designed

especially for communication through applications. It is based on XML technologies to enable an

extensible messaging framework for message construct that can be exchanged over various

protocols. By using HTTP and SMTP SOAP sends messages via internet which is able to go

through proxies and firewalls in a language and platform independent way. SOAP is first

designed by leading IT companies including Microsoft, SAP, and IBM then offered to W3C for

standardization. As far as mobile devices are concerned fro Web Services SOAP, kSOAP is used

for the mobile terminals with limited resources, as the parser should have a small memory

footprint. kSOAP is a SOAP web service client library for constrained Java environments such as

Applets or J2ME applications, based on kXML.

SOAP consists of 3 main parts:

• SOAP envelope defines a framework for expressing what is in a message and who should

deal with it.

• SOAP encoding rules to exchange application specific data types.

• SOAP Remote Procedure Call representation.

A SOAP message is an ordinary XML document consists of mandatory SOAP Envelope,

optional SOAP Header and mandatory SOAP Body. Envelope is the root element of the XML

message. Header is used for application specific information and for adding features for

processing of message. Finally body of the SOAP message contains the information intended for

the receiver of the message.

2.1.1.3. WSDL

Web Services Definition Language (WSDL) is an XML based “common language” for

describing web services. It provides the description of the format of request and response

messages and provides an abstract language for definition of what the particular web service

 15

does, with its functions, parameters and data types. It also defines location and binding details of

the service.

In other words a web application (service requester) that is about to use a web service provider

should know about the functionality, output of that service, so that it can give decision about

whether that service is what it needs, on the other hand the web service needs to state the

expectations, inputs to fully satisfy and to fulfill the task expected by web application.

WSDL uses the following elements to describe the web services:

• Types: This element is for defining the data type which is used by the web service.

• Message: This element defines the data elements of an operation being used. It can consist

of one or more parts. It can be compared to the parameters of a function call.

• PortType: This element of WSDL describes which operation web service performs, and

states the messages used. These operations can be one-way that receives only a message

without a response, two-way that receives a message and also gives a response.

• Binding: It specifies the protocol details and message format of a PortType. One attribute

of this element points to the unique URL, so called Port for binding.

2.1.1.4. UDDI

UDDI stands for Universal Description, Discovery and Integration, which is a specification that

enables implementation of a service broker. Its mission is realizing a market where the businesses

will register their services and search for the services they need. It is a platform independent,

XML based directory of web services, enabling a business to describe, to discover offered

services and integrating with those other businesses` web services by communicating through

SOAP. With UDDI Businesses can also advertise, state what they are doing in which industry.

UDDI presents 3 types of information about the web services; “white pages” that includes the

contact details of the company, “yellow pages” that provides categorization according to the

business and service type and finally “green pages” that holds technical data about the service.

UDDI is one of the core Web Services standard components. It is designed to be interrogated by

SOAP messages and to provide access to WSDL documents describing the protocol bindings and

message formats required to interact with the web services listed in its directory. UDDI holds a

detailed description of WSDL Web Service, it reference to WSDL file or keep it at a local

repository. UDDI keeps WSDL information by different kind of categorization; this can be

numerical category codes which are available at internet.

The information that makes up a registration consists of five data structure types. This separation

by information types provides simple partitions to assist in the rapid location and understanding

of the different elements of a registration.

Business Entity: The Business Entity structure represents the basic information of the business.

The information includes contact information, categorization, identifiers, descriptions, and

relationships to other businesses of the service provider. The UDDI also allows companies to

 16

establish relationships with one another. Even in such a case, both the companies should have

their respective Business Entity structures.

Publisher Assertion: The Publisher Assertion structure is used to establish public relationships

between two Business Entity structures. A relationship between two Business Entity structures is

visible to the public only when both companies have created the same assertion with two separate

Publisher Assertion documents independently. Thus, a company can claim a business relationship

only if its partner asserts the same relationship.

Business Service: A Business Entity contains one or more Business Service structures. A

Business Service represents a single, logical service classification. A <businessService> element

is used to describe a set of services provided by the business. The description of the Business

Service includes information like how to bind the Web Service, type of the Web Service etc.

Binding Templates: A Business Service contains one or more Binding Templates. A Binding

Template contains the technical descriptions of the Web Services represented by the Business

Service structure. It also contains the access point URL of the Web Service, but does not contain

the service specification details. It is similar to the <service> element of the WSDL described

earlier.

TModels: A TModel, the <tModel> element, is an abstract description of a particular

specification or behavior to which the Web Service adheres. For example a TModel can be

defined to represent a portType defined by the WSDL. Then a business service implementing the

portType can be specified by associating the TModel with one of the binding templates of the

business service.

2.2. Peer-to-peer technologies

2.2.1. Introduction to P2P

"P2P is a class of applications that takes advantage of resources--storage, cycles, content, human

presence--available at the edges of the Internet."[9]

A peer-to-peer (or P2P) connection, as understood by its name, it is the communication of two or

more internet enabled computers, to share data among each other. Mainly P2P networks used for

connecting nodes by means of largely ad hoc connections. This type of networks can be used for

plenty purposes. Now a days there are too many application which uses P2P technology, for

instance ICQ[10], Skype[11], Morpheus[12].

• Server, An entity that serves requests to other entities but does not initiate requests.

• Client, An entity that initiates requests but is not able to serve requests.

Peer-to-peer networks acts like client and server, in pure P2P network they combine this two

term. There are too many different architectures and designs of P2P systems. In instance some of

the networks are centralized, like Napster, they have a central server to let nodes connect directly.

On the other hand there are some networks which are decentralized distributed like Gnutella[13].

 17

We are going to examine each of the architectures advantages and disadvantages. Finally we will

decide for the architecture which best fits to our thesis project.

Figure 2 : Generation phase of peer-to-peer technologies [15].

2.2.2. Development of P2P

The first P2P networks was developed by the U.S. Defense department in a project called

ARPANET, in which the computers involved were connected directly together. The development

of P2P architecture composed of there generations. The first generation is the one that made P2P

a visible option to millions with the development of Napster[14]. This first generation P2P used a

centralized file list containing all the files on a connected user’s hard drive. Due to the centralized

file list, Napster was easily shut down. The second generation which includes Gnutella used a de-

centralized network. Unlike Napster, Gnutella would connect users directly to a group of other

users and so on. The third generation was much like the second, but with improvements made on

architecture like semi de-centralized.

 18

Figure 3 : Demonstrates the operating principle of Napster and centralized systems [15,20].

2.2.2.1. First Generation; Centralized Systems

The initial steps of P2P generation stand to development of Napster by Shawn Fanning in 1999.

His aim was to develop an easy music sharing application. The architecture was quite simple.

There is centralized server for maintaining an index of the connected peers. When the peers

(clients) want to find a song they are connecting server and querying server index for the

specified file. When there is a user who own that queried song, IP address of that user is sent

back to the peer. Final step is to establish a peer to peer connection with the user who owns the

song. With development of internet speed Napster become very popular around the world in

sharing music files between millions users. However this popularity made music groups

uncomfortable. Napster forced to shut down.

At the early days of computing centralized servers aimed to serve inexpensive terminals, later on

this idea shifted to different purposes. As we seen at the architecture of Napster, centralized

systems consist of a central server which directs traffic among registered users (peers). The

biggest advantages of centralized architecture are easy control and organize. Moreover when we

consider this architecture for mobile web service discovery mechanism, it keeps up to date

service information on the server, and it makes query processing easily with low overhead. On

the other side central servers have single point of failure. Moreover centralized systems produce

giant communication traffic and storage on server. These drawbacks yield us to search for other

architectural solutions.

 19

Figure 4 : Demonstrates the operating principle of Gnutella and Decentralized systems

[15,20].

2.2.2.2. Second Generation; Decentralized Systems

The second generation of P2P is completely decentralized, this means that there is no more client

server architecture; there is a combination of server and client which are called Servents. Gnutella

aforementioned as a second generation of P2P architecture. Gnutella bring out reforms to P2P

architecture, as Napster closed due to its legal issues and its server centric architecture. The

Gnutella software initiates communication with other users by using different kind of methods.

Frequent used way is using pre-existing list of possibly working node address which is embedded

inside the application code. This list can be extend by adding new host IPs. Other methods are

using web forms or IRC to share working node IP among users. Once initial connection

established, the user gets node list from connected host. Now the user will try to connect to the

nodes at the list. This expansion will go on until it reaches a certain user-specific quota.

When Gnutella user wants to do a search, it sends request query to the Gnutella network through

direct connected hosts. The host, who gets the request, has the ability to search the query locally

and at the direct connected hosts’ directory. If the node that sent the search request is not

firewalled, the node with the result directly returns the result to the requestors’ IP. If the node that

sent the search request is firewalled (many are), then the result is (indirectly) routed back along

the route the search was received on. After the result is returned, they negotiate the file transfer

and the transfer proceeds. When the search is not found on the host the query is forwarded to

connected peers (host), this spreading operation continues step by step among the peers. As the

query reaches to one host defined value TTL (time to live) is decreased by that peer. When TTL

reaches to zero spreading operation stops, so that possibility of infinite loop is eliminated.

Finally, when a user disconnects, the client software saves the list of nodes that it was actively

connected, for use next time it connects.

The biggest advantage of this architecture is that the peer behaves both as a server and client.

Gnutella is so decentralized; it is really difficult to shut down the network with respect to

 20

Napster, where the entire network relied on a central server. On the other hand search function on

Gnutella is unreliable, the search my not discover entire network.

2.2.2.3. Third Generation; Centralized Decentralized Systems

The third-generation P2P architectures, like eDonkey and Bit Torrent, attempt to solve the

problems of the earlier generation architectures. In reality it is not more then a mixture of the two

first generations, it is a new model which combines previous architecture. The third-generation

architectures have introduced a new approach to the peers, which is called super-peers. Peers are

light end-user peers, whereas super-peers are on a higher level in the hierarchy, working as relays

for peers and other super-peers. The role of the super-peers is quite similar to the servents in the

2nd generation architectures, but the functionality is very different. Third generation P2P

networks also made enhancements to improve their ability to deal with large numbers of users.

The regular peers, so-called edge-peers (peers) use super-peers as a gateway to the P2P network.

As many functions as possible are left to be handled in super-peers. Super-peers are also used for

NAT and firewall traversal. Our example of third generation P2Ps is open-source JXTA

development framework [5]. JXTA platform was originally conceived by Sun Microsystems Inc.

and designed with the participation of experts from academic institutions and industry. The

development of JXTA started in 2001 and is still going on. In a nutshell, JXTA establishes a

virtual network on top of the IP or non-IP networks, hiding the underlying protocols. It uses

XML messages, and is thus independent of the software and hardware platform. Each JXTA peer

has its own logical, network independent ID. Peers organize automatically or manually into peer

groups that are either protected private- or public groups of peers that are visible to each other.

Peer group is the base unit of JXTA, and basically everything happens within them, which also

considerably limits the load to underlying networks.

JXTA dynamically uses either TCP or HTTP protocols to traverse network barriers, like NATs

and firewalls. A JXTA network consists of peers (edge-peers) and super-peers (rendezvous peers

and relay peers). A peer with enough privileges can become a super-peer depending on its

location in the network. When a peer joins a JXTA network, it finds, either manually or

automatically, the closest rendezvous peer and creates a special relationship with it. From this

moment, the edge peer starts using the rendezvous peer as a gateway to the P2P network. The

rendezvous peer maintains a list of its edge peers and their shared resources. Rendezvous peers

organize themselves into a loosely coupled network, delivering queries and peer information

between each other. Rendezvous peers use DHTs (Distributed Hash Table) for optimizing peer

and service discovery. In this respect, JXTA differs a lot from Gnutella’s style of broadcasting

queries to neighbor peers. Actually, DHTs were already used in some advanced second-

generation protocols. JXTA introduces also the relay peers that can route JXTA messages and

data between peers that have no direct connection between each other. Relay peers are used also

in spooling messages for unreachable or temporarily unavailable peers. With the functions

mentioned above, JXTA in practice allows any peer to reach any other JXTA peer independently

of its network location.

 21

Figure 5 : Demonstrates the operating principle of JXTA [15].

Searching for resources in JXTA is illustrated in Figure 5. A peer (for example A) is requesting a

resource, which is in this case in another peer located in the network behind NAT. When

querying a resource, A sends a query to its rendezvous peer (for example RP 1) (1.). RP1’s index

does not contain the requested resource, so it relays the query to its own rendezvous peer RP3

(2.). RP3’s index contains the requested resource with the information that the resource is

available some of in RP4’s edge peers (3.), so RP3 relays the query to RP4 (4.). RP4 knows the

resource is in its edge peer B, so it relays the query to B (5.). Because B is in a network using

NAT, it sends the response to A via its relay (and rendezvous) peer RP4 (6.). Then, the data is

transferred between A and B using RP4 as a relay (7.). The third generation has solved many of

the problems of the earlier generations. The hierarchical model has effectively decreased the

stress caused to the underlying network protocols when compared to the second generation.

