
U N I V E R S I T Y O F T A R T U

Faculty of Mathematics and Computer Science

Institute of Computer Science

Distributed Systems Group

Information Technology

Mcaorptytai Vbacsdaer

A Framework for Verifying
Scalability and Performance of
Cloud Based Web Applications

Master thesis (30 ECTS)

Supervisor: Dr. Satish Narayana Srirama

Author: ... “.....” May 2012

Supervisor: .. “.....” May 2012

Head of the chair: “.....” 2012

TARTU 2012

Abstract

Network usage and bandwidth speeds have increased massively and vast ma-
jority of people are using Internet on daily bases. This has increased CPU
utilization on servers meaning that sites with large visits are using hundreds
of computers to accommodate increasing traffic rates to the services. Making
plans for hardware ordering to upgrade old servers or to add new servers is
not a straightforward process and has to be carefully considered. There is
a need to predict traffic rate for future usage. Buying too many servers can
mean revenue loss and buying too few servers can result in losing clients.
To overcome this problem, it is wise to consider moving services into virtual
cloud and make server provisioning as an automatic step. One of the popu-
lar cloud service providers, Amazon is giving possibility to use large amounts
of computing power for running servers in virtual environment with single
click. They are providing services to provision as many servers as needed
to run, depending how loaded the servers are and whatever we need to do,
to add new servers or to remove existing ones. This will eliminate problems
associated with ordering new hardware. Adding new servers is an automatic
process and will follow the demand, like adding more servers for peak hours
and removing unnecessary servers at night or when the traffic is low. Cus-
tomer pays only for the used resources on the cloud. This thesis focuses
on setting up a testbed for the cloud that will run web application, which
will be scaled horizontally (by replicating already running servers) and will
use the benchmark tool for stressing out the web application, by simulating
huge number of concurrent requests and proper load-balancing mechanisms.
This study gives us a proper picture how servers in the cloud are scaled and
whole process remains transparent for the end user, as it sees the web appli-
cation as one server. In conclusion, the framework is helpful in analyzing the
performance of cloud based applications, in several of our research activities.

Acknowledgements

This thesis would not be possible without the encouragement and super-
vision of Satish Narayana Srirama. I am grateful for his support. I would
also like to thank Marlon Dumas giving opportunity to work with Distribute
Systems Group, giving the resource and possibilities to work with private
and public cloud systems. Satish Narayana Srirama helped a lot for getting
started with cloud computing and running services in the cloud. It has been
great experience to work together. My special thanks goes to Michele Maz-
zucco for giving ideas about configuring servers in the cloud and assistance
for setting up different provisioning algorithms.

i

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Outline . 4

2 The State of Art 5
2.1 Cloudstone . 5
2.2 To move or not to move . 6
2.3 Wikibench . 8
2.4 Web server farm in the cloud 9
2.5 Services that support provisioning and auto scaling properties 9

3 Framework for Verifying Scalability and Performance 11
3.1 Problem statement . 13
3.2 Cloud Computing . 13

3.2.1 Cloud computing as a Service 14
3.3 SciCloud project . 16
3.4 Eucalyptus . 17

3.4.1 Eucalyptus architecture 17
3.5 Amazon Cloud . 21

3.5.1 Amazon EC2 and Auto Scaling 21
3.5.2 Amazon pricing . 22

3.6 MediaWiki architecture . 22
3.6.1 Memcached reducing load on database server 24
3.6.2 LAMP stack . 26
3.6.3 Operating system configuration 29

3.7 Study of load balancers . 30
3.7.1 Pen . 30
3.7.2 Nginx as reverse-proxy server 31
3.7.3 Comparison between nginx and pen 33

3.8 Configuration of the infrastructure 34

ii

3.8.1 Endpoints for SciCloud and Amazon 35
3.8.2 Setting up services and MediaWiki installation 35
3.8.3 Wikipedia article dumps 36

3.9 Framework scaling instances in the cloud 37
3.9.1 Calculating arrival rate 39
3.9.2 Removing servers from the cloud 39

3.10 Framework layout . 40
3.10.1 CloudController . 41
3.10.2 ServerStatus . 42
3.10.3 BenchMark . 44
3.10.4 Additional HTTP server 45
3.10.5 Distinguishing different servers by their role 45

4 Measuring Performance of The Cloud 48
4.1 Using performance measuring tools under Ubuntu 48

4.1.1 Apache tool AB . 48
4.1.2 Ubuntu sysstat package 49

4.2 Using third party tools . 50
4.2.1 RRD database . 52
4.2.2 Collectd . 52
4.2.3 Cacti . 53

4.3 Framework Performance Measuring Tools 56

5 Preliminary Experiments and Evaluation of The Framework 58
5.1 Importance of experiments and stress testing 59
5.2 Identifying most suitable configuration 59

5.2.1 Experiments with m1.small, m1.large and c1.medium

instances . 61
5.2.2 Experiments configuration 61
5.2.3 Measuring service time 62
5.2.4 Measuring maximum throughput 63
5.2.5 Summary of different instance types performance . . . 64
5.2.6 CPU cycle waiting behind Xen hypervisor 67
5.2.7 Measuring CPU utilization with ramp up 68
5.2.8 Determining concurrent connections 69

5.3 Experiment to establish limits of the service for current con-
figuration . 74
5.3.1 Deadlock triggered by MySQL 75
5.3.2 Fixing deadlock . 75
5.3.3 Network utilization . 76
5.3.4 CPU utilization . 76

iii

5.3.5 Replicating MySQL and memcached instance 77
5.3.6 Finding out network bandwidth upper limit 78

5.4 Validating difference between different availability zones in the
same region . 79

5.5 Conclusion of the configuration optimization 82
5.5.1 MediaWiki configuration and tuning 82
5.5.2 PHP caching . 84
5.5.3 MySQL tuning . 84

6 Policies and Validation of Scalability 86
6.1 Why is elasticity of the cloud important 86
6.2 Basic configuration for running the experiments 87
6.3 Traces used to test policies . 90
6.4 Utilization policies . 90

6.4.1 Auto Scale . 91
6.4.2 Auto Scale results . 93

6.5 Revenue based policies . 95
6.5.1 Algorithm for provisioning the servers 95
6.5.2 Arrival rate for the next hour 97
6.5.3 Optimal heuristics . 98
6.5.4 Optimal heuristics results 101

6.6 Summary and results . 103

7 Conclusions 105

8 Future Work 107
8.1 Benchmark Tool Updates . 107
8.2 Server Comparison . 108

Raamistik pilvel põhinevate veebirakenduste skaleeruvuse ja

jõudluse kontrollimiseks 109

Appendix 117

iv

List of Figures

3.1 A cluster-based web server configuration. 12
3.2 Layout of the Eucalyptus architecture, showing how the ser-

vices are connected with each other. Router enables access
from the outside world to connect with the cloud and running
instances [54]. 17

3.3 Flowchart showing how request and responses between differ-
ent servers are being transferred when the requested page is
already cached. Note that MediaWiki still makes request to
database to see, whatever the page exists and is not changed. . 23

3.4 Flowchart showing how request and responses between dif-
ferent servers are being transferred when the requested page
is not cached. There are several queries and calls to mem-
cached and MySQL server to compile the page. Once ready,
the parsed page is stored in the memcached. 24

3.5 Cumulative distribution of response times for c1.medium in-
stance with different caching policies. 26

3.6 Displaying experiment configuration in the cloud environment
and how the requests are going through. All the servers are
located in the cloud, for reducing network latency, they are
located in the same availability zone. 40