Third-generation protocols also provide new services, like peer groups and NAT/firewall

traversal.

2.2.3. Current P2P architectures in mobile environment

The current third generation P2P architectures have matured to the point where they work rather

well and the overhead inflicted to the network has decreased from the earlier generation

architectures. However, this applies only for desktop and laptop environments with wideband

Internet connections, and high processing and memory capacity. All the currently available P2P

protocols have been designed with a desktop environment in mind, and thus there are no any well

known third-generation protocols designed especially for mobile devices. The principle of third-

generation architectures as such is suitable for mobile use. Although there are many advantages

in using third generation protocols in a mobile environment, there are also drawbacks. Current

third-generation protocols, like JXTA, are too heavy for effective mobile use. As a response to

this problem, the JXTA community has developed a light version of JXTA for mobile devices,

called JXME (JXTA for J2ME). It works in all MIDP devices, e.g. Nokia’s Series 60 phones.

 22

JXME has two versions: proxyless and proxied. The proxyless version works similarly to native

JXTA, whereas the proxied version needs a native JXTA peer to be set up as its proxy. The

proxied version is also lighter than the proxyless one, since it uses binary communication with its

proxy, whereas the proxyless version uses XML-based communication. The proxied version

cannot work as a super-peer either. Unfortunately, JXME works currently only in Java

environment and there are no JXTA versions yet ported to native Symbian C++ language [15].

2.3. Java Platform, J2ME and MIDLets

The Java Platform is the name for a computing environment, or platform, from Sun

Microsystems which can run applications developed using the Java programming language and

set of development tools. Java has three kinds of versions:

• Java 2 Standard Edition (J2SE)

• Java 2 Enterprise Edition (J2EE)

• Java 2 Micro Edition (J2ME)

These versions developed for different environments and for different devices. J2ME is a

collection of Java APIs for the development of software for resource constrained devices such as

PDAs, cell phones and other consumer appliances. The intention of J2ME is to provide common

functions to the different capability and ability devices. For this purpose modular structure is

developed, different kind of profiles and configurations defined.

 23

 Figure 6 : Configurations and Profiles

J2ME is divided into different kind of configurations and profiles. J2ME configuration describes

minimal Java platform required by device family. The devices which belong to this family have

similar memory and processor capability. A configuration [8] provides the most basic set of

libraries and virtual-machine features that must be present in each implementation of a J2ME

environment. A configuration includes these items:

• Specific Java programming language specifications

• Specific Java Virtual Machine (JVM) specifications

• Specific Java libraries

J2ME profile consists of services which provided at application layer. These services can be at

any subject. However at some subjects profiles are standard, all the devices which support that

profile same service exists at similar form. Profiles run on a configuration. A profile can operate

over another profile. A device can support more then one profile however it can have only one

configuration. For instance SMS messaging is one profile. This profile is commonly used for

mobile phone configuration.

2.3.2. Configurations at J2ME

 24

Configurations may include some classes at Java Standard Edition (J2SE). Limited devices do

not include all the classes due to technical restriction of these devices. A class which is defined in

a specific configuration in J2SE should be specified in similar way. It can not include different

method.

J2ME has two configurations:

• CLDC (Connected Limited Device Configuration) : for personal intermittent network

connections.

• CDC (Connected Device Configuration) : for continuous network connections.

CDC is defined for devices which have more then 2 MB memory, however CLDC is used for less

developed devices which have less then 512 KB and slow processor. CDC definition covers

whole CLDC configuration. CDC has all the libraries which is defined by CLDC.

The Mobile Information Device Profile (MIDP) offers the core application functionality

required by mobile applications, including the user interface, network connectivity, local data

storage and application management. Combined with CLDC, MIDP provides a complete Java

runtime environment that leverages the capabilities of handheld devices and minimizes both

memory and power consumption.

Figure 7 : MIDP packages 78[35].

The characteristics of MIDP are [35]:

• 128 KB of non-volatile memory for the MIDP implementation

• 32 KB of volatile memory for persistent data

• a screen of at least 96x54 pixels

• some capacity for input, either by keypad, keyboard, or touch screen

• two-way network connection, possibly intermittent

MIDP offers portability, which is achieved through Java. An application that uses the MIDP APIs

will be portable to any MIDP device. MIDP allows the execution of multiple MIDlets. The model

CLDC MIDP

java.lang

java.io

java.util

javax.microedition.io

javax.microedition.lcdui

javax.microedition.midlet

javax.microedition.rms

 25

defines how the MIDlet is packaged, what runtime environment is available, and how it should

behave when resources are constrained. The model also defines how MIDlets can be packaged

together in suites and how to share common resources. Each MIDlet suite has also a JAD file,

which is a descriptor file that allows application management software (AMS) on the device to

identify what it is about to install prior to installation. The model also defines a lifecycle for a

MIDlet which allows starting, stopping and cleanup of a MIDlet [36].

The MIDlet life cycle:

Figure 8 : The MIDlet life cycle [37]

A MIDlet is managed by the Java Application Manager, which executes the MIDlet and controls

its life cycle. The MIDlet can be in one of the following states: paused, active, or destroyed.

When you first create and initialize a MIDlet, it is in the paused state. If an exception occurs in

the MIDlet's constructor, the MIDlet enters the destroyed state and is discarded. The MIDlet

enters the active state from the paused state when its startApp() method call is completed, and the

MIDlet can function normally. The MIDlet can enter the destroyed state upon completion of the

destroyApp (Boolean condition) method. This method releases all held resources and performs

any necessary cleanup. If the condition argument is true, the MIDlet always enters the destroyed

state [37]. Figure 7 illustrates the various states of a typical MIDlet life cycle.

2.4. Introduction to Project JXTA

JXTA [5, 19] is an open source project. This industry leading peer-to-peer (p2p) platform was

proposed by Sun Microsystems Inc and designed with the support of experts from academic

institutions and industry. The number of experts were relatively small in the beginning but later

grew.

JXTA is a set of open, generalized peer-to-peer (P2P) protocols. JXTA allow communication and

collaboration as peers among any connected devices on the network from mobile to PDA, from

 26

PC to server. The JXTA protocols are independent of any programming language and multiple

implementations exist for different environments also called Bindings in JXTA terminology.

2.4.1. JXTA Architecture

 Figure 9 : JXTA Architecture [26].

• Platform Layer (JXTA Core)

The platform layer (also called JXTA Core) summarizes smallest and important fundamentals

that are common to P2P networking. It incorporates building blocks that enable key mechanisms

for P2P applications like discovery, transfers data with firewall handling providing http transport,

the creation of peers and peer groups, and associated security primitives.

• Service Layer

This layer contains network services that are frequent in the P2P environment but may not be

totally required for the operation of P2P network. For instance searching and indexing, directory,

storage systems, file sharing, distributed file systems, protocol translation, bringing resource

together and renting, authentication and authorization, and PKI (Public Key Infrastructure)

services.

• Applications Layer

The application layer includes implementation of integrated applications, like P2P instant

messaging, entertainment content management and delivery, document and resource sharing,

distributed auction systems, P2P Email systems etc.

 27

2.4.2. JXTA Virtual Network

Figure 10 : JXTA Virtual Network [25].

A virtual network overlay is created by the JXTA protocols that lie on top of the existing physical

network infrastructure. This virtual network allows a peer to exchange messages with any other

peer independent of it’s network location (firewalls, NAT’s or non-IP networks). These messages

are routed transparently, potentially traversing firewalls or NAT’s, and using different transport

protocols to reach the receiving peers (see Figure 10). The peers can communicate through

Project JXTA without the require to understand or administrate complex and changing physical

network topologies, thus allowing mobile peers to move transparently from one location to

another. The virtual network regulates the manner in which peers discover other peer’s resources,

find out each other, make communication with each other and organize themselves into peer

groups.

2.4.2.1 JXTA identification ID’s

The identification form of Project JXTA is based on a consistent, unique and location free logical

identification or addressing form. A unique JXTA ID is given to each network resource like peer,

pipe, data and peer group etc. every JXTA peer is allowed to self generate its individual IDs by

using 128 bit unique random UUIDs. In JXTA network each network resource like peer, pipe,

data and peer group etc. is uniquely identified by its peer identification ID, this allows the peer to

be existed or located independent of its physical address (see Figure 10). For example, a

computer booting via DHCP and having many different IP addresses overtime, will always have

the same peer ID. Like wise, a peer supporting multiple network interfaces e.g. Ethernet LAN,

WiLAN, Bluetooth etc will be addressed as a single peer identification independent of the

interface used. The concept of peer ID provides a peer to involve not just the physical

transports, but also logical transport protocols such as HTTP, FTP or TLS. The logical

identification form of JXTA brings out important advantages like separating the identification of

 28

a resource and the location of a resource allowing a variety of virtual mappings to be used to

determine the physical location of a resource.

2.4.2.2. JXTA Advertisements

JXTA Advertisements represents the announcements of entire network resources in the Project

JXTA network like peers, peer group, pipes, module classes and services. JXTA Advertisements

are organized and defined as XML documents, where XML documents are language independent

metadata files. Project JXTA organize and uniform JXTA Advertisements of the following

resources: peer, peer group, pipe, service, metering, route, content, rendezvous, peer endpoint,

transport. These resources advertisements can be redefined; in addition new type of

advertisements can be defined by developers. In instance, in this thesis project, a module spec

advertisement will contain the associated WSDL document on its parameter. Advertisements can

be used to virtually describe anything: source code, script, binary, classes, compiled JIT code,

Java objects, EJB, J2EE containers.

Example 1 shows an example of a Module Specification Advertisement (jxta: MSA) that

describes a unique module specification ID (MSID), a peer service name (Name), a description of

the peer group (Desc), a creator name (Crtr), a version filed (Version) and a parameter field.

Where the parameter can contain many sub sequent elements like pipe ID, WSDL file etc. These

fields can be extended by user needs. Peers can discover and find available network resources by

caching, publishing and exchanging advertisements. Resources are discovered by searching for

their associated advertisements by peers. All advertisements have lifetime specified while being

published that specifies the duration of advertisement in the network. An advertisement can be

republished at any time to extend its lifetime before it expires. Expiration date is maintained

during the exchange of advertisements among peers. Lifetimes permit to purge expired

advertisements without centralized management.

<?xml version="1.0" encoding=”UTF-8”?>

<!DOCTYPE jxta:MSA>

<jxta:MSA xmlns:jxta="http://jxta.org">

<MSID>urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000010206</MSID>

<Name>Service Name</Name>

<Desc>Service description</Desc>

<Crtr>Creator</Crtr>

<Version>Service description</Version>

<Parm>

 <WSDL>

 ………..

</WSDL>

</Parm>

</jxta:MSA>

Example 1 : Example of a Module Specification Advertisement.

 29

2.4.3. Rendezvous Super-Peers

Rendezvous super peers are called to the peers that have accepted to cache advertisements index.

The Project JXTA network provides a default resolver rule based on Rendezvous super peers.

Locating and indexing peer advertisements (mentioned above) are done at well known places

where known as rendezvous point among the JXTA peers.

For example, a peer can find sufficient peers to initialize a more advanced search strategy using

rendezvous. The default rendezvous peer provides basic search mechanism to find out

advertisements. However it provides hooks to allow high-level discovery services to participate

in the advertisement search process. Advanced level discovery services are expected to bring out

more efficient search mechanisms, because they may have a better knowledge of the content

topology distribution. Advanced search mechanism will be studied and developed in

implementation section.

Generally Rendezvous peers immediately maintain an index of advertisements published by their

edge peers. Unlike other proxy/relay services JXTA does not cache advertisements permanently,

this makes the rendezvous architecture more flexible and scalable, and reduce the problem of

caching expired advertisements, as all the advertisements have TTL (Time to live). Mobile peers

use The Shared-Resource Distributed Index (SRDI) service to index their advertisements on

rendezvous peers.

2.4.4. Relay Super-Peers

Figure 11 : JXTA Relay [24].

The JXTA relay super peers acts as a gateways for the peers which do not have direct physical

connection i.e. peers that lay behind firewalls or NAT. Any peer in JXTA network can act as a

relay peer, however it is better to have some capability like bandwidth, process and ram power

and direct connection. Relay peers has the ability to forward or keep messages for the temporarily

unavailable edge peers or unreachable peers.

JXTA virtual network decide for the routes plainly and dynamically via relay peers. Application

address peers via their Peer ID’s so they don’t need to be aware of the JXTA network relay peer

infrastructure. Edge peers or mobile peers rents a connection from one preferred JXTA relay, and

 30

get back messages from their allocated message queues. The messages can be passed through any

accessible JXTA relays, not just only from connected one.

As the time passes, edge peers travel around from relay to relay for improving their visibility or

enhancing the connectivity quality among peers in the network. One important thing to note, that

relay/edge peer connection is temporary in nature. Edge peer may drop connection at any time

and reconnect to a different relay at JXTA network. Relays provide service for the edge peer for a

settled rent time period. Relay peers traverse among each other to keep a list of available relays

similar to the rendezvous peers. The detection of relay peers are bootstrapped by seeding peers

where they only needed when there are no relays around. Edge peers keeps available relay list

advertisements in the case of reconnect or reboot. Edge peers obviously reconnect to another

relay from the list in the case of relay absence.

2.4.5. JXTA Protocols

The JXTA consist of six protocols that have been mainly designed for ad hoc, pervasive, and

multi-hop P2P network computing. By using JXTA protocols, peers can work together to form

self prepared and self configured peer groups without the need of a centralized running

infrastructure, moreover independent of their positions in the network (edges, firewalls, network

address translators, public vs. private address spaces).

The JXTA protocols are intended to have very little overhead, have some clear idea about the

underlying network transport and inflict a small amount of necessities on the peer environment,

moreover protocols are able to be used to arrange a large variety of peer-to-peer applications and

services in a greatly unreliable and changing network environment.

JXTA protocols are used by peers to promote their resources and to find out network resources

like peers, groups, pipes etc available from other peers. Particular relationships are created when

peers form and join peer groups. Peers work together to route messages allowing for full peer

connectivity. The JXTA protocols let peers to communicate with each other without the need to

recognize or supervise the potentially complex and active network topologies which are

increasingly common in peer to peer network.

Peers are allowed by JXTA protocols to dynamically route messages across multiple network

hops to any destination in the network potentially traversing firewalls. Every message contains a

list of bridge peers information from side to side which the message may be traversed. The

traveling around may be helped out by the intermediate peers in the route. This is done by using

routes they know of to shorten or optimize the route a message is set to follow.

The JXTA protocols are composed of six protocols that work together to allow the discovery,

organization, monitoring and communication between peers. Short description of each is given

below:

 31

Figure 12 : The JXTA protocols architecture.

• Peer Resolver Protocol (PRP) is method where a peer can send an inquiry to one or more

peers, and receive a response (or multiple responses) to the inquiry. The PRP implements

a query/response protocol. The response message is matched to the query via a unique id

included in the message body. Queries can be directed to the whole group or to specific

peers within the group.

• Peer Discovery Protocol (PDP) is the mechanism by which a peer can advertise its own

resources, and discover the resources from other peers (peer groups, services, pipes and

additional peers). Every peer resource is described and published using an advertisement.

Advertisements are programming language- neutral metadata structures that describe

network resources. Advertisements are represented as XML documents.

• Peer Information Protocol (PIP) is the mechanism by a which a peer may obtain status

information about other peers. This can include state, uptime, traffic load, capabilities,

and other information.

• Pipe Binding Protocol (PBP) is the instrument by which a peer can establish a virtual

communication bridge using pipe between one or more peers. The PBP is used by peers to

bind two or more input/output gates (like socket connections). Pipes provide the base

communication mechanism between JXTA peers.

• Endpoint Routing Protocol (ERP) is the mechanism by which a peer can discover a route

(sequence of hops) used to send a message to another peer. If a peer “A” wants to send a

message to peer “C”, and there is no known direct route between “A” and “C”, then peer

“A” needs to find intermediary peer(s) who will route the message to “C”. ERP is used to

determine the route information. If the network topology changes and makes a previously

used route unavailable, peers can use ERP to find an alternate route.

• Rendezvous Protocol (RVP) is the mechanism by which peers can subscribe or be a

subscriber to a propagation service. Within a peer group, peers can be either rendezvous

peers or peers that are listening to rendezvous peers. The Rendezvous Protocol allows a

peer to send messages to all the listening instances of the service. The RVP is used by the

Peer Resolver Protocol and by the Pipe Binding Protocol in order to propagate messages.

Peer Discovery

Protocol

Pipe Binding

Protocol

Peer Info

Protocol

Peer Resolver Protocol

Peer Endpoint

Protocol

Peer Rendezvous

Protocol

Peer Discovery

Protocol

Pipe Binding

Protocol

Peer Info

Protocol

Peer Resolver Protocol

Peer Endpoint

Protocol

Peer Rendezvous

Protocol

 32

2.5. Introduction to Project Lucene

Lucene [30,31,32], is a Java based high-performance, full-featured text search engine library.

Nearly any application specially cross-platform applications that requires full-text search can

adopt this technology. It is an open source project hosted by Apache. The Java Lucene product is

used by many well known websites like Wikipedia [33], online encyclopedia, as well as in many

Java applications. It is rapid, reliable tool that has proved its value in countless number of

demanding production environments.

Among many developers, Lucene is well-known for its full-text indexing, but they are less aware

that it can also provide strong complementary searching, filtering, and sorting functionalities. In

fact, many search mechanism provide combining full-text searches with filters on different fields

or criteria. For example, a search on a database of employees or workers with the criteria to limit

the results to certain types of employees like managers. Usually, this type of condition-based

searching is in the monarchy of the relational database. However, Lucene provides many

powerful features that allow efficient combination of full-text searches with condition-based

searches and sorts.

2.5.1. What Lucene can do?

Lucene allows to add indexing and searching capabilities to user applications (these functions are

described in section 2.5.2.). Any type of data that represents textual information can index and

make searchable by Lucene. As can be seen from Figure 13, the source, the structure or even

language of database is not important for Lucene, as long as the data can be changed to textual

information. This means the users can use Lucene to search and index information where kept in

JXTA advertisement, files, web pages on remote web servers, documents stored in local file

systems, simple text files, Microsoft Word documents, HTML or PDF files, or any other format

from which textual information can be extracted.

Similarly, with Lucene's help data stored in databases can be indexed, giving users full-text

search capabilities that many databases don't provide. Once Lucene is integrated, applications

users can make searches such as +George +Rice -eat -pudding, Apple Tpie +Tiger,

animal:monkey AND food:banana, and so on.

 33

Figure 13 : Lucene architecture [31]

2.5.1.1. Lucene Background

Lucene was initially written by Doug Cutting and is available SourceForge project web site

container. Then Lucene project involved in the Apache Software Foundation's Jakarta family of

open source server-side Java products in September of 2001. From that time with every new

release, the project has gained more visibility, attracting more users and developers. As of May

2006, Lucene version 2.0.0 has been released [32,33].

2.5.2. Indexing and searching

In the spirit of all search engines indexing is the concept where indexing is the process of the

original data into an extremely efficient cross-reference lookup in order to make possible fast

searching. Searching is done using the generated cross-reference data indexes.

2.5.2.1. What is indexing, and why is it important?

Suppose, there is a need to search a large number of files in order to be able to find files that

contained a certain word or a phrase. How a program could be used to do this? A naive approach

would be to sequentially scan each file for the given word or phrase. This approach has a number

of drawbacks, the most obvious of which is that it doesn't scale to larger file sets or cases where

files are very large. This is where indexing comes in: To find out large amounts of text quickly,

initially that text must be indexed and then convert it into a format that will let search it rapidly,

 34

eliminating the slow sequential scanning process. This conversion process is called indexing, and

its output is called an index.

An index can be thought of, as a data structure that allows fast random access to words stored

inside it. The idea at the back of it is equivalent to an index at the end of a book, which allows to

rapidly locate pages that talk about certain topics. In the case of Lucene, an index is a specially

designed data structure, typically stored on the file system as a set of index files.

2.5.2.2. What is searching?

Searching is the procedure of looking up words in an index to discover documents where they

appear. The excellences of a search are usually described using accuracy and remind metrics.

Remind measures how healthy the search system finds relevant informations, on the other hand

accuracy measures how well the system filters out the unrelated documents. However, when we

are thinking about searching a number of other factors must be measured. The importance of

speed and the ability to quickly search huge numbers of text are already mentioned earlier.

Support for single and multiterm queries, phrase queries, wildcards, result ranking, and sorting

are also important. Lucene's powerful software library offers a number of search features,

qualities and behaviors.

2.5.2.3. Creating an index

To do a full text searching at Lucene it is required to build an index. To construct an index just

specify a directory or a RAM memory and an analyser class. The analyser breaks text fields up

into indexable tokens: this is a core part of Lucene, and Several types of analysers are provided

by Lucene moreover you can build up your own specific analyser. Here are some of the standard

ones [31,34]:

StandardAnalyzer : A sophisticated general-purpose analyser.

WhitespaceAnalyzer : A very simple analyser which just seperates tokens using white space.

StopAnalyzer : Removes common English words which are not usually useful for indexing .

SnowballAnalyzer : An interesting experimental analyser which works on word roots (a search

on "rain" should also return entries with "raining", "rained", etc...) .

There are even some language-specific analysers :

GermanAnalyzer (just don't mention the war, as Basil Fawlty would say...)

RussianAnalyzer

It isn't hard to implement one’s own Analyser, though the standard ones often do the job well

enough. In this thesis project StandardAnalyser is used.

2.5.2.4. Indexing an object

Lucene Document class is used to index an object, where the user add the fields whatever user

wants to be indexed. Lucene supports four field types [31,34]:

 35

UnIndexed : This type of field is stored in the index but is not used in searches. Unindexed fields

are useful for storing object IDs, for example.

Keyword : A keyword is stored and indexed as-is. searches by keyword can be done, Keywords

may be Strings or Dates, and can be used to build complex keyword-based search functions.

Text : The field value is analysed and indexed for full-text searches. The original value is also

stored in the index.

UnStored : The field value is analysed and indexed for full-text searches, but the original value is

not stored in the index. This is useful for indexing large blocks of text.

In the case of this thesis project, only simple full-text searching is used, only two fields are

added. Module spec Id, so the object can be retrieved later on from the query result list. And

Content information where it contains name, description and WSDL file. The details are

explained at implementation section.

 36

 37

3. Mobile WS-Discovery Design

3.1. Mobile Web Service Provider

The Mobile Host, Mobile Web Service Provider, was designed and tested on a SonyEricsson

P800 Smart Phone and was developed in Personal JAVA. The footprint of the fully functional

prototype is only 130 KB. The Mobile Host has been developed as a Web Service handler built

on top of a normal web server. The Web Service requests sent by HTTP tunneling are diverted

and handled by the Web Service handler. The evaluation of Mobile Host showed that service

delivery as well as service administration can be done with reasonable ergonomic quality by

normal mobile phone users. As the most important result, it turns out that the total WS processing

time at the Mobile Host is only a small fraction of the total request-response time (<10%) and

rest all being transmission delay. The following Figure 14 shows the basic architectural setup of

the Mobile Host. A detailed discussion of implementation and evaluation details of this Mobile

Host [1, 27] is beyond the scope of this proposal.

WS
Mobile Web

Service provider

Service Registry

(WSDL,UDDI)

Service Requester

(Client)
Service Registry

(WSDL,UDDI)

Service Requester

(Client)

Bind(SOAP)Publish

Find

WS
Mobile Web

Service provider

WS
Mobile Web

Service provider

Service Registry

(WSDL,UDDI)

Service Requester

(Client)
Service Registry

(WSDL,UDDI)

Service Requester

(Client)

Bind(SOAP)Publish

Find

Figure 14 : Basic architectural setup of Mobile Host [1].

The Mobile Host, once commercially viable, can serve some useful services. As a Mobile Host,

the mobile terminal becomes a multi-user device where the owner/carrier of the device can work

in parallel with users of the Web Service without explicit effort on his/her side. From a

commercial viewpoint, there is a reversal of payment structures. While traditionally the

information-providing Web Service client has to pay to upload his or her work results to a

stationary server (where then other clients have to pay again to access the information), in the

Mobile Host scheme responsibility for payment shifts to the actual clients -- the users of the

information/services provided by the Mobile Host. Another commercial aspect is the possibility

for small mobile operators to set up their own mobile Web Service business without resorting to

stationary office structures, thus going one step further in the move from central to P2P

architectures [1].

 38

3.2. Problem Domain

Using Web Services standards for web service discovery brings out some drawbacks. By

introducing mobile web service provider and consumers into the Web Services market, the

quantity of Web Services increase tremendously. There are millions of mobile users in the

market. Hence increasing number of Web Services will lead to difficulties on; discovering of

exact services, up to date services, and quick response. Moreover Centralized registries are

performance bottlenecks and may result in single points of failure.