3.7 Showing interactions between cloud interface and virtual ma-
chine running on the cloud through CloudController application. 41

3.8 Common life cycle of instance running in the cloud and recon-
figured while the service change state [53]. 43

4.1 Standard output of iosatat command. 50
4.2 Standard output of sar using parameter to show memory usage. 50
4.3 Standard output of free to get information about physical

memory usage. 50
4.4 Standard output of sar using parameter to show CPU usage. 51

v

4.5 Standard output of ifconfig to gather network interface traf-
fic bandwidth. 51

4.6 Standard output of uptime to see information how long the
computer has been running and also get Linux load for 1, 5
and 15 minutes. 51

4.7 Standard output of ps with various options to gather how
many processes are working. Because command itself counts
as a single process, these results should be subtracted by 1. . . 51

4.8 Showing Linux load gathered with Cacti and drawn by Cacti
using RRDTool. 54

4.9 Fraction of the experiment running 10 servers, showing average
CPU usage for Apache server and benchmark response time.
For each 5 minutes, there is a spike, because cacti starts to
measure metrics of the server. 55

4.10 Showing spikes caused by Cacti, when collecting different per-
formance metrics from the server. 55

4.11 Modifying ServerStatus code and using JavaScript, it is possi-
ble to draw graph of the CPU usage that can be viewed when
opening browser on port 5555. 57

5.1 Instance m1.small, c1.medium and m1.large service time dis-
tribution. Left side shows service time cumulative distribution. 62

5.2 Instance m1.small response time and CPU usage for ramp
up test. In the case of this instance type server was able for
6 requests at maximum and then the service became unre-
sponsive. Only 40% of the CPU cycle was enabled for user.
Most of the CPU cycle, over 55%, was going to steal, meaning
that virtualization was dividing available CPU usage to other
instances on the same physical machine. 65

5.3 Instance c1.medium response time and CPU usage for ramp
up test. Server was able for 28 requests at maximum and at
the peak the average response time increased to 3 seconds and
server started to become oversaturated. 66

5.4 Instance m1.large response time and CPU usage for ramp
up test. Server was able for 18 requests at maximum and at
the peak the average response time increased to 5 seconds and
server was heavily overloaded. 66

5.5 Ramp up experiment using c1.medium instances with 5 Apache
servers showing CPU utilization for different servers, while
generating load between 1 request per second to 150 requests
per second. 69

vi

5.6 Ramp up experiment showing difference between two Fair con-
figuration (using 6 or 10 concurrent connections per Apache
server) and without Fair using c1.medium instances with 5
Apache servers. Left side graph shows CPU usage for Apache
servers and right side shows 1 minute load. 70

5.7 Ramp up experiment showing difference between two Fair con-
figurations (using 6 or 10 concurrent connections per Apache
server) and without Fair using c1.medium instances with 5
Apache servers. Left side graph shows average response times
for requests and right side shows how many jobs are being
processed by Apache servers. 71

5.8 Ramp up experiment showing difference between two Fair con-
figurations (using 6 or 10 concurrent connections per Apache
server) and without Fair using c1.medium instances with 5
Apache servers. This shows amount of successful requests go-
ing through the system. 72

5.9 Concurrent connections experiment using c1.medium with 10
Apache servers showing CPU utilization and servers through-
put. Service rate shows, how many requests one Apache server
is capable of serving. 73

5.10 Concurrent connections experiment using c1.medium with 10
Apache servers showing Apache servers 1 minute load and re-
sponse time. 73

5.11 Ramp up experiment with 20 c1.medium Apache servers and
generating load up to 550 requests per second, showing CPU
usage for different servers. Nginx used Fair module to dis-
tribute the traffic (used the least round-robin), therefore there
were large CPU usage difference between various Apache servers
at the beginning of the experiment. 77

5.12 How to implement two nginx load balancers to increase re-
dundancy and fault tolerance, and in the same time increas-
ing maximum throughput of the service. For MySQL, there
should be master-slave configuration, where updates and saves
are done to the master and slave is used for reading operations. 80

5.13 Comparisons when running MediaWiki infrastructure with XCache
enabled and without XCache on c1.medium Amazon instance.
These are response times with 30 second resolution. Both con-
figurations used memcached with filled cached. 85

vii

6.1 Left graph shows over provisioning, where the policy is running
more servers than needed. Right graph shows situations of
under provisioning, running fewer servers than needed. Graph
at the top shows how dynamically allocated servers can handle
traffic fluctuating in time. 88

6.2 Two week ClarkNet traffic trace with 1 minute intervals show-
ing arrivals per second. The red line defines section of the trace
used to generate the load for the service. This section has been
scaled up to 600 requests per second in the experiment. 90

6.3 Showing Amazon Auto Scale experiment configuration in the
cloud. Servers were kept in the same availability zone to reduce
the latency of requests. Autoscaling group has been created,
where Auto Scale algorithm can replicate servers when the
demand increases and terminate servers from the group, while
the demand decreases. 92

6.4 Running servers compared to arrival rate λ, CPU usage and
response times over 24 hours using Amazon Auto Scale policy. 94

6.5 Removing servers should be done before full hour, because
otherwise there is need to pay for the extra instance hour. . . 96

6.6 Adding servers is done at the full hour mark to make sure that
while the servers are added and needed to be removed, there
is no need to pay for the extra instance hour. 96

6.7 Revenue function values, when trying to find the optimal max-
imum for 300 requests per second and 600 requests per second
using erlang units to calculate the throughput. 101

6.8 Running servers compared to arrival rate λ, CPU usage and
response times over 24 hours using Optimal policy. 102

viii

Chapter 1

Introduction

Applications and services are moved to the cloud to provide elasticity and
custom configuration of the servers in a runtime. Cloud computing gives per-
fect platform to deploy scalable applications, that can be provisioned by the
incoming traffic rate or server utilization. This helps customers and service
owners to save money, but in the same time have an immense capacity of
computing power in his hands, that can be unleashed with clicks, commands
or make it as an automatic process.

Applications running in the cloud are flexible, scalable and fault tolerant,
if they are properly configured. Framework given by the cloud computing
service providers allows us to replicate the same servers already running in
the cloud. We can replace faulty servers by requesting new servers from the
cloud. There are two common ways to scale service in the cloud: horizon-
tally or vertically. Vertical scaling means that the servers are replaced with
more powerful machines while the demand increases (increasing CPU cores,
memory, network bandwidth or hard drive speed) or replaced with slower ma-
chines, if the demand decreases. Horizontal scaling means that new servers
are added along to the already running servers while the demand increases
or already running servers are terminated, if the demand decreases. Either
way, there is a need for the reasonable decision why to use one or another
scaling methods, also have to consider how easy or hard it is to configure
such changes. When requesting servers from the cloud pool, it takes some
time to become operational. With vertical scaling we have to ensure, that
closing one server and activating another server is smooth process, where no
delays or rejections occur. It is easier to scale horizontally as there are fewer
steps needed to be done when configuring the servers. For example, replac-
ing MySQL with faster machine should be transparent, none of the incoming
requests should fail. Using vertical scaling, it means in order to replace ex-

1

isting MySQL server, we have to run a new server, replicate its state and
data into new machine, terminate the old server and made configuration in
other servers, which use MySQL database and change the IP address with
new one.

Why is cloud computing becoming essential for running large applica-
tions? One key aspect is that virtual machines are easier to install than
their counterparts - physical servers. With physical servers, we need to make
an extra cost and decisions how these servers should be managed. Not to
mention extra cost on hardware, making disaster plan and having a solid
backup plan. Using virtual machines, everything is done by the data center
workers and customer has to only use command line or graphical interface to
manage servers in the cloud, without having to know network topology and
other problems related to installing physical servers. There is no need for
capacity planning as you can immediately request from the cloud new servers
without need to buy or order them thus waiting for the arrival. The speed
and capability to use large amount of CPU power is making cloud computing
prestigious and many web pages have already deployed in the cloud.

With virtual machines, we have two states, whatever it is running or it
does not. If something is wrong or the virtual machine has crashed, we can
easily replace it with a new machine just in a couple of minutes. Failure
with a physical machine means, that you have a box wasting the space and
not working. You need to find the cause of the problem and sometimes
it can be tricky and time consuming operations. There might be faulty
memory module or some of the components does not work any more as the
hardware constantly wears off and ageing. This means investments to new
hardware and making new configuration plans. If the hardware is not on-
site, ordering and waiting for the piece to arrive can take days. With virtual
cloud capabilities, this is taken care of other people and the system itself is
seen from the web as high fault tolerant system, where single failure cannot
cause service becoming unavailable.

Virtual computing allows us to produce virtual images with user’s appli-
cations on it, that are easy to be replicated and scale them as the demand
over the time for the service changes. This differs for physical machines,
where every machine operating system (OS) has to be installed separately
or use tools to duplicate first machine disk image to the other machines.
This procedure involves physical contact with the machine, also users has
to have knowledge about the topology of their network and configuration of
the system. Virtualization adds another abstraction layer, that one virtual
system is able to run on any machine, despite of what hardware has been
installed. There is no need to worry about driver dependencies and updates
to get everything working.

2

1.1 Contributions

This thesis aims to uses both private and public clouds to configure and
set up infrastructure for running web application and monitoring its perfor-
mance. For private clouds, SciCloud [1, 2] was used. The SciCloud project is
used among students and university workers to have start up projects to run
different applications and tools on virtual environment with the capabilities
to scale the applications. These applications can be later transferred to Ama-
zon for doing larger scale experiments and check, how the system will work
in a public cloud environment [1, 2]. Thesis mainly explores the possibilities
to configure and run web applications on the cloud. It studies different ways
to automatically configure servers on the cloud based of the current traffic
flow, this means how and when to add new servers or remove them. The
particular software deployed in the cloud was MediaWiki application, which
is used to run Wikipedia project and therefore has good scaling properties.
According to 2009 year summary from WikiPedia, their site gets at peak 75
000 request per second on their different sub-projects and sub-wiki pages.
The system is running on over 500 severs and is managed by 16 workers [28].
These numbers are out of the scope of this thesis and are hard to simu-
late, as these experiments would cost immense amount of money, setting up
such system for short time periods is not a feasible and there might occur
other problems related to network bandwidth, meaning DNS based traffic
distribution should be used.

Framework provided by the thesis looks different possibilities for automat-
ically provisioning servers on the cloud depending on the load. One option is
to use service time as an indicator, how many servers are going to be needed,
another is to use average CPU usage to determine how loaded the servers
are and whatever there is need to add or remove servers. This can be later
on tested with experiments over one day to see, how server provisioning is
working and validating the configuration. The framework will measure per-
formance of the servers running in the cloud with 30 second interval to see
possible bottlenecks or errors that can occur while running the experiments.
The outcome of this thesis will be the application set, capable for collect-
ing arrival rates for the servers, measuring their performance, dynamically
changing load balancer configuration, adding or removing servers depending
on the demand and easily deploying infrastructure to the cloud with vari-
ous predefined scripts. It also includes benchmark tool, that can be used to
stress out the load balancer, while the requests are divided between back-end
servers, it will stress out overall system including cache and database server.

Various empirical experiments with measured performance metrics help to
optimize services in the cloud. Most of the applications’ and servers’ default

3

configurations are meant for wide audience and does not fit well with high
performance service. Experiments help to identify possible bottlenecks in
the system to see, which service configuration should be changed to improve
the overall throughput. Two well known experiments have been conducted
to measure service time and system maximum throughput. First, the mea-
surements can be gathered when doing experiment with low load, generating
requests in a way that only one job is in the system. Latter, the measure-
ments can be gathered when doing ramp up experiment meaning that you
have a test when, for each time unit there is a increase of load (arrival rate)
to the servers and load is increased, until the maximum throughput is found.

1.2 Outline

This work is suitable for people, who are aware of computer systems,
Linux commands and have some knowledge in cloud computing and know
about script languages. The work is divided into 8 chapters. The 2st chapter
focuses on the state of art, summarizing related topics, showing what the

others have already done and what issues they have seen. The 3nd chapter
focuses on deploying the infrastructure, what tools can be used to achieve it.

The 4rd chapter gives set of tools or ways how to measure performance of

the servers in the cloud system and how the measuring was done. The 5th

chapter focuses on conducting of preliminary experiments to validate the
infrastructure testbed and to fetch important performance parameters for
optimizing the services in the cloud. It will provide a list of things we have

been optimizing to improve the speed of service. The 6th chapter shows
some results for running one day experiments with fixed traffic. We are
focusing on Amazon Auto Scale and optimal policy to see the difference in
these algorithms, also this helps us to validate the cloud configuration. The

7th chapter gives conclusion of the work and what has been accomplished.

The 8th chapter will give overview, what has been left out of the framework
as there has been no time left to improve these characteristics and should be
consider for future work.

4

Chapter 2

The State of Art

There are several studies to provision and scale virtual machines on the
cloud horizontally and/or vertically. There are even several frameworks to
make deployment of infrastructure to the cloud easier. The main idea for the
frameworks has been to reduce the time it takes to configure cloud instances,
that will reduce experiment length and cost. Cloudstone [44] is a framework,
that is compatible with Web 2.0 applications and supports application de-
ployment in the cloud helping to reduce time it takes to configure the servers
and to run the experiments. Wikibench [37] is being taken as a base for
building such framework. There has been already conducted large scale ex-
periments with MediaWiki installation, but this study did not use the cloud
and the dynamical server allocation was not their primary idea. MediaWiki
application and other related services have been installed on the physical
servers. There have been also studies, that discourages moving applications
to the cloud giving some key notes why this is not feasible, because in the
most of cases it does not help to reduce cost for running of servers [47].

2.1 Cloudstone

Cloudstone is a benchmarking framework built for the clouds [44]. It tries
to be compatible with Web 2.0 applications and uses all the benefits that
Web 2.0 supports. Compared with Web 1.0 applications, where content was
mostly static and generated for the user, it deals with nowadays technologies,
where users can share content through blogs, photostreams and tagging. It
uses social application Olio for benchmarking purpose, that meets the Web
2.0 application criteria. Web 2.0 applications have higher write/read ratio as
content can be added by the web service users, that will put higher workload
to the disk and database engine.

5

Cloudstone supports automatic deployment of system to the cloud. It
gives different ways to set up the cloud and is flexible, giving possibility
to configure MySQL database in a master-slave configuration. Scripts pro-
vided by Cloudstone work well with Amazon EC2. It is possible to deploy,
terminate, restart and configure databases, web servers, application servers
and load balancers in a deployment environment. It uses Faban for gener-
ating the load. Faban supports collection of the performance metrics during
the experiments using Linux tools iostat, mpstat, vmstat, netstat, etc. It
supports configuring memcached into the existing web application, that will
allow to store already rendered pages, database query results and user ses-
sion data in to the memory for faster processing. Initially Cloudstone was
using Apache with mod proxy to distribute the load, but later on switched
to nginx as mod proxy was becoming bottleneck under high loads, support-
ing only 135 concurrent users. Nginx gives more flexibility in configuration
and was capable for much higher throughput, making it ideal tool for the
Cloudstone.