3.2.1. Problem Description

Initially we can raise some questions like, why we use p2p, what is advantages of it, how we use

it. We will have answers to those questions at next section however let us check out main

problems which we face by introducing Web Services to mobile networks.

We can compose the problems as below;

- One of the problem is that, when we consider mobile node as a central registry, the node

which carrying that registry may not available all the time. User who needs a service

which is kept on that registry can not be accessible for some time. We have to think

alternative solutions like distributed registries. JXTA/ME can handle this problem easily,

we can advertise WSDL files at JXTA peer group network as a JXTA standard service.

These services will be available at network even the publisher disappears. These services

can be available at network till last node leaves the group.

- Movement of mobile service provider (mobile host) from one operator network to another

could lead to communication loss. Moreover the identity of a Mobile Host, which is IP,

could change by reconnecting to a new operator network. Clients who use mobile host’s

service could not be accessible due to new IP. One solution could be republishing WSDL

file with new IP address, however this needs maintenance. Moreover making available

this WSDL file with new IP takes time. This means the Web Service will not be

accessible for a while. As a solution we propose to use JXTA/ME, every peer at

JXTA/ME network is identified by an ID, called peer ID. This ID is unique and static,

when a node associate with an ID, this ID will stay forever with that device no matter

where or which communication protocol is used. By using peer ID mobile host does not

have to worry about changing operator network. Mobile Host address is always known to

client, as the client can find service provider from JXTA/ME network.

3.2.2. Proposed Solution

The previous section also gives a brief explanation to the question why P2P was used in the

project. P2p provides access to information and collaboration without the need for a third party

web server like in our problem domain UDDI.

Generally we have explained advantages of involving JXTA to Web Services world. Now we are

going to show how to use JXTA with Web Services. First of all we are going to compare these

 39

two technologies then try to combine them. We are proposing three alternative solutions to

combine these technologies. However in the implementation section we will show how we made

a hybrid solution to the problems which we described.

3.2. Comparing Web Services and JXTA

Web Services and JXTA have a lot of common points. A close examination of this two

technology shows; their aims, architectures, problem domains and their method for solving them.

We are going to analyze these two technologies, and show how these two technologies produce a

strong solution to our main problem [16].

Let briefly examine Web Services and JXTA with common points and differentiations:

• Web Services and JXTA lay on SOA(Service Oriented Architecture). Both define their

own communication protocols and computing topology. They are designed to enable

loosely coupled systems often employing layered stacks and referencing best-of-breed

protocols. Both describe their information using XML, to make platform and language

independence. Both have a heavy weight on distributed computing. Their differences are

more exciting, despite their similarities.

• Web Services, are based on a centralized model and primarily focused on standardizing

messaging formats and communication protocols. JXTA, on the other hand, is based on a

decentralized model and primarily focused on supplying processing power, content, or

applications to peers in a distributed manner, and less focused on the semantics of

messaging formats and communication protocols.

Now we are going to present the differences by comparing the architectures. In fact both

architectures are quite similar, however they can give us a nice point of view about what are the

differences among them.

Figure 15 : Web Services Conceptual Architecture (by IBM) [16].

 40

Figure 16 : JXTA Architecture (by Sun) [16].

The main differences of JXTA and Web Services are consists as, communication channels, wire

protocols, security mechanisms, routing and envelope structures for moving information around.

Moreover, JXTA defines peer domain concepts like, “What is an Advertisement” and “What is a

Rendezvous Peer”.

Wire

Mainly servers that run Web Services will be well-known hosts, with static IP addresses and will

be on the outside of a firewall. However JXTA peer could be behind a firewall or NAT and

proxies. JXTA deals with firewalls and NATs using different methods with respect to Web

Services, it introduces Relay peer to handle NATs and proxies. JXTA does not depend on IP, it

can communicate through any communication channel by defining peer IDs. Further information

available on JXTA section.

Security

Encryption, decryption, authorization, authentication, hashing, etc. are available on both systems,

with this perspective they look similar. The enhancements of security library and standards make

similar type of features on such systems. The JXTA group is taking on the "web of trust" issues,

where essentially one peer can loan out its credentials to another peer. This advancement could

be significant and might eventually find its way into Web services.

Discovery

Discovering a service on Wes Services is done by a centralized registry system which known as

UDDI. This repository system keeps a listing of all the published services, kind of like the global

yellow pages. In addition, services can be categorized and may store to different UDDI. On the

other hand in JXTA environment store services on edge peers, and also may be on rendezvous

peers, to act as a meeting place for peers with similar interests , this means there is no centralized

registry, all information stored as a decentralized manner. Peers make discovery in a variety of

ways such as multicasting, querying services etc. As our main goal in this research is discovery

mechanism, Web Services can borrow some of the decentralized techniques from JXTA peer

 41

world, while the peers will being to leverage some of the centralized registries in the Web

Services world.

Reliability

With reliability perspective both system depend on the environment, there is no standard that

specifies reliability issue, both systems general topology shows how it will be handled. Web

Services use centralized mechanisms to create available systems. On the other side JXTA system

use distributed mechanism, where peers advertise services to be discovered by other peers.

Service Interfaces and Message Protocols

Web services have gone through great trouble to define a standard way of describing a service

through the Web Services Definition Language (WSDL). It provides a method of describing an

interface via XML descriptors. In addition, Web services utilize SOAP as a standard way for the

consumer to send a message to the provider facilitating a remote method invocation in an object

oriented fashion. The initial JXTA implementation used formats similar to the Web services

approach, but slightly different. The JXTA team is now going back and making adjustments to

the core platform to make peers interoperate with Web services using protocols like SOAP and

WSDL [16].

3.3. Combining Web Services and JXTA

We have compared Web Services and JXTA in detail with architectural and conceptual view, and

with advantages and disadvantages. Now we are going to combine these systems to work

together.

Theoretically, we can store JXTA services in centralized UDDI registries. However, since our

main purpose in this study is to distribute services in more effective and reliable way, we are

going to distribute services in a decentralized manner to provide good fault resistance and

network resilience.

Advertisements

In JXTA system decentralization is achieved by using advertisements. Advertisements are

language-neutral metadata structures resource descriptors represented as XML documents. A peer

which wants to advertise itself or its services, announces an advertisement on the JXTA network.

The JXTA protocols use advertisements to describe and publish the existence of a peer resource.

Peers discover resources by searching for their corresponding advertisements, and may cache any

discovered advertisements locally. Every advertisement exists with a lifetime that specifies the

availability of that resource. Lifetimes gives us the opportunity to control out of date resources

without need of any centralized control mechanism. To extend the life time of an advertisement,

we can republish it.

JXTA Modules

 42

We need to distribute Web Services as JXTA advertisement, so that it can be sensed as a JXTA

services among peers. JXTA modules are an abstraction used to represent any piece of "code"

used to implement a behavior in the JXTA world. The module abstraction does not specify what

this "code" is: it can be a Java class, a Java jar, a dynamic library DLL, a set of XML messages,

or a script. Modules provide a generic abstraction to allow peers to describe and instantiate any

type of implementation of a behavior. The JXTA platform uses module advertisements to

describe where to find the services and implementation, in addition it describes itself. The

module abstraction includes a module class, module specification, and module implementation:

• The module class is primarily used to advertise the existence of a behavior. The class

definition represents an expected behavior and an expected binding to support the module.

The module class is identified by ModuleClassID.

• The module specification is primarily used to access a module. It contains all the

information necessary to access or invoke the module. There can be more then one

module specifications for a given module class. Each module specification is identified by

a unique ID, the ModuleSpecID. In addition module specification implies network

compatibility.

• The module implementation is the implementation of a given specification. There might

be more then one implementation for a given specification. Module implementation is

defined by a unique ID, ModuleSpecID.

WSDL can be represented with these there modules, and advertisement of these modules

represents UDDI behavior.

Figure 17 : Comparison of JXTA Modules and Web Services. The JXTA module together

represent a combination of UDDI in the sense of publishing and finding service description

and WSDL in the sense of defining transport binding to the service.

Module class (Advertise the

existence of a service)

Module Specification

(Advertise how to access a

Service (API, messages))

Module Implementation

(Advertise a platform-

Specific implementation)

UDDI (Universal Description,

Discovery, and Integration)

WSDL (Web Services

Description Language)

JXTA Modules Web Services

Module class (Advertise the

existence of a service)

Module Specification

(Advertise how to access a

Service (API, messages))

Module Implementation

(Advertise a platform-

Specific implementation)

UDDI (Universal Description,

Discovery, and Integration)

WSDL (Web Services

Description Language)

JXTA Modules Web Services

 43

3.3.1. JXTA-SOAP Model [45]

JXTA SOAP project, which was started by Kevin Burton, is now managed by Michele Amoretti

of Distributed Systems Group (University of Parma, Italy). JXTA-SOAP is a package which

allows SOAP communication over the JXTA Peer-to-Peer network. The main purpose of this

project is to send Web Service messages through JXTA pipes. Instead of making IP invocation to

access Web Service, JXTA peer ID is used to push Web Service message into JXTA network.

Initially we aimed to adapt this project to mobile peers however due to its complexity we get the

ideology and developed third scenario to invoke Web Services through JXTA pipe network.

JXTA-SOAP is a project which allows SOAP communication over the JXTA Peer-to-Peer

network. Where JXTA network is acting like a bridge for SOAP messages. A peer is connected

to the JXTA network through a pipe service. The pipes are capable of receiving any type of data

payload. Web Services use SOAP over HTTP messages, this means the XML payload of SOAP

requests and responses travel over HTTP. The JXTA pipe has the ability of receiving and sending

any type of data payload. Hence we can use pipes to carry out SOAP XML payload [17].

Figure 18 : The JXTA SOAP architecture [21].

This model as illustrated in Figure 18 has two modules; JXTA peer implementation module and

SOAP client implementation module. The JXTA peer implementation module provides all JXTA

functionality. The peer does not need a static IP address to expose its Web Services outside the

network, this job handled by JXTA peer implementation module as JXTA provides unique peer

ID.

The service provider that wants to advertise a Web Service over the JXTA network will request

the JXTA-SOAP application to advertise it. The application receives information (like name and

description of the Web Service) from the service provider. Then the application generates an

advertisement with the provided data, and publishes it to all known JXTA rendezvous points.

JXTA-SOAP can create an input pipe for listening service request from other peers.

When a peer wants to use a service which is unavailable in the mobile unit, but available at the

Web Service provider’s server, that server acts like a remoter SOAP server. This server can be

any SOAP server over the internet. Remote SOAP server can be invoked by JXTA-SOAP

JXTA SOAP

Application

JXTA

Peer

impl.

module

SOAP

Client implementation

module

PIPE

Local SOAP

server

Remote

SOAP

Server JXTA

network

peer

edge

peer

Rdvz

peer

 44

application through regular client server interaction. JXTA peers have no idea whether the

exposed Web Service is located in the remote or local server.

Both the provider and the client peers must be instances of the JXTA-SAOP application in order

to make the Web Service invocation over the JXTA network possible. In addition to this, the

client must know the name of the Web Service in order to invoke the service. The name of the

service can be retrieved from JXTA advertisements [21].

Further information about this model can be found on the name SOAP-over-P2P Model from

Java P2P Unleashed homepage [18].

3.3.2. Proxy Model

In this model the main purpose is to make JXTA search for the Web Services where a Web

Service is defined like a normal JXTA service as we described above in JXTA Modules section.

Peers with common interests generate peer groups. A peer can be a member of any peer group, as

much as it wants. In the Proxy Model, the user is unaware of if the particular service is a Web

Service or a JXTA group service. As a result this means that the Web Service could be

advertised, discovered, located, and invoked similar to any other JXTA Service. A JXTA Group

Service belong to whole peer group members, it does not belong to a single peer [17,21].

Figure 19 : Proxy Model architecture [21]

Creating the service implementations for the network service involves the creation of the

following components that are implemented as part of the service:

• An Interface to the Web service.

• A Local and Remote implementation of the interface.

• A Service Configuration file containing the properties of the service.

• A Factory that handle the client request in accessing the Web service depending upon the

service configuration.

• A Runtime WSDL Compiler used to generate the dynamic proxies that delegate the client

request to access the Web service.

 45

The Proxy Model, as shown in figure 19, initially service interface dynamically generates classes

(local and proxy) from WSDL definition file. So that it will define the Web Service methods. The

proxy class provides Web Services to invoke remotely from the JXTA network. The generated

interface and the associated files are used by the proxy class implementation to access the Web

service. WSDL compiler translates the WSDL definition of Web Service’s interface into java

source files. The generated classes becomes the JXTA service, which means this services could

be advertised as normal JXTA services inside the network. By this way JXTA client would not

require prior knowledge about Web Service and its interface. The proxy class uses SOAP to

communicate with the Web Service, however the client does not need to understand the SOAP.