This paper focuses on two questions, that have been achieved through
experiments: (i) how many (concurrent) users can be served for a fixed dollar
cost per month on Amazon EC2? and (ii) how many can be supported without
replicating the MySQL database. Their approach was different compared
to other papers and articles as they were using much bigger Amazon EC2
instances. Using m1.xlarge (8 EC2 units, 4 virtual cores x 2 EC2 units each)
and c1.xlarge (20 EC2 units, 8 virtual cores x 2.5 EC2 units each), both
cost $0.80 per instance-hour. Some important and interesting findings from
the paper are:

1. Discovered, that c1.xlarge is capable of serving more MySQL queries
per second, than m1.xlarge, making the MySQL database CPU-bound.

2. Turning of the logging, throughput increased at least 20% for some
cases.

3. Capacity limit was hit by gigabit Ethernet with 1,000 concurrent users.

2.2 To move or not to move

Cloud computing is relatively expensive resource to be used. There has
to be well thought-out plan for moving existing infrastructure to the cloud.
Dedicated servers with ISP in a longer time span would be more cost efficient
than running service on the cloud.

6

There are different studies that try to compare two different options to run
services in terms of cost and usability [44, 47]. Cloud computing gives good
platform for developing scalable applications and is cheaper to start than
buying separate hardware. Setting up hardware is more time consuming and
person must be well aware of the network topology and how to duplicate and
replicate service to different servers, compared to the cloud computing, where
customer has to only configure one virtual machine image and can replicate
the same configuration to different servers. It is possible to build image from
your own local image, installing operating system and necessary software and
uploading it to the cloud or there is a possibility to use already existing images
provided by Amazon or other vendors and install only necessary software.
There are also bundled images with different software already installed, you
can get machine, where MySQL database and Apache server with PHP are
running, but for security reasons it would be better to build image from a
scratch as you might not be aware, what has been installed there by others.

Cloud computing gives almost infinitive resource to your hands. There
have been many start up projects that have been launched in the Amazon
EC2 cloud and have gained popularity through Facebook or other social
media. Good advertising will led to massive usage of service and growth
of demand. This means that there should be more resources to handle the
load. This can be easily achieved on the cloud environment as you can start
up instantly new servers. Using your own server park with small amount of
hardware facilitating the service, you are not able to respond to the extensive
user base growth as buying or ordering new servers are time consuming and
they have to be configured with proper software. If those start up projects
have not been in the cloud and running service in small server park or even
on a single server, they have not had such a huge success, because the service
would have been overloaded, and users could not access it and, therefore,
losing the interest [50].

Cloud computing gives great platform for deploying scalable applications,
but it is not suitable for all cases. It depends of the purpose of service and
how widely it should be available for the audience, using the application. For
small projects and local web pages, it would not be good solution, as holding
up the infrastructure will cost more money, than using virtual HTTP servers.
Cloud computing is a perfect platform for developing new infrastructure and
services as renting the servers for smaller time periods is not that expensive
than using dedicated or virtual servers. Definite plus for cloud computing is,
that it gives possibility to rapidly scale your application to see the boundaries
of the system. It would be hard to find service providers willing to give large
amount of servers for small time period with low cost.

There is also option for using hybrid configuration of dedicated servers

7

and cloud servers to run the application. For longer time span it is cheaper
to have your own servers, but sometimes you might need extra resources for
short time and, therefore, it is a good idea to request extra servers from the
cloud. Good example would be the tax collection web site, where most of the
time traffic is low. When the deadline arrives for tax collecting, you might
need extra servers to accommodate incoming requests and these can be easily
acquired from the cloud.

2.3 Wikibench

The thesis takes novel approach for benchmarking web application using
realistic traffic with the realistic infrastructure using real data. Wikibench
is benchmarking tool specially built for MediaWiki application, it supports
two types of queries while benchmarking the system. It supports reading
operations using HTTP GET queries and occasionally makes database updates
through web interface using HTTP POST queries. This will simulate users,
that are reading different articles and editors, who are updating, editing or
creating new articles. Many of the benchmark tools are using only GET re-
quest and do not really deal with updating database. Using POST queries will
really stress out the database as updating entries in the database uses more
CPU and hard disk than generating simple read requests. The performance
of a database depends on the database structure, how complex, how many
keys and entries it consists.

Wikibench consists of a set of tools meant for benchmarking MediaWiki
application with the real traffic. They have developed load generator, that
can be started in clusters and uses Wikipedia traces 1 for requesting pages.
These traces will show when the request was made and the tools tries to
generate the request with same frequency. Using real traces, means that
the database has to be filled with real data, because otherwise we might get
content not found errors. Thesis uses Wikipedia database dumps 2 to have
realistic environment for stressing out the system.

This work will compare other benchmarking tools, that can be used for
stressing out the system. Thesis brings out some major missing features and
explains why the new developed benchmarking tool is necessary. The major
problem is that the most of traffic generators are making artificial traffic
that cannot be compared with the real life situations. The problem is that
generated traffic is uniformly distributed and does not fluctuate so much in

1http://www.wikibench.eu/?page id=60
2http://dumps.wikimedia.org/backup-index.html

8

time and have fixed amount of simultaneous connections. Wikibench includes
Wikijector tools used to generate the load. It has programmed to have two
roles, it can act as a controller or a worker. Controller’s task is to hold eye
on the workers, collect response times from workers and coordinate workers
jobs. Workers are first sitting in an idle state and waiting start command
from the controller. Controller will also define, where to get the traces and
how long to run the experiment.

Because of using traces, it is hard to control how many requests the load
generator will make. Wikipedia is mostly stable system and most of the
requests have been already cached. Every time a new experiment is started,
the cache is empty. When using traces and Wikijector, it is hard to fill the
cache as the servers are able to serve 3 to 4 times fewer requests compared
when the information is coming from the cache. It is mentioned in the thesis,
that at the beginning of experiments the response to the request will take
more time as the cache will not be filled and in the later stage, the response
time will be reduced drastically. This thesis uses mixed requests meaning
that the traces were containing page requests to static files (images, style
sheet files, logos, javascript) and dynamic pages (server needs to generate
page with PHP). Difference in response time between those two requests is
from 2 milliseconds to one second while the cache is not filled.

2.4 Web server farm in the cloud

Good overview about Amazon EC2 cloud performance gives paper [50]
written by Huan Liu and Sewook Wee. They give good performance com-
parison between different instances provided by the Amazon. It also gives
comparison with other cloud providers to give vague idea, how well or bad
one service provider will do in this field. Most of instances are able to trans-
mit 800 Mbps traffic (input and output combined) according to their tests.
This will give rough idea, how network bound we can be when carrying out
experiments.

2.5 Services that support provisioning and

auto scaling properties

There are many service providers giving possibility to scale cloud on de-
mand and is made as an automatic process. Service providers are asking
additional fee for auto scaling and provisioning services and generally are

9

using Amazon EC2 cloud to deploy the infrastructure. Scalr [51] supports
multiple cloud systems, has different payment options and is open source,
meaning that any one can download the code and start using Scalr as free
(if there is no need for on-line support). Scalr is a hosted service and can
be accessed from the homepage. If you have downloaded the source, you can
set it up to run on your server.

Scalr helps to manage public and private cloud infrastructure like Ama-
zon EC2, Rackspace, Cloudstack, Nimbula and Eucalyptus. Scalr has web
interface for configuring and setting up the cloud. User has to add his cre-
dientals to access the cloud. It is possible to generate different roles (web
server, database, load balancer) and mark which instances should be used.
For example, you can use larger instance for database and smaller instances
for web servers. Load is balanced between web servers using nginx.

The next tool for managing cloud is RightScale [52]. It is not open source,
meaning that you have to pay for the service. RightScale supports also
multiple clouds. Compared to Scalr, RightScale supports live monitoring of
the instances and performance metrics are gathered with collectd. User of
this service must be aware, that data collection uses traffic outside of the
cloud, meaning you have to pay extra money for the traffic used to collect
the performance metrics.

Both managing tools are largely customizable and can use scripts to mod-
ify, install new services and change configuration files in the instance on the
boot up. They help to reduce the complexity for starting scalable applica-
tion on the cloud. They are supporting different scaling configuration, mak-
ing possible to scale web servers and databases independently. Both of the
services are supporting back up system. User can activate periodical back-
ups to S3 or other storage devices. This will be useful for making database
dumps. Both of the services can save time for system administrator, as most
of the configuration can be done through graphical interface. Misbehaving or
unreachable servers are terminated and replaced by new servers making the
service transparent for the end user and minimizing the downtime. There is
also possibility to configure database in master slave configuration to reduce
the load on the main database unit and supporting more concurrent users.

10

Chapter 3

Framework for Verifying

Scalability and Performance

This chapter will give overview of various tools and technologies used to
set up framework for conducting experiments on the cloud using MediaWiki
application. MediaWiki application is used as it has proven already good
scalability and is capable of handling large amount of requests. Simplified
MediaWiki service installation was used as file cache and other services were
adding complexity to already large system. With cache load-balancer like
Varnish or Squid (used by Wikipedia) support much larger volume of traffic,
meaning network bandwidth limitations might arise with single load balancer.

A cluster-based web server (figure 3.1) consist of a front-end node (usu-
ally load balancer) and various number of back-end servers. The front-end
(in larger configurations there might be more than one load balancer) will
distribute user requests between back-end servers. Front-end server has the
biggest impact and should have fast computer with large bandwidth capac-
ity. Back-end servers can be commodity servers as the failure of these servers
does not affect overall performance.

Current framework configuration contains one database server (MySQL),
one cache server (memcached), several load generators (depending how many
web servers are running and what load they need to generate), one load bal-
ancer (nginx, handling and directing request to the back end servers) and
several web application servers (Apache2 with PHP5). As mentioned early,
some of the components were left out like file caching and proxy systems
(Varnish or Squid) to reduce complexity of setting up the infrastructure and
reducing servers needed to run the experiments. It will also make replication
of the experiments harder, as for each experiment, there must be knowledge,
how the requests have been cached. Despite of the fact, that framework

11

Figure 3.1: A cluster-based web server configuration.

could use Wikijector [37] for generating load, the framework uses the simpli-
fied tool for benchmarking purpose that makes only view requests (loading
only dynamical PHP page requests), that is capable of reading trace curve
and making requests based on the URL list provided to the program. This
helped to use smaller fraction of the Wikipedia dumps, making development,
framework deployment and conducting the experiments faster. This thesis
is interested in scaling only back-end Apache servers and does not use cloud
scaling properties to add or remove database servers. This configuration adds
more complexity, as the database has to be configured in master and slave
mode, where master will deal with insertion and updates requests, and slave
will deal with read requests. Reason to dump Wikijector was, that it was
resulting slower response times from requests as the code for making requests
and reading responses to see the status of the requests (was it failure or suc-
cess) and length of the response. Therefore, to process this information, it
was taking longer time, resulting in larger response times measured by the
program.

Step by step instructions how to configure, set up virtual machine instance
on the cloud and run experiments are available on the DVD. This thesis may
contain some of commands that are used to run various tools, but to get
full picture and reassemble experiments done here, reader has to go through
instructions, that are stored on the DVD.

12

3.1 Problem statement

Conducting large scale experiments is a time consuming task. Each ex-
periment in the cloud needs to be done carefully, keeping track of various
parameters and remembering which tasks have been done. Because of many
factors, starting such experiments are not error-free and mistakes might hap-
pen. It would be bad to discover the mistake at the end of the experiment
as this will cost extra money and takes more time to complete the task.

Current framework is finding solution how to deploy scientific infrastruc-
ture in the cloud, that would be easy to use and can replicate experiments.
This thesis tries to find solution, how to deploy services in the cloud and
hold configuration in one place. This solution should make it easier to run
large scale experiments in the cloud; this involves starting necessary services
in different servers, depending on the role of the server and monitoring their
performance. This framework will help to reduce time it takes to run the
experiments and in the same time collect performance metrics from other
servers. At the end of the each experiment, results are gathered. These
results can be downloaded into the local computer to analyse collected data.

3.2 Cloud Computing

What is cloud computing? There is not a single definition for this term
as there is already saturated list of different names given by leading experts
in this field [13]. I. Foster, Y. Zhao, I. Raicu and S. Lu propose definition as
following [14]:

A large-scale distributed computing paradigm that is driven
by economies of scale, in which a pool of abstracted, virtualized,
dynamically-scalable, managed computing power, storage, plat-
forms, and services are delivered on demand to external customers
over the Internet.

The article claimed, that there is a rapid increase of interest in cloud
computing, especially to own one, this has been affected by the following
factors: i) rapid decrease in hardware cost, but meanwhile increase in com-
puting power and storage capacity; ii) the exponentially growing data size
in scientific instrumentation and simulation; and iii) simulation and software
development in public clouds costs more money then carrying out in private
cloud [14]. Cloud computing is utility computing model, where customers,
using the service, are paying based on the usage and pricing given by the
service provider. Virtual machines are running on physical machines, that

13

consume energy and other resources. Customer needs to pay fees to support
the cost it takes to run the service, to the employees taking care of machines
and replace broken down hardware. Providers can charge user by the hours,
they have been using virtual machines, by the traffic it has passed and by
the storage cost.

There are three groups of services provided by different cloud service
providers: i) IaaS - Infrastructure as a Service; ii) Saas - Software as a
Service; and iii) PaaS - Platform as a Service. Amazon EC2 provides the
IaaS service and this thesis focus on building framework for Infrastructure as
a Service. It gives cloud computing customer free hands to have their own
operating system with needed software. This flexibility gives free hands on
modifying the virtual machine and giving infinite possibilities to configure
the machine. One of most important factors in cloud computing is that it
can scale up and down dynamically depending on application resource needs.

3.2.1 Cloud computing as a Service

There are several service providers giving possibility to use cloud com-
puting to solve computationally intensive tasks and giving almost infinitive
amount of resources to use. There are several abstraction layers of services
provided by these providers: Software as a Service (SaaS), Platform as a
Service (PaaS) and Infrastructure as a Service (IaaS).

Software as a Service

Software as a service is a software delivery model in which software and its
associated data are hosted centrally, typically in the cloud and are accessed
by users using a thin client. SaaS has become a common delivery model for
most business applications. These applications mostly can be used by paying
small fee. In 2010, SaaS sales reached to 10 billion dollars [41].

SaaS software can be used by large amount of customers with little re-
sources making it possible to run it at a low price. These services are gen-
erally priced by a subscription fees, most commonly using a monthly fee or
an annual fee. Because of large user base, some of the providers can offer
applications with freemium model. This means, that some of the services
are provided without a charge, but it has limited functionality or scope, and
fees are charged for extended functionality or larger scope. Some other SaaS
providers like Google can provide applications as a free for users, because the
revenue is being derived from alternate sources such as advertising. Adver-
tising is one common way to provide underlying software as a free for the end

14

users. Typical SaaS applications provided by Google are Gmail (an e-mail
application) and Picasa (a picture application).