The factory would make a decision to load the Web Service interface, whether to use a local class

(if any exists) or proxy class, while a JXTA peer makes a request for a service. The chosen class

should be defined at the service description. This service description specifies how a remote Web

Service should be implemented as a JXTA service.

3.3.3. Port Forwarding Model

Figure 20 : Port Forwarding Architecture

This architecture aims to find a solution to combine Web Service with JXTA network. Moreover

this architecture intends to eliminate IP during invocation of Web Services. This could be done

via using JXTA ID instead of IP. Main purpose of this architecture is to carry Web Service

messages through JXTA pipes.

When we look at mobile host mechanism we can see that it can only accept SOAP messages

from port 80. In fact we can modify JXTA access port so that messages can go directly to port 80

however this will not solve our problem as mobile host can only accept SOAP over HTTP format

Web
Services

JXTA JXME PIPE

Mobile Host Mobile Client

Port 80

Port 9700

Port 80

Port 9700

 46

messages. This means mobile Web Service provider can only parse SOAP over HTTP message

format. As a matter of fact we can modify mobile host so that it can also accept JXTA message

format. However this would spoil the main purpose of mobile host, where mobile host not only

serves Web Service clients from JXTA network but also Web Service providers and clients from

mobile or non mobile networks like Internet.

As a solution to this problem we are trying to define an architecture. Messages among JXTA

peers will travel over normal JXTA ports and through JXTA pipes. JXTA pipe messages will

convert to SOAP over HTTP format. In addition a message which arrives to JXTA port will be

forwarded to http port 80 and the response will be sent vice versa. These operations are

performed at mobile phones using applications which can read JXTA messages.

3.4. Searching Web Services and client application in JXTA

Figure 21 : Web Services and Client Applications structure.

Generally the users in the mobile Operator network attracted in client applications. A client

application can be generated from WSDL. This process is explained in implementation section in

more detail. A client application might use one or more Web Services at the backend and can be

provided as an installable application. The advertisements of these applications are represented as

a combination of WSDL and MCS (Module Class Service) which are advertised at specific peer

group. Advertising WSDL files in JXTA network can be done by applying Proxy-Model solution

as we described above.

Searching Web Services in JXTA is an important issue. Searching is needed at every aspect of

this project. Now we are going to explain each step separately.

Client application, which initially establish connection to JXTA network. This tiny application

provides user to search Web Services which are represented as Module Class Advertisement

(MCA) and Module Specification Advertisement (MSA) at JXTA network, can be searched by

name and description parameters. As we are talking about huge numbers of Web Services these

parameters might not sufficient to find out specific search. Moreover we would like to extend

these search criteria at WSDL level. Which means search parameters would not restricted by

MCA and MSA, it will extend by looking up to WSDL tags. This detailed search mechanism

Web Services

Directory

Location GPS

Stock

Hello World

Currency

Picture

Weather

Echo

Application 1

Application 2

Installable Client Applications

Web Services

Directory

Location GPS

Stock

Hello World

Currency

Picture

Weather

Echo

Application 1

Application 2

Installable Client Applications

 47

might not be done at edge peer (i.e. smart phone), so we shifted this search mechanism to a

standalone middleware, this middleware will get request from resource restricted device and

response found search results. Detailed search algorithm works as below.

Each web service has an associated service description (WSDL) that describes its abstract

interface and the concrete implementation functionality. The service description will be parsed

for all major content elements like the type definitions, elements, operations etc. These elements

will be modeled on a tree. The middleware starts parsing from the implementation level (service,

port, binding) of a WSDL and goes up to the interface level (portType, message, operation).

These results are used for analysis, and find relevant WSDL files. These analysis processes will

be done as above algorithm. Now we are going to explain the core algorithm, however on

implementation section we are going to examine different solution for this algorithm, for instance

Lucene search algorithm.

The tf–idf weight (term frequency–inverse document frequency) is a weight often used in

information retrieval and text mining. Each word is assigned a weight, it reflects the importance

of a word within the document. This value is calculated based on its frequency and its

distribution across a collection of documents. The idea behind IDF (Inverse Document

Frequency)[29] weighting is that people usually express their opinion by using frequently used

words. The similarity of two documents is calculated based on TF-IDF [23] and the cosine

similarity between the angles of two vectors which represent the documents. This value is then

normalized 0 through 1, and is used to rank the search results.

After the pre-processing step, a description is split up in n-grams, instead of words like in other

information retrieval systems. The experiment at UDDI Explorer [22] shows that, the tri(3)-gram,

and quad(4)-gram based systems have shown to return better results than the word-based tokens

system [22].

 48

3.5. Putting All Together

Figure 22 : General Architecture of Mobile Hosts in JXTA network [43].

Figure 22 shows the final architecture by combining mobile Web Services and the JXTA

network. We assume that the JXTA network is established in the mobile operator network with a

node in mobile network like BTS (Base Transceiver Station) acting as a JXTA super peer (relay

and rendezvous peers) however this is only an approach. The BTS is connected to other BTS and

JXTA networks, it is like a middleware, provides connectivity to resource restricted devices to

connect JXTA network. We are using BTS and this does not mean this project depends purely on

that network operator. We are proposing this because we think it is feasible to use BTS as a

gateway to serve mobile peers to access outside JXTA network. In fact JXME peers can connect

directly to outside relay peers, however our aim to keep them inside the operator network so that

it would act like a local area network. This will provide lots of advantage like performance.

JXME edge peers physically connected to JXTA relay peers which we assume it as BTS. Relay

peers are special peers used to route messages for other peers within the physical network, more

information available at JXTA section. 2.2.4.

Let us examine how operations are performed at above architecture. Mobile hosts and client

mobiles join the JXTA/ME network. Mobile Host first creates Web Services then advertises

WSDL files using JXTA modules. These module services are advertised as MCA and MSA at

JXTA/ME network in specific peer groups like the Web Services group to keep the WSDL

advertisement in same group. JXTA services are maintained by the BTS as they act as

 49

rendezvous and relay peers. Once the mobile client application is started client peers joins JXME

network. The application shows a screen with search field on it, the user types a few words and

starts the search. The search operation is done at JXTA relay/proxy this will be analyzed in more

details at implementation section. When the user gets the result of the searched item in a list, a

Web service is selected from the list, and search is repeated. This time the JXTA relay/proxy

sends a response which contains a link URL where the Web service jar file is located in. The user

then downloads and establishes the jar file for invoking Web service.

 50

 51

4. Mobile WS-Discovery Implementation

This section goes through explaining the thesis related development tools, platforms and the

implementation detail of Web Services discovery with explaining the achieved steps to combine

Web Services together with JXTA/ME network.

4.1. Development Tools/Platforms

The development tools which are used in this thesis work uses Java Platform, Micro Edition

(J2ME) where a detailed explanation available at section (2.3). This subsection explains the

NetBeans platform with Wireless Toolkit, Mobility pack and Profiler, and Eclipse platform

where used to extend functionality of JXTA/ME network.

4.1.1. NetBeans

NetBeans [40] refers to both a platform for the development of Java desktop applications, and an

integrated development environment (IDE) developed using the NetBeans Platform. The

NetBeans Platform consisting from modular software components called module, where it allows

developers to develop applications using there modules. A module is a Java library file that

contains Java classes created to interact with the NetBeans Open APIs and a manifest file that

identifies it as a module. Modular development provides flexibility like allowing applications to

be extended by adding new modules. Since modules can be developed separately and

independently, applications based on the NetBeans platform can be easily and powerfully

enlarged by third party developers.

The NetBeans IDE (integrated development environment) is an open-source compiler for rapid

development of all Java application types like J2SE, web and especially mobile applications

where it is used in this project to develop mobile applications for JXME peers. NetBeans is

written entirely in Java using the NetBeans Platform. Along with other features are an Ant-based

project system, version control and refactoring.

4.1.1.1. NetBeans Mobility Pack [41]

The NetBeans Mobility Pack is a development tool for implementing applications that run on

mobile phones. Mobility Pack can be used to write, test, and debug applications for the Java

Micro Edition platform (Java ME platform) technology-enabled mobile devices. It integrates

support for the Mobile Information Device Profile (MIDP) 2.0, the Connected Limited Device

Configuration (CLDC) 1.1. One can easily integrate third-party emulators like WTK (Wireless

Toolkit) for a robust testing environment.

 52

Figure 23 : NetBeans IDE with mobility pack Visual MIDlet screen.

4.1.1.2. NetBeans Profiler [42]

The NetBeans Profiler is a project to provide a full-featured profiling functionality for the

NetBeans IDE. Profiler helps to find memory leaks and optimize speed. The profiler is developed

from JFluid which it was Sun Laboratories research project. That research exposed specific

techniques that can be used to lower the overhead of profiling a Java application.

While the size and complexity of Java applications is raise, keeping applications performance at a

required level becomes increasingly difficult. Hence optimizing the applications becomes

increasingly important. JFluid technology which is using dynamic byte code instrumentation and

additional algorithms, suits the goal of the profiler perfectly. The NetBeans Profiler is able to

obtain runtime information on applications that are too large or complex for other profilers.

4.1.1.3. Sun Java Wireless Toolkit

In fact we don’t use Wireless Toolkit directly in our project. NetBeans mobility pack includes it

by default for testing environment, we can use other toolkits for testing our MIDlets however

WTK is one of the free reliable toolkit on the market.

The Sun Java Wireless Toolkit [38] is a group of tools for creating, compiling and deploying Java

applications that run on Java Technology for the Wireless Industry specification compliant

devices. WTK provides user- friendly development environment for programmers to design and

 53

improve applications on J2ME devices with the help of its build-in tools, utilities and a device

emulator for exact offline simulation of the J2ME device to test MIDP applications. The toolkit

supports both versions of CLDC (CLDC1.0 and CLDC1.1) and MIDP (MIDP1.0 and MIDP2.0).

The other APIs which the toolkit supports are Wireless Messaging API, Mobile Media API, and

PDA Optional Packages for the J2ME Platform which consists of file access mechanism,

Bluetooth and 3D APIs.

4.1.2. Eclipse

Eclipse [39] is an open source community, whose projects are focused on building an extensible

development platform, runtimes and application frameworks for building, deploying and

managing software across the entire software lifecycle.

JXTA is large and vide project. Handling, modifying, compiling, deploying and testing such

projects needs a capable platform. We made some modification on relay (proxy) peer; detailed

modification will be explained in next sections however before that let see what Eclipse is

capable of.

The Eclipse SDK contains the Eclipse Java Development Tools. SDK provides an IDE with a

built-in Java compiler and a full form of the Java source files. This lets developper for advanced

refactoring techniques and code analysis. The IDE also provides out the use of a workspace, in

this situation a set of metadata over a flat file space allowing external file modifications as long

as the corresponding workspace "resource" is refreshed afterwards.

Plugins

Eclipse works with plug-ins in turn to provide all of its functionality on top of the rich client

platform, with respect to some other IDEs where functionality is usually hard coded. This plugin

mechanism is a small piece of software construction. Moreover, the plugin framework of Eclipse

works with typesetting languages like LaTeX, networking applications such as telnet and

database management systems in order to allow Eclipse to be extended using other programming

languages such as C and Python.

On the other hand Eclipse can manage mobile applications such as including WTK compiler

plugin, however still it is not developed as much as NetBeans. The plugin structural design

supports writing any preferred expansion to the environment, such as for configuration

management. Java and CVS maintain and support is existed in the Eclipse SDK. It does not have

to be used exclusively to support other programming languages.

Widgets

Standard widget toolkit SWT implements for Java environment of Eclipse's widgets, despite of

major Java applications, which use the Java standard Abstract Windowing Toolkit (AWT) or

Swing. Eclipse's user interface UI also provides a midway GUI layer called JFace, which makes

it simpler to construct applications based on SWT.

 54

4.2. Getting started with JXTA Shell

The JXTA Shell is a command line interface to manage, configure, maintain and monitor the

JXTA platform. JXTA Shell is built on top of JXTA Platform. JXTA Shell can be configured as a

normal peer, Relay peer, Rendezvous peer or JXME proxy peer depending on the requirement. In

this thesis work it is configured as relay, rendezvous and JXME proxy peer, so that mobile peers

can connect to the JXTA network.

Figure 24 : JXTA Shell configuration screen.