Platform as a Service

This category of cloud computing provides a computing platform and a
solution stack as a service. In the classic layered model of cloud computing,
the PaaS layer lies between the SaaS and the IaaS layer [42]. It offers facilita-
tion and environment to deploy applications without the cost and complexity
of buying and managing the underlying hardware. There is a great variety
of combinations of services to support the application development life-cycle.
Some of the providers give services, where user can select any programming
language, any database and any operating system giving free hands on de-
velopment.

Popular platforms of PaaS are Google App Engine that allows develop-
ing and hosting web applications in Google-managed datacenters. These
applications are easily scalable. Google App Engine is free up to a certain
level of consumed resources. Additional fees are acquired for extra storage,
bandwidth or instance hours required by the application.

Infrastructure as a Service

IaaS model cloud provider gives users virtual machines, that can use any
operating system they like and install infrastructure from scratch with nec-
essary software. Popular IaaS provider is Amazon EC2. Our experiments,
infrastructure building and validation is done in IaaS cloud computing model.
IaaS bills users by the instance hours used for each virtual machine, band-
width usage, storage usage and other services, when they are activated. There
are plenty of other services that can be accompanied with existing infrastruc-
ture. User can use Elastic Load Balancing service with Auto Scaling, all the
necessary services are there to support scalability of application on the cloud.
Some of the services are provided by free, e.g. gathering CPU, memory and
network usage is provided without no additional charge, but these values are
collected with 5 minute intervals. If customers wants to measure the perfor-
mance frequently or use custom metrics, he has to pay for the extra service.
To advertise the service and attract new customers, Amazon EC2 gives for
new users for one year each month limited amount of free instance hours.

15

3.3 SciCloud project

The main goal of the scientific computing cloud (SciCloud) project [1, 2]
is to study the scope of establishing private clouds at universities. With
these clouds, students and researchers can efficiently use the already existing
resources of university computer networks, in solving computationally in-
tensive scientific, mathematical, and academic problems [2]. Previously such
problems were targeted by batch-oriented models of the GRID computing do-
main. The current project gives more freedom and interactive approach for
computing intensive analysis and problems, giving possibilities to use large
class of applications and work flow. This project also gives better collabora-
tion among different study and interest groups of universities and possibility
to test pilot and innovative projects.

The project mainly focus on the development of a framework, establish-
ing models and methods; auto scaling, data and state management, and
interoperability of the private clouds. When such clouds have been devel-
oped, it is possible to lease them to external use for governmental institutes
or firms to invest in divers studies like seismic analysis, drug discovery and
large scale data analyses for commercial firms to improve their productivity
and revenue.

SciCloud is built and deployed on already existing cluster, using Eucalyp-
tus software. Eucalyptus is one of the most widely deployed worlds leading
open-source cloud computing platform for on-premise (private) Infrastruc-
ture as a Service (IaaS) clouds [3]. IaaS systems give users the ability to run
and control entire virtual machine instances and replicate same configuration
through out the cloud on different physical machines. SciCloud has custom
built images from Fedora, Ubuntu and other linux distributions ready to use
by others. These can be used as a base images and everyone with access
to the cloud could easily make their own private image with the software
needed to run the experiments. While custom images are built, it is simple
to replicate them and conduct experiments.

Eucalyptus is compatible with Amazon EC2 [19] cloud and gives oppor-
tunity to develop and make preliminary tests on the private cloud to reduce
the cost. Private cloud is a great help for the researchers and academic
communities as the initial expenses of the experiments can be reduced sig-
nificantly. Private cloud experiments and infrastructure deployment can be
later on transfer to Amazon EC2 cloud to check, if the application and work
flow will work with other cloud environments. SciCloud resources are limited
by the means of physical hosts and available cores, it does not allow to re-
quest immense amount of virtual machine, but this is possible with Amazon
EC2.

16

3.4 Eucalyptus

Eucalyptus is open-source cloud system able to run on different Linux
distributions and works with several virtualization technologies. Eucalyptus
is framework that uses computational and storage infrastructure available
mostly for academic users and can be used for innovative and experimental
studies. It is used in private clouds as IaaS (Infrastructure as a Service)
system and is compatible with Amazon EC2 cloud. Eucalyptus uses existing
infrastructure to create scalable and secure web services layer that abstracts
compute, network and storage from user to offer simple IaaS on the fly. It
takes full advantage today’s modern infrastructure virtualization software
that is capable of scaling up and down services depending on application
workloads [3]. Compatibility with Amazon EC2 gives possibility to reduce
development costs of the experiments and analyses, conducting them first on
the private cloud.

3.4.1 Eucalyptus architecture

Figure 3.2: Layout of the Eucalyptus architecture, showing how the services

are connected with each other. Router enables access from the outside world

to connect with the cloud and running instances [54].

The architecture of the Eucalyptus is simple and flexible with a hierar-
chical design. It uses SOAP (Simple Object Access Protocol) service that is
emulation of Amazon EC2 service, where users are allowed to start, control
and terminate virtual machines on the cloud. Layout of the architecture is
shown on figure 3.2. The architecture consist of four main parts: [38]

17

1. Node Controller controls the execution, inspection and termination
of VM instances on the host where it runs.

2. Cluster Controller gathers information and schedules VM execution
on specific node controllers, as well as manages virtual instance net-
work.

3. Storage Controller (Walrus) is a put/get storage service that im-
plements Amazon’s S3 [35] interface, providing a mechanism for storing
and accessing virtual machine images and user data.

4. Cloud Controller is the entry-point into the cloud for users and ad-
ministrators. It queries node managers for information about resources,
makes high-level scheduling decisions, and implements them by making
requests to cluster controller.

Node Controller

Node Controller is located on every node that is designated to run VM
instances. It controls execution of virtual machines (running, adding and
removing them) and makes queries to discover the node’s physical resources
and gather state of the running VM instances. Node Controller is controlled
by Cluster Controller. Node Controller executes commands sent by Cluster
Controller, addition to this, it will give feedback of the current health and
performance of the node to notify Cluster Controller of any problems that
might arise.

Node Controller broadcasts to Cluster Controller characteristic of phys-
ical machine - number of cores, total amount of memory and free memory,
total amount of disk space and available disk space. Information collected
can be propagated and collected for Cluster Controller in response to the
commands describeResource and describeInstance. Cluster Controller
can start and stop instances giving runInstance and terminateInstance

commands to the Node Controller. Only authorized person can execute these
commands, e.g. only the owner of the instance or administrator can trigger
termination command. While executing command for running new instance,
Cloud Controller has to wait confirmation from Node Controller about re-
source availability.

To start the instance, Node Controller makes local copy of the image
file (containing kernel, root file system and ramdisk image) over network
from remote image repository. These images are packed, copying them over
network and unpacking them takes time and therefore there are couple of
minute delays while the virtual image starts running and is accessible. It also

18

depends how loaded the network and physical host is and how much power
the virtual machine has. Hypervisor (e.g. XEN) is instructed to boot the
instance. To stop the instance, the Node Controller instructs hypervisor to
terminate VM, close network endpoint (each instance gets unique IP address
from the IP pool) and clean up files associated with the image. Amazon EC2
provides private IP address and public IP address for each instance with
corresponding DNS host names.

All the Node Controllers should have access to the outside world or at
least have access to inner network to allow users to connect with requested
instances.