Running and configuring the Shell
You can find and download latest Shell from JXTA web site. For Microsoft Windows users, the

JXTA Shell can be run from the Start Menu at: Start->Program Files->JXTA->JXTA Shell. The

first time the JXTA Shell is run, a configuration screen will appear. This screen allows you to set

up the software to operate with your network. Most users will only have to enter a nickname and

a password in the field and leave the rest of the settings at their default values. Additional settings

may be adjusted for users behind firewalls or those wishing to behave as a Relay, Rendezvous or

JXME proxy peer.

Once you have completed configuration of the JXTA Shell, it will respond with a welcome

message and prompt :

 55

JXTA>

Some basic commands for JXTA Shell:

The peers command is used to discover other peers.

The groups command is used to discover peer groups.

The join command is used to join a peer group.

The search command is used to search peers, pipes, groups and advertisements.

The cat command is used to print content of the advertisements.

The whoami command is used to find peer information like ID, IP, port etc.

4.3. WS-Discovery Application Development

This section is going to explain all the implementation of this thesis work. Mainly this section

contains of three subsections, those are;

-Service provider is an application where it reads WSDL file and pipe information, and attaches

it to a JXTA module class and advertises it at JXTA network.

-JXTA proxy/relay middleware where advanced search and deployment of WSDL files managed.

-JXME Mobile where a mobile peer accessed to JXTA advertisements by advanced search and

invoked Web Service through JXTA pipes.

4.3.1. Service Provider Application

This section shows how to integrate or combine a Web Service Definition (WSDL) and JXTA

module. As we defined modules in section (3.3. Combining Web Services and JXTA), the JXTA

modules consists of three abstract classes, in this section we will examine how WSDL is plugged

into Module Specification Advertisement.

JXTA Network

Publish MSA into JXTA

Service Provider Application

Module Class Adv

Module Specification Adv

Name

Description

WSDL

PIPE Adv.

MSA+WS

MSA+WS
MSA+WS

WSDL file

PIPE adv.file

attach

attach

JXTA Network

Publish MSA into JXTA

Service Provider Application

Module Class Adv

Module Specification Adv

Name

Description

WSDL

PIPE Adv.

MSA+WS

MSA+WS
MSA+WS

WSDL file

PIPE adv.file

attach

attach

 56

Figure 25 : Service Provider Application

We might thing that why we don’t do this implementation on Mobile Web Service Provider side.

As we discussed before mobile peers are not capable of handling, creating and publishing JXTA

Module Classes. Moreover developers are concerned in advertising WSDL files into JXTA

network, this section provides a detailed information on how to do this.

The service provider application advertises the JXTA service with WSDL and Pipe attachment

and starts the service as seen in Figure 25. The service associated module spec and class

advertisements are published in the NetPeerGroup, this also can be a user defined specific peer

group so that the Web service discovery advertisements would be in the same cluster. Clients can

discover the module advertisements and create output pipes to connect to the Web Service

provider.

In addition to WSDL file as it seen in Figure 25 we are attaching Pipe advertisement, in fact it is

not required to attach pipe in order to make WSDL search at JXTA network. Pipe advertisement

is required to define the input pipe of the mobile Web Service provider. The purpose of that Web

Service invocation can pass messages through JXTA pipes; hence one of the main goals of this

thesis work could be done by using JXTA peer or pipe ID instead of IP. This will be explained in

section JXME Mobile Application in more detail.

This application defines a single class, it is called ServiceProvider:

main()

This method creates a new ServiceProvider object, calls startJxta() to instantiate the

JXTAplatform and create the default net peer group, calls startServer() to create and publish the

service.

startJxta()

This method instantiates the JXTA platform and creates the default net peer group :

group = PeerGroupFactory.newNetPeerGroup();

Then it retrieves the discovery and pipe services: The discovery service is used later when we

publish our service advertisements.

discoSvc = group.getDiscoveryService();

startServer()

This method creates and publishes the service advertisements. It starts by creating a module class

advertisement, which is used to simply advertise the existence of the service. The

AdvertisementFactory.newAdvertisement() method is used to create a new advertisement :

ModuleClassAdvertisement mcadv = (ModuleClassAdvertisement)

AdvertisementFactory.newAdvertisement(

ModuleClassAdvertisement.getAdvertisementType());

 57

It is passed one argument: the type of advertisement we want to construct. After we create our

module class advertisement, we initialize it:

mcadv.setName("JXTA-WSDL Service Provider");

mcadv.setDescription("Jxta Module WSDL and PIPE service provider");

ModuleClassID mcID = IDFactory.newModuleClassID();

mcadv.setModuleClassID(mcID);

The name and description can be any string. A suggested naming convention is to choose a name

that starts with "JXTA-WSDL" to indicate this is a JXTA module with WSDL attachment. Each

module class has a unique ID, which is generated by calling the IDFactory.newModuleClassID()

method.

Now that the module class advertisement is created and initialized, it is published in the local

cache and propagated to our rendezvous peer:

discoSvc.publish(mcadv);

discoSvc.remotePublish(mcadv);

Next, we create the module spec advertisement associated with the service. This advertisement

contains all the information necessary for a client to contact the service. For instance, it contains

a pipe advertisement to be used to contact the Web service provider and a WSDL file to make an

advanced search. At original JXTA the parameter element is defined and implemented, hence we

made some modifications at JXTA source code on ModuleSpecAdvertisement.java file, so that

the param field can be used at MSA. Moreover at proxy requestor.java the return types are

defined. Similar to creating the module class advertisement,

AdvertisementFactory.newAdvertisement() is used to create a new module spec advertisement :

ModuleSpecAdvertisement mdadv = (ModuleSpecAdvertisement)

AdvertisementFactory.newAdvertisement(

ModuleSpecAdvertisement.getAdvertisementType());

Here a new param type defined as StructuredTextDocument, this types purpose is to carry WSDL

file in its parameter.

 StructuredTextDocument param = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(new

MimeMediaType("text/xml"), "Parm");

An Element is created in the param definition with a tag WSDL and string value of the WSDL

file where in this example it is weather.wsdl, later on the created element is attached to the param

type.

Element wsdlElem = param.createElement("WSDL",readFile64("Weather.wsdl"));

 param.appendChild(wsdlElem);

After the advertisement is created, we initialize the name, description, version, creator, ID, URI

and param:

mdadv.setName(“weather”);

mdadv.setVersion("Version 1.0");

mdadv.setCreator("weather.com");

 58

mdadv.setModuleSpecID(IDFactory.newModuleSpecID(mcID));

mdadv.setSpecURI("http://www. weather.org/Ex1")

mdadv.setParam(param);

We use IDFactory.newModuleSpecID() to create the ID for our module spec advertisement. This

method takes one argument, which is the ID of the associated module class advertisement

(created above in line)

We now create a new pipe advertisement for our service provider with service provider ID. The

mobile client must use the same advertisement to talk to the service provider. When the mobile

client discovers the module spec advertisement, it will extract the pipe advertisement to connect

to service provider’s pipe and create its pipe. We read the pipe advertisement from a default

configuration file where mobile service providers pipe ID is located in it.

FileInputStream is = new FileInputStream(FILENAME);

pipeadv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(new MimeMediaType("text/xml"), is);

is.close();

Figure 26 : Attaching Mobile Web Service Providers ID as Pipe ID

On the mobile service provider side we create pipe using peer ID of the mobile peer Figure 266,

so that pipe ID of the mobile host will be unique and static. Normally pipe ID is dynamic it

generates a new ID on each creation, due to this condition we use peer ID as a pipe ID.

After we successfully create our pipe advertisement, we add it to the module spec advertisement:

mdadv.setPipeAdvertisement(pipeadv);

Now, we have initialized everything we need in our module spec advertisement. We print the

complete module spec advertisement as a plain text document , and then we publish it to our local

cache and propagate it to our rendezvous peer :

discoSvc.publish(mdadv);

discoSvc.remotePublish(mdadv);

WSDL file

PIPE adv.file

Service Provider Application

Module Class Adv

Module Specification Adv

Name

Description

WSDL

PIPE Adv.

WS

Mobile Web Service Provider

Create.PIPE(MobileID)

Attach pipe ID

WSDL file

PIPE adv.file

Service Provider Application

Module Class Adv

Module Specification Adv

Name

Description

WSDL

PIPE Adv.

WSWS

Mobile Web Service Provider

Create.PIPE(MobileID)

Attach pipe ID

 59

4.3.2. JXTA Proxy/Relay

The HTTP transport has been used in the implementation of JXTA for J2ME (JXME), a compact

Java implementation of JXTA intended for devices equipped with the J2ME virtual machine.

JXME acts as a HTTP client (using the HTTP client facilities of J2ME) and connects to a

standard JXTA peer (voluntarily configured as a JXTA proxy/relay), exchanging messages via

the HTTP request/response mechanism. The relay authors and forwards all JXTA messages on

behalf of the device, and stores all messages intended for the device. In essence, the relay

provides Jxta-enabling services to the device as well as acting as a message proxy.

JXTA relay operations like creating peers, peer groups, pipes, and searching peers, peer groups,

pipes and advertisements, all handled and managed by JXTA proxy service and requestor classes.

JXME messages are received by JXTA proxy service class and forwarded to requested

method/procedure.

Normally the current version of JXTA is supposed to support all above operations, however there

are some miss behaviors of some actions like searching module spec advertisements from JXME.

After digging the source code of JXTA we realized that we have to modify JXTA proxy service

and requestor classes so that search operation could be done for the JXME peers. Moreover to do

a deep search in JXTA we have to integrate and use Lucene technology (it is described at section

2.5. Introduction to Project Lucene) at JXTA proxy module.

4.3.2.1 Searching at JXTA proxy/relay

Figure 27 : Request for searching a resource and its response

The search request messages are received by JXTA proxy service to search for pipes, peers, peer

groups, and user specific advertisements. Figure 27 represents the search request and its

responses from the relay. The number of messages a search request might return depends on the

number of resources that successfully match the search criteria. This is represented by a dashed

response line in Figure 27.

The search request function is described at mobile peers as below, due to incompleteness of

JXTA proxy module this function is not working for advertisement (ADV) type, it is fixed at

JXTA proxy module as stated in next paragraphs.

PeerNetwork.search(PeerNetwrok.ADV,”Name”,advName,1);

At proxy service class the search request is handled in handleSearchRequest procedure. Initially a

new proxy type tag is defined as TYPE_MSA to recognize module spec advertisement search

 60

request. The main problem at proxy service module was not sending the entire requested response

message back to the mobile peer. It was sending only some specific type messages like peer, peer

groups and pipes. User specific Advertisements are defined at proxy service and send to the

requestor class.

discoveryType = DiscoveryService.ADV;

requestor.send(adv, RESPONSE_RESULT);

Requestor class receives messages from proxy service and checks the ADV weather it is a known

instance type to send it to mobile peer. Module Spec Advertisement is defined at requestor class

to recognize messages received from proxy service. ADV is checked if it is a type of module spec

advertisement:

else if (adv instanceof ModuleSpecAdvertisement) {

The messages attached in a structural way as a message element. TYPE_TAG, NAME_TAG,

DESC_TAG and ID_TAG returned to mobile peers as a response, description tag is defined at

ModuleSpecAdv.java as we mentioned it before.

message.addMessageElement(ProxyService.PROXYNS,

 new StringMessageElement(

 ProxyService.TYPE_TAG,

 ProxyService.TYPE_MSA, null));

Another problem was related with search attributes, by default PeerNetwork.search is capable of

searching by name, however we need to be able to search by module spec ID (MSID) and

description attributes. IdTag and descTag added to create index for search mechanism at

ModuleSpecAdv class. Moreover “paramTag” parameter tag where it carries WSDL file is also

needed to have indexed for deep searching inside WSDL tags, due to structure of param tag and

WSDL this aim is not succeed. However deep search mechanism is introduced to handle this

problem, this mechanism uses Lucene libraries, it is explained with details at next sections.

MSA+WS

JXTA/ME

NETWORK

Service Provider App

MSA

WS

MSA : Module Specification Advertisment

WS : Web Service

attach
Pu

sh
 / i

ns
ert

Relay

Peer

1.Connect

2.Search

Deep Search

Mechanism

Return a list of results

3.Search specific WS

Select a

WS from

the List

Mobile Client

Return Service URL

MSA+WS

MSA+WS

MSA+WS

JXTA/ME

NETWORK

Service Provider App

MSA

WS

MSA : Module Specification Advertisment

WS : Web Service

attach
Pu

sh
 / i

ns
ert

Relay

Peer

1.Connect

2.Search

Deep Search

Mechanism

Return a list of results

3.Search specific WS

Select a

WS from

the List

Mobile Client

Return Service URL

MSA+WS

MSA+WS

 61

Figure 28 : Searching mechanism at JXTA/ME Network.