Cluster Controller

Cluster Controller has network connectivity with Node Controller and
Cloud Controller. Many of the functions are similar to Node Controller, but
are meant for running on every Node Controller the Cluster Controller is
connected. For example commands runInstances, terminateInstances,
describeResources and describeInstances gives possibility to execute
them on several Node Controllers. Cluster Controller has three main func-
tions: (i) schedule incoming requests for starting instance (check availability
of the resources), (ii) control the instance virtual network overlay and (iii)
gather information from a set of Node Controllers assigned to the Cluster
Controller.

Cluster Controller takes care of finding most suitable node to run vir-
tual machines. When new requests to start instances has been made, Clus-
ter Controller checks from set of Node Controllers available resources using
describeResource to find out most suitable candidate for running requested
image.

Storage Controller (Walrus)

Walrus is a data storage service that leverages standard web services
technologies (Axis2, Mule) and its interface is compatible with Amazon’s
Simple Storage Service (S3) [35]. Walrus implements the REST (via HTTP),
sometimes termed the ”Query” interface as well as the SOAP interfaces that
are compatible with S3. Walrus provides two types of functionality [38]:

1. Users that have access to Eucalyptus can use Walrus to stream data in
to/out of the cloud as well as from instances that they have started on
nodes.

19

2. In addition, Walrus acts as a storage service for VM images. Root file
system as well as kernel and ram disk used to instantiate VMs on nodes
can be uploaded to Walrus and accessed from nodes.

VM images are stored and managed by Walrus. VM images are packaged,
encrypted and uploaded by standard EC2 tools provided by Amazon. These
tools compress images, encrypt them using user credentials, and split them
into multiple parts and are accompanied by image description file, called the
manifest (in XML format). Node Controller downloads requested images
from Walrus before instantiating it on a node. If authentication between
Node Controller and Walrus is successful, Walrus will decrypt the image and
send it over the network to Node Controller.

Cloud Controller

Eucalyptus underlying virtualized resources are exposed and managed by
the Cloud Controller. The Cloud Controller is a collection of web-services
which are best grouped by their roles into three categories: [38]

1. Resource Services perform system-wide arbitration of resource al-
locations, let users manipulate properties of the virtual machines and
networks, and monitor both system components and virtual resources.

2. Data Services govern persistent user and system data and provide
for a configurable user environment for formulating resource allocation
request properties.

3. Interface Services present user-visible interfaces, handling authenti-
cation and protocol translation, and expose system management tools
providing.

In addition to the programmatic interfaces (SOAP and REST services),
the Interface tier also offers a Web interface for cloud users and administra-
tors to ease the use of the cloud system. Using a Web browser, it is possible
for new users to sign up for cloud access, download the cryptographic cre-
dentials needed for the programmatic interface and query the system. The
administrator can additionally manage user accounts, inspect the availability
of system components and make modifications to the resources.

It also gives collection of interface web service entry points for user re-
quests using a variety of interface specification (e.g. EC2’s SOAP and URL
query, S3’s SOAP and REST). Users can make requests using either the EC2
SOAP or EC2 URL query protocols. This has allowed wide variety of tools
which comply with the EC2 and S3 interfaces to work without modifications.

20

3.5 Amazon Cloud

Amazon is public cloud provider who provides on-demand computational
and storage resources to the clients. It can be used to run scalable applica-
tions and cost of running these applications depends on the storage, compute
and transfer resources it will consume. Different execution plans on the same
applications may results in different costs. Framework built by this thesis is
using Amazon EC2 resources to allow automatic scaling of the service, thus
trying to minimize the cost for running the service. Using MediaWiki ap-
plication, it is possible to implement realistic benchmark with real data and
traffic. Scaling the servers in the cloud should be transparent to the end user
and in ideal case, no failure should happen while servers are provisioned.

3.5.1 Amazon EC2 and Auto Scaling

Amazon EC2 (Elastic Compute Cloud) is a web service that provides
resizeable compute capacity in the cloud. It is designed to make web-scale
computing easier for developers [19]. It provides great variety tools to man-
age the cloud automatically, manually or Amazon customers can make their
own provisioning tools accompanied with Amazon tools to take control over
the cloud. With Elastic Load Balancing [34] and Auto Scaling [9], giving
possibility to use scaling properties of the cloud to easily distribute requests
using Elastic Load Balancing service between varying amount of back-end
servers, that are allocated by Auto Scaling service to the cloud. With these
services, it is easy to turn any application in the cloud scalable and this
will be transparent for the end user, as they are not aware, that servers are
removed or added to the cloud. Elastic Load Balancing gives possibility to
distribute load between different regions and availability zones depending
where the requests were made to make sure, that the traffic between servers
and clients have low latency.

This thesis will look properties of Amazon Auto Scale and how to set up
the service in the cloud. Amazon Auto Scale works using different thresholds
assigned by the user to manage servers in the cloud. This thesis will look,
when using CPU based provisioning, how the servers are added and removed
through provisioning process and what parameters should be used. For using
Auto Scaling, user needs to install additional command line tools [12] to
define Auto Scaling group and policies used to measure the performance
of the instances in the group and take provisioning decision based on that.
Amazon Auto Scale is free of charge, user has to pay for the instance hours for
the instances running in the scaling group, that were added by the Amazon
Auto Scale.

21

3.5.2 Amazon pricing

With Amazon cloud you have to pay for what you use. Amazon gives
great variety of different servers with different characteristics. They are all
charged with different prices. The time of writing this thesis, regions US
East (Virgina) and US West (Oregon) [20] are the cheapest one where to
run the servers. Amazon charges for running the instances by the time they
are engaged. The time is measured from the instance boot (it takes some
time until the instance pending state is changed to running and for pending
state Amazon does not charge money) to the instance termination. Charge is
taken by calculating the full hour the instance was used, meaning that partial
hours are charged as a full hour. This should be taken into consideration
when closing the instances. For example, if you have large list of different
instances started in different times, it would be wise to select those instances
out from the list, which are closest to the full hour to avoid paying for the
computational power that was not fully used.

3.6 MediaWiki architecture

MediaWiki application in general uses different technologies to run the
system. These technologies are not mandatory to use for a single server con-
figuration with small amount of traffic, but for site, that has large amount of
users, it is highly recommended. MediaWiki can be easily installed on top of
LAMP [15] stack (or WAMP - for windows, XAMPP - supports most of the
operating systems) without need for making any additional changes to the
system. MediaWiki application is written in PHP, but there are some speed
concerns, as the PHP is interpreted language, meaning each time web page
is visited, the code to render the page has to be interpreted again, making
rendering the pages CPU intensive task. MediaWiki is using regular expres-
sion to convert text in MediaWiki format to HTML every time a user visits
the page. There are different applications and daemon programs to improve
performance of the MediaWiki application.

Performance gain through caching. The main idea for improving the
performance is to try to cache the data and the code, this will reduce the
amount of time required to run for each request and therefore minimizing
CPU usage. MediaWiki supports several data caching methods, e.g. saving
into files, storing visited pages in the database or storing pages in the memory
with help of the memcached daemon. This section outlines some basic tools
to run and improve the performance of the MediaWiki. For single server

22

configuration, it is recommended to use file caching, as it is easiest to set
up and probably only way, when using virtual Apache server provider, you
might not have permissions to access shell to install additional programs and
start them [4]. File caching will use local or mounted file system (mounting
extra space from the cloud using Walrus or S3 service) to store already com-
piled pages on the hard disk that can be easily fetched and sent to users, who
revisit the page. MediaWiki stores its content in MediaWiki mark-up lan-
guage in the database and this needs to be formatted into HTML. It means
that each request to the database, the application needs to go through the
content and format given text to appropriate HTML format. This process
will uses regular expressions and therefore for larger contents will use large
amount of CPU on the Apache server. To improve the performance of the
server, it is important to use caching, as it will eliminate the need to parse
the content into HTML again.