Mobile client peer connects to JXTA/ME network Figure 288, JXTA proxy waits for a search

request message from mobile peer, as soon as request received by the proxy service, it process

the message and prepares the response messages to send back to mobile peer. Mobile peer gets a

list of results with name, description and MSID (module spec ID) attributes, the user selects one

of the Web service among the list, then the search is repeated with MSID attribute. Preparing

Web service for deployment is described in next sections.

4.3.2.2 Deep Search Mechanism at JXTA proxy/relay with Lucene

Figure 29 : Deep Search Mechanism Architecture

Once JXTA proxy service receives search request from peer with name or description tag, JXTA

does standard searching. Each found result is pushed into al Lucene document container, once

standard search finished Lucene makes a deep search using name, description and param

attributes where param attributes contain WSDL file. The search is listed with relevance and

inserted into container with ID of the results.

Deep Search Mechanism

MSA name search

result list

Lucene document

container

Push MSA list into Lucene

Result List to send

back to mobile client Sort document container

with relevance and

restrict results to a

specific number

Deep Search Mechanism

MSA name search

result list

Lucene document

container

Push MSA list into Lucene

Result List to send

back to mobile client Sort document container

with relevance and

restrict results to a

specific number

 62

Lucene can hold the container in storage disk of device or in random access memory RAM, we

preferred to use RAMDirectory.

RAMDirectory idx = new RAMDirectory();

A developed general-purpose analyzer is StandardAnalyser used in this project, as shown in the

following code:

 IndexWriter writer =

 new IndexWriter(idx, new StandardAnalyzer(), true);

Creating document has two field parameters first one is the title as an unindexed field where it is

MSID getModuleSpecID is used to grab the MSID from module spec advertisement and

converted to string. Second field is the content as an indexed field data information is kept on this

field. These data informations are extracted by getContentFromParam procedure, a combination

of name, description and WSDL parameters are returned as a result. All these three methods are

available at Appendix A.

writer.addDocument(createDocument(modSpecAdv.getModuleSpecID().toString(),

 getContentFromParam(modSpecAdv)));

Finally searching is done using the IndexSearcher and QueryParser classes. An Analyser object is

provided to the QueryParser, this is the same one used during the indexing, where indexing uses

the in-memory index. Search method pass values of created searcher and a value to be searched

in the container. The search() function returns a Lucene Hits object. This object contains a list of

Lucene Documents, in order of relevance. Once user have the Document object, user just retrieve

the fields, he wants, using the get() function. The retrieved document results of the search is

pushed into a container to be used later by requestor class where the result of container is

compared with original results and decided to send back to mobile peer.

 Searcher searcher = new IndexSearcher(idx);

 search(searcher, value);

 searcher.close();

When the proxy service receives search request from mobile peer it forwards the message to

handleSearchRequest method. When Lucene is introduced inside this method the search

operation does not work properly, the standard JXTA search mechanism works in a proper

sequence, once this sequence is disturbed the proxy service does not response to requestor class

with any result. Hence we made an algorithm without upsetting any working sequence. We do

search operation twice in proxy service, first search is normal JXTA search, and the second one is

the deep search mechanism which explained above. As a result of deep search mechanism we

have a container where the MSID results are kept on it. After search is done requestor class takes

the control and prepares the result to be sent back to mobile peer. The below code illustrates the

operation done in requestor send method. The results in the container (the results from deep

search mechanism) are compared with original results when they match, the results are allowed to

be send back to mobile peer.

 for (int i=0; i<ProxyService.vContainerMSID.size(); i++) {

 if (ProxyService.vContainerMSID.elementAt(i).equals(

 mSpecAdv.getModuleSpecID().toString()))

 sendMsgToMobile = true;

 }

 63

4.3.2.3 Deploying Web Service

As it described in Figure 3030 mobile peer have a list of Web Services displayed with name and

description. When the user selects a WS the mobile peer sends a search request to JXTA proxy

service with MSID attribute. This time the proxy service will not use deep search mechanism,

normal JXTA search is sufficient to find exact match.

Once the MSA found the WSDL file is extracted from MSA. This operation is done at

startMSAtoWSDL method where it takes an MSID parameter to find the service in JXTA

network. Then docToXML method is called with document parameter, where the document

parameter contains the WSDL param information. WSDL information is extracted to an XML

file to be used later on by WS compiler.

Figure 30 : Generating and compiling WSDL, and deploying it to a server.

After the XML file generated WSDeploy method is called with MSID parameter. WSDeploy

compiles the XML file to temporary classes. The temporary classes used to generate Jar file, the

jar file name is assigned from MSID to have uniqueness. Then the Jar file is deployed in an IIS or

Apache server. Finally a response message is sent back to mobile peer with the URL link. All

mentioned methods source code are available at Appendix A.

4.3.2.4 Sequence diagram of the Web Service Search

Service provider application advertises the JXTA service with WSDL and Pipe attachment (as

described in 4.3.1. Service Provider Application). Mobile client peer connects to a known JXTA

porxy/relay server (Figure 31). Once the peer joins to JXTA network, the client application can

search a Web service by providing a name tag. JXTA network sends the result of the query to

deep search mechanism (as described in 4.3.2.2 Deep Search Mechanism at JXTA proxy/relay

with Lucene). The result of deep search is compared with original results once they match they

send back to mobile peer. Mobile peer selects among the result list and redo the search with

Mobile Peer

Steps

JXTA

Relay/

Proxy

Search with MSID tag
1. WSDL extracted fromMSA

2. WSDL compiled

3. Jar file generated

Up
loa

d J
ar

file

FTP server

URL link for Jar file send

1. WSDL extracted fromMSA
Select a WS

Download Jar

Mobile Peer

Steps

JXTA

Relay/

Proxy

Search with MSID tag
1. WSDL extracted fromMSA

2. WSDL compiled

3. Jar file generated

Up
loa

d J
ar

file

FTP server

URL link for Jar file send

1. WSDL extracted fromMSA
Select a WS

Download Jar

 64

specific ID. JXTA proxy/relay server finds the results, compiles and generates the jar file. The

file is deployed to a known server to be accessed and download by client peer.

Figure 31 : Sequence diagram of the Web Service Search

4.3.3. JXME Mobile

All the implementations explained above is done at normal peer side, now resource restricted

devices implementations are going to be examined. There are two subsections at this section, first

one is the JXME client mobile application, and second one is invocation through JXME pipes

where port forwarding model used. Before go through subsections lets have a look at JXME API

structure to get better understanding of JXME capabilities and restrictions.

JXME API Structure

The JXTA mobile edition JXME uses JXTA relays to connect tiny mobile peers to the rest of the

JXTA network. The JXTA relays are also rendezvous JXTA peers that have full capabilities to

handle pipes, advertisements, peer group and user defined services. JXME mobile peers

communicate with JXTA relays through binary-over-HTTP connections using messages

conforming to the JXTA Binary Message format. We need a set of small JXTA APIs for mobile

devices to make JXTA networks available to mobile P2P users. The JXME project aims to

provide JXTA APIs for the CLDC and MIDP platforms. It can also be used in higher-end J2ME

profiles, such as CDC and Personal Profile. This project designed for CLDC and MIDP profiled

devices.

Comapre with initial results and send to client back

Sort found results with relevance

Push the results to a new container

Send result of search to Lucene container

JXTA/JXME

Start JXTA/JXME client software

Service Provider

Joined world peer group

Client

Advertise available services with MSA

Search for a WS with Name tag

Search for a WS with MSID tag

Select a WS from the result list

Find WS, compile it into jar, publish it into ftp,

send ftp url to mobile client

Open the URL, establish the jar

Comapre with initial results and send to client back

Sort found results with relevance

Push the results to a new container

Send result of search to Lucene container

JXTA/JXME

Start JXTA/JXME client software

Service Provider

Joined world peer group

Client

Advertise available services with MSA

Search for a WS with Name tag

Search for a WS with MSID tag

Select a WS from the result list

Find WS, compile it into jar, publish it into ftp,

send ftp url to mobile client

Open the URL, establish the jar

 65

Figure 32 : Classes in package net.jxta.j2me [44].

Let’s have a look at into the JXME package itself. The JXME implementation consists of three

main classes where all located in the net.jxta.j2me package:

Element symbolize an element inside a JXTA message. An element contains a name, a

namespace, a MIME type, and a binary array of data.

Message indicates a JXTA message consisting of several elements. Message provides methods to

access those elements.

PeerNetwork is the most useful class. It specifies the JXTA tasks that a mobile peer can perform

through the relay. There are several useful methods in the PeerNetwork class:

createInstance() is a factory method that returns an instance of PeerNetwork with a

specified peer name.

The connect() method connects to a relay at a specified HTTP URL. It returns a byte array

of persistent state information; this information should be passed through the connect()

method in all subsequent connections to the relay.

The create() method creates peers, groups, and pipes on the JXTA network through the

relay proxy.

The search() method searches for peers, groups, and pipes.

The poll() method polls the relay for messages addressed to this mobile peer. It can be

called iteratively in a server thread.

The listen() and close() methods open and close an input pipe, respectively.

The send() method sends a message to a specified pipe.

 66

4.3.3.1. JXME Client Mobile Application

Figure 33 : Flow design of JXME Client Application

When the user starts with client application, a screen appears to enter a known JXTA relay server

IP. Once the IP is recognized the mobile application requests a peer identifier from JXTA relay.

As soon as it receives identifier response then it requests for connection, relay peer response with

connection confirmation message. After a connection is established, a JXME peer can issue other

requests to the relay to carry out its operations.

Search form obtains information from user to be searched on JXTA relay peer. searchPeerAdv

method gets one parameter as a search string where it is advName. By using PeerNetwork search

method the request is passed to JXTA relay proxy service as described at section 4.3.2.

peerNetwork.search(PeerNetwork.ADV, "Name", advName , 100);

As mobile devices have not server capabilities to receive messages directly from JXTA relay, a

loop started to poll message from JXTA relay. A vector container is created to keep all the result

messages received from relay. At the same time the results are append to a list box for the user to

have a selection among them.

 do { msg = peerNetwork.poll(2000);

 v.addElement(new String(msg.getElement(5).getData()));

 wsResultList.append(new String(msg.getElement(3).getData())+

 " : "+new String(msg.getElement(4).getData()), null);

 } while (reciveMsg && loop>0);

The user selects one of the Web service from the list and proceeds. This process is the same as

above search process, only this time the search parameter will be module spec id. MSID is a

unique id where it identifies the web service at JXTA network. Generating WSDL file, compiling

and deploying are explained at section 4.3.2. Once the jar file is deployed at a known public

server, the URL of this file is sent to mobile peer. When the mobile user obtains the link for jar

file it can downloads and installs it.

 67

4.3.3.2. Invocation through Pipes (port forwarding model)

Web services are searched, found and established at mobile devices, now we need to invoke web

services. Standard web service invocation is done through IPs, however one of the main purpose

of this project was to use peer ID instead of IP. Port forwarding model is described at section

3.3.3 where this model is using JXME pipes to pass messages among peers. The design of this

model is explained before now we are going to examine how to implement this.

Figure 34 : A request for creating a pipe and its response

When we look from service provider (server) side of mobile application, the server creates a pipe

(see Figure 34). To receive incoming messages over the JXTA network it is required to create a

pipe. Other peers use the pipe you created to send messages back to you. At this project the pipe

is crated using peer ID, to make the pipe ID easy to find and unique. This pipe ID is attached to

module spec advertisement while the service provider application pushes the MSA service into

JXTA network.

peerNetwork.create (PeerNetwork.PIPE, pipeName, peerIDasPipeID

, PeerNetwork.UNICAST_PIPE);

On the other hand when we look from client side, the peer makes the search and retrieves back a

result message containing the service location address URL and pipe ID. The client peer creates a

pipe to response back to the message received from server. The Web service message is taken

from local http 80 port and combined with client peer pipe ID to send to the server. The client

peer ID is required by server to response back to client Web service invocation.

When we look from the big picture a server can be a client also, hence we will consider the

implementation in one side. The pipe application consists of three main methods the firs one is

already explained above:

1. Creating pipe with peer ID.

2. Listening to pipe.

3. Sending message over pipe.

 68

Figure 35 : The request and response sequence for listening pipe action.

For listen a pipe it is required to send a listen request message to the JXTA relay peer. The relay

peer starts listening messages for your. By making a loop it is possible to check the relay peer if

you have a message or not. This operation is done with poll function which it takes a time

variable.

 int messageID = peerNetwork.listen (pipeId);

 Message msg = peerNetwork.poll(5000);

JXTA relay peer does not forwards received messages to JXME peers immediately, instead it

stores the incoming messages. The JXME client contacts the relay (a mechanism called polling)

to receive its incoming messages. JXME client always check the relay peer if there is a message

for it.

Figure 36 : Request and response for sending a message over a pipe.

Send function is used to send a message through pipes, which it takes a pipe ID and message

element. The JXME messages are created with different element fields, each element indicates a

different behavior. By default there are many elements at each message. Additionally at thesis

work two elements created one is to carry Web service invocation message and the other to carry

clients pipe ID.

peerNetwork.send (pipeId, message);

When the mobile host receives the message it forwards it to local port 80 and prepares a WS

response message, then the mobile host uses the pipe ID (which was received from client with

incoming message) and sends the prepared message to the client mobile. The client mobile takes

the message and forwards it locally to port 80. Hence a full invocation process is done.

 69

5. Conclusion

This master thesis work is aimed to provide design and implementation for mobile Web service

discovery and invocation through P2P JXTA network. Web service use centralized search

mechanism which is called UDDI. This project is aimed to find a solution for discovering Web

services in a decentralized manner. Hence at initial stages of this project peer-to-peer

technologies are analyzed. After initial digging, JXTA peer-to-peer framework was found most

appropriate for the aim of this project, since one of the main goal of this project was to make a

WS invocation through JXTA pipes using peer ID without need of IP.

After initial study of JXTA and peer-to-peer technologies, we decided to combine JXTA and

Web Services to make mobile Web Service discovery more flexible and dynamic. Combining

these two technologies took quite effort and time, since those technologies never considered to be

combined for mobile environment. The initial implementation was attachment of Web service to

existing JXTA module framework and advertised as JXTA module service. The user is not aware

of whether the service JXTA or Web services. To discover WS, JXTA module search is used.

Moreover the search capability of JXTA module is extended by using Lucene [30] search

mechanism to provide more reliable and relevant results. After solving the WS discovery

problem, the invocation of Web service through JXTA pipes is implemented.

At design phase a few existing technique have investigated like SOAP-JXTA [45] and Proxy

Model [17]. These techniques gave us a lot of ideas however our domain was mobile devices

where those techniques never implemented on mobile devices. In addition there were too many

restrictions and limitations at mobile devices. On the other hand some technologies like JXME

was immature to handle the thesis aims.

Despite of those restrictions and limitations this thesis work successfully implemented and tested.

This thesis work shows how to achieve immature technologies, moreover it shows how to design

and implement invocation and discovery of WS at mobile and normal devices using JXTA

framework.

 70

 71

6. Future Work

As a future work, deep searching algorithm could be extend by studying more on Lucene [30]

technology. Lucene is a very large project and the searching technique where it is used at this

thesis work was the basic one. As the number of mobile users increases fast, the Lucene search

can be developed to serve mobile peers such that it will response back messages in a very quick

way. This could be done by keeping searched indexes in proxy/relay server. Moreover this search

mechanism can be extended by context awareness. The client user search request can be kept at a

middleware device, when the user makes a new request the kept information could be used to

provide better results to the user.

Web services are provided to JXTA network using service provider application. This method

may not be too practical, as for each WSDL file this application has to be used. There could be an

automation system that will publish these advertisements automatically. Moreover the pipe ID

which is taken from mobile host can be advertised without attaching it to module spec

advertisement.

Final future direction could be shifting all the operations done at JXTA proxy/relay to mobile

phone JXME. There is a proxy-less version of JXTA however at the moment it serves only for

CDC devices. As the resources like CPU power and storage capacity etc. of mobile phones

develop tremendously, a proxy independent mechanism can be developed to discover and

invocate Web services. As a staring point the mobile host [1, 27] can be used as it provides a

light HTTP server. In addition Konark [46] project may provide some idea to enhance this

design.

 72

List of Figures

Figure 1 : Web Services architecture [28]. ... 13

Figure 2 : Generation phase of peer-to-peer technologies [15]. ... 17

Figure 3 : Demonstrates the operating principle of Napster and centralized systems [15,20].

 ... 18

Figure 4 : Demonstrates the operating principle of Gnutella and Decentralized systems

[15,20]. .. 19

Figure 5 : Demonstrates the operating principle of JXTA [15]. .. 21

Figure 6 : Configurations and Profiles ... 23

Figure 7 : MIDP packages 76[35]. .. 24

Figure 8 : The MIDlet life cycle [37] ... 25

Figure 9 : JXTA Architecture [26]. .. 26

Figure 10 : JXTA Virtual Network [25]. .. 27

Figure 11 : JXTA Relay [24]. .. 29

Figure 12 : The JXTA protocols architecture. .. 31

Figure 13 : Lucene architecture [31] .. 33

Figure 14 : Basic architectural setup of Mobile Host [1]. ... 37

Figure 15 : Web Services Conceptual Architecture (by IBM) [16]. .. 39

Figure 16 : JXTA Architecture (by Sun) [16]. ... 40

Figure 17 : Comparison of JXTA Modules and Web Services. The JXTA module together

represent a combination of UDDI in the sense of publishing and finding service

description and WSDL in the sense of defining transport binding to the service.

 ... 42

Figure 18 : The JXTA SOAP architecture [21]. .. 43

Figure 19 : Proxy Model architecture [21] ... 44

Figure 20 : Port Forwarding Architecture .. 45

Figure 21 : Web Services and Client Applications structure. .. 46

Figure 22 : General Architecture of Mobile Hosts in JXTA network [43]. 48

Figure 23 : NetBeans IDE with mobility pack Visual MIDlet screen. 52

Figure 24 : JXTA Shell configuration screen. ... 54

 73

Figure 25 : Service Provider Application ... 56

Figure 26 : Attaching Mobile Web Service Providers ID as Pipe ID 58

Figure 27 : Request for searching a resource and its response .. 59

Figure 28 : Searching mechanism at JXTA/ME Network. ... 61

Figure 29 : Deep Search Mechanism Architecture ... 61

Figure 30 : Generating and compiling WSDL, and deploying it to a server. 63

Figure 31 : Sequence diagram of the Web Service Search ... 64

Figure 32 : Classes in package net.jxta.j2me [44]. .. 65

Figure 33 : Flow design of JXME Client Application ... 66

Figure 34 : A request for creating a pipe and its response ... 67

Figure 35 : The request and response sequence for listening pipe action. 68

Figure 36 : Request and response for sending a message over a pipe. 68

 74

List of Examples

Example 1 : Example of a Module Specification Advertisement. .. 28

 75

Appendix – Shell and Mobile Application images

JXTA proxy/relay shell screen displaying available advertisements.

JXTA proxy/relay shell screen displaying module spec advertisements content.

 76

Mobile application first image is the

configuration screen where IP and

port of the proxy/relay peer is entred.

Second image displays a box to enter

search creteria. Third image shows a

result list box where it is allowed to

navigate up/down to select a service.

 77

Literature

[1]. S. Srirama, M. Jarke, and W. Prinz. Mobile Web Service Provisioning. In Int. Conf. on

Internet and Web Applications and Services (ICIW06). IEEE Computer Society,

February 2006.

[2]. SOAP, Simple Object Access Protocol, version 1.1, http://www.w3.org/TR/SOAP

[3]. WSDL, Web Services Description Language, version 1.1, http://www.w3.org/TR/wsdl

[4]. UDDI, The Universal Description, Discovery and Integration, http://www.uddi.org/

[5]. JXTA.ORG. Web: Project JXTA Home. http://www.jxta.org/.

[6]. Web Services and JXTA: Companion Technologies

http://archive.devx.com/javasr/articles/ohearne/ohearne-1.asp

[7]. SYSTINET. WASP Product Suit. http://www.systinet.com/products/overview.

[8]. Connected Limited Device Configuration (CLDC); JSR 30, JSR 139

http://java.sun.com/products/cldc/

[9]. Clay Shirky: "What's P2P and What's Not."

http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html. 11/24/2000

[10]. ICQ.com - community, people search and messaging service! ww.icq.com/

[11]. Skype, Peer to peer voice service. www.skype.com/

[12]. Morpheus P2P file sharing application www.morpheus.com

[13]. Gnutella http://en.wikipedia.org/wiki/Gnutella

[14]. Napster http://en.wikipedia.org/wiki/Napster

[15]. Erkki Harjula1, Mika Ylianttila1, Jussi Ala-Kurikka1, Jukka Riekki2, Jaakko

Sauvola:”Plug-and-Play Application Platform Towards Mobile Peer-to-Peer “

www.mediateam.oulu.fi/publications/pdf/570.pdf

[16]. Jeff Schneider: Convergence of Peer and Web Services 07/20/2001

http://www.openp2p.com/pub/a/p2p/2001/07/20/convergence.html

[17]. Hajamohideen, Shafeer Huddain(March 2003): A model fro Web Service and Invocation

in JXTA. http://www.ti5.tu-harburg.de/publication/2003/Thesis/haja03/haja03.pdf

[18]. Java P2P Unleashed www.samspublishing.com/title/0672323990

[19]. JXTA v2.0 Protocols Specification

http://spec.jxta.org/nonav/v1.0/docbook/JXTAProtocols.html#id926357

[20]. BayTSP Corporation: Combating Online Software Piracy in an Era of Peer-to-Peer File

Sharing by http://www.baytsp.com/downloads/WhitePaperFinal.pdf

[21]. Backlund Norberg, Mia; Taaveniku, Terése: A Web Service Architecture in Mobile Ad

hoc Networks, http://epubl.ltu.se/1402-1617/2005/141/LTU-EX-05141-SE.pdf

[22]. UDDI Explorer http://www.codeproject.com/cs/webservices/UDDIExplorer.asp

[23]. http://en.wikipedia.org/wiki/Tf-idf

 78

[24]. Project JXTA for J2ME - Extending the Reach of Wireless With JXTA Technology,

www.jxta.org/project/www/docs/JXTA4J2ME.pdf

[25]. Bernard Traversat, Ahkil Arora, Mohamed Abdelaziz, Mike Duigou, Carl Haywood,

Jean-Christophe Hugly: Project JXTA 2.0 Super-Peer Virtual Network.

www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf

[26]. JXTA v2.3.x: Java Programmer’s Guide Apr 7, 2005

www.jxta.org/docs/JxtaProgGuide_v2.3.pdf

[27]. S. Srirama, “Concept, implementation and performance testing of a mobile Web Service

provider for Smart Phones”, Master Thesis, RWTH Aachen University, Jun. 2004

[28]. Web Services Architecture http://www.w3.org/TR/2002/WD-ws-arch-20021114/

[29]. Inverse Document Frequency http://www.soi.city.ac.uk/~ser/idf.html

[30]. Apache Lucene home page http://lucene.apache.org/

[31]. Lucene in Action (In Action series) by Erik Hatcher and Otis Gospodnetic.

[32]. Meet Lucene By Otis Gospodnetic and Erik Hatcher

http://www.developer.com/java/other/article.php/10936_3490471_1

[33]. Wikipedia the free encyclopedia http://en.wikipedia.org/

[34]. Lucene : a tutorial introduction to full-text indexing in Java.

http://www.jroller.com/page/wakaleo/?anchor=lucene_a_tutorial_introduction_to

[35]. Knudsen, Jonathan: Wireless Java
TM

: Developing with Java
TM

2, Micro Edtion, Apress,

2001.

[36]. de Jode, Martin: Programming Java 2 Micro Edition on Symbian OS, A Developer’s

Guide to MIDP 2.0, Apress, 2004

[37]. MIDlet Basics, https://www6.software.ibm.com/developerworks/education/wi-
kxml/section3.html (registration (currently free) required to access the site)

[38]. J2ME Wireless Toolkit User’s Guide,

http://java.sun.com/j2me/docs/wtk2.2/docs/UserGuide-html/

[39]. Eclipse is an open source community http://www.eclipse.org/

[40]. NetBeans Sun open-source platform http://www.netbeans.org/

[41]. NetBeans Mobility Pack http://www.netbeans.org/products/mobility/

[42]. NetBeans Profiler http://www.netbeans.org/products/profiler/

[43]. Srirama, S. (2006) ‘Publishing and Discovery of Mobile Web Services in Peer to Peer

Networks’, International Workshop on Mobile Services and Personalized Environments

(MSPE'06), November, Aachen, GI. pp. 99-112.

[44]. Michael Yuan Mobile P2P messaging, Part 2: Develop mobile extensions to generic P2P

networks http://www-128.ibm.com/developerworks/wireless/library/wi-p2pmsg2/ 01 Jan

2003

 79

[45]. JXTA-SOAP is a package which allows SOAP communication over the
JXTA Peer-to-Peer network. http://soap.jxta.org/

[46]. Sumi Helal, Nitin Desai, Varun Verma and Choonhwa Lee “Konark – A Service

Discovery and Delivery Protocol for Ad-Hoc Networks”

www.icta.ufl.edu/projects/publications/konark_wcnc2003.pdf