Figure 3.3: Flowchart showing how request and responses between different

servers are being transferred when the requested page is already cached.

Note that MediaWiki still makes request to database to see, whatever the

page exists and is not changed.

Figures 3.3 and 3.4 shows typical flow through the system between differ-
ent servers to show, how the request is parsed and completed. Even though
for already cached pages, still request to MySQL is generated to see whatever
the page still exist in the system and is not changed. Second query goes into
memcached, that gets already cached page, this page is compiled from previ-
ous user visiting the page and therefore fetching these types of pages are faster
as there is no need to parsing it again (formatting structured text to HTML,

23

this will also include checking whatever links are active or dead, including
pictures, formulas and other objects from the page). Figure 3.4 demonstrates
how multiple requests going through the system to memcached and MySQL
database server to fetch additional information that is needed for parsing the
content. First, each entry is asked from the memcached, if it does not exist
in the memcached, it is queried from the MySQL. If the MySQL query is suc-
cessful (link/page/object exists in the database), it is stored in memcached,
so the later queries should be faster. Because of multiply queries made by
Apache server, it would be good, if memcached, MySQL and Apache servers
are located in the same availability zone to reduce network latency.

Figure 3.4: Flowchart showing how request and responses between different

servers are being transferred when the requested page is not cached. There

are several queries and calls to memcached and MySQL server to compile

the page. Once ready, the parsed page is stored in the memcached.

3.6.1 Memcached reducing load on database server

Memcached is key-value based cached storage database program running
as daemon on the server, that holds all of the stored information in the
memory. It is powerful and fast program able to retrieve entries from the
database in O(1) time and currently, maximum entry size is limited to 1 MB.
Wikipedia has pages exceeding this limit, but it is solved by packing content

24

with gzcompress. This gives more flexibility in storing larger cached pages
in the memory [5]. Memcached is not a persistent storage engine, meaning
that when restarting the system, the cache becomes empty. This will increase
response time of the requests and to stabilize the system, the cache needs to
be filled again to improve the performance of the service.

Memcached in the MediaWiki application environment is deployed as a
separate server. All the back-end servers can connect with central memcached
server to fetch pages and add new content into the memory. If using several
memcached servers, system administrator has to be careful, when adding
or removing memcached servers, as the cache becomes invalid, making the
service slower (response times increases, as the content of the pages has to
be parsed again) until the cache is filled again.

Three experiments have been conducted to see the difference, how much
memcached and XCache can improve service speed. First experiment did
not use neither of the caching capabilities. The content was generated for
each page visited by PHP again and the PHP code was not cached in the
memory. Second experiment uses XCache to cache PHP code into memory
and the third uses both caching option, where memcached was filled with
the requests. For the experiments, Amazon EC2 c1.medium instance was
used (see later chapters, why c1.medium instance was selected). Test set
consisted of random pages requested from the system, but for each test, the
URI addresses requested stayed the same to have fair comparison between
experiments. The instance used for the testing gained slower CPU E5506
from the cloud, which has clock speed 2.13 GHz (this is slower compared to
E5510, which has 2.33 GHz clock speed). Without any caching the average
response time for one hour experiment was 469.6 ms. Enabling the XCache
for PHP code caching, the average response time improved to 335.7 ms. It
improved the speed of the service, but not su much as enabling memcached
and the requests were fetched from the cache. The average response time
dropped down to 79.2 ms. Using both caching options, the service speed
increased at least 6 times. Figure 3.5 shows response times distribution for
all the experiments. Parsing the content by PHP is using more CPU power,
showing clearly, that regular expressions takes more time when converting
the content to HTML and validating the links. With constant load, one
request using memcached and XCache for c1.medium Apache server used
on average 1.5% of CPU and without memcached, Apache server used on
average 7.4% of CPU. When disabling both caching options, the average
CPU usage increased to 11.2%.

MediaWiki configuration file LocalSettings.php allows to change cache
validation time limit. This will define the time it takes to mark entry in
the cache as invalid, meaning the requested page has to be parsed again

25

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

D
is

tr
ib

u
ti

o
n

 [
%

]

Response time [ms]

memcached + XCache
XCache

no caching

Figure 3.5: Cumulative distribution of response times for c1.medium instance

with different caching policies.

and converted to HTML. Changing the configuration file will invalidate the
whole cache and it is not accepted behaviour, when adding new servers and
changing IP addresses for memcached and MySQL in the configuration file,
as it will affect response times. To overcome this, variable $wgCacheEpoch

has to be changed to 1 in order to disable the invalidation of the cache, when
changing configuration file.

Documentation from MediaWiki gives instructions to start and activate
memcached on the MediaWiki [24]. Configuration file variable $wgParser

CacheExpireTime shows for how many seconds the parsed content stored in
the memcached is considered valid. If this time has been passed, fetching
information from memcached will return false value and old value is cleared
from cache. New value is therefore requested from MySQL database (includ-
ing converting the content to HTML) and added to the memcached memory.
Memcached does not itself go through values stored in its memory, they are
invalidated if someone tries to fetch old data. To get most of the system,
it has to be made sure, that memcached is properly installed and running.
On default, MediaWiki timeout for memcached server is set to 10 seconds,
if the memcached server is not reachable and pages from MediaWiki appli-
cation takes more than 10 seconds to respond, then there is a problem with
memcached installation and configuration.

3.6.2 LAMP stack

LAMP refers to Linux, Apache, MySql and PHP installation. There are
several variations for having web-application server, but this thesis is look-
ing for LAMP configuration to run MediaWiki application on the back-end
servers. Requests from nginx reverse proxy are divided between these LAMP

26

stacks. The back-end servers are using PHP version 3.5.3, Apache with ver-
sion 2.2.17 and MySQL server with version 5.1.54. MySQL is disabled for
Apache back-end servers and is used as a separate server.

Apache configuration

Apache is open-source software working as a server in default configu-
ration on port 80 and serving files from the file system. Default Apache
configuration is meant for serving static files and is not suitable with serving
dynamic content as the service time and resource utilization differs. Serving
static pages does not use much resources compared when the page is gen-
erated and render by the help of PHP. To improve the service throughput
and reducing risk for overloading the servers, the configuration file has to
change for reducing maximal number of allowed users and to reduce timeout
period for requests. This helps to prevent overloading the Apache server
with excessive requests and also reduce memory footprint. Memory can be
real bottleneck, if the server starts to run out of free memory, the operating
system starts swapping the memory. Swapping means that operating system
starts to write old memory chunks to the hard disk, making fetching infor-
mation from memory significantly slower, also adding items into memory is
going to be slower and thus increasing back log.

Following configuration is valid for c1.medium server on Amazon cloud.
It has been observed, that with following configuration (using memcached
and XCache) on average, one c1.medium server was able to handle 26-34
request per second depending, which CPU was assigned to the virtual ma-
chine, state of the virtual machine host, network utilization and wear of
the system. Reducing MaxClients for each Apache to 10, helped to make
service more stable under heavy load. The default option was set to 125,
which is relatively large number as the server is only capable of serving 4×
fewer requests and the requests should not be in the system at the same
time. Reducing timeout to 10 seconds and disabling KeepAlive to free up
sockets immediately after the content has sent to the client also improved
service throughput and making overloading the system harder. When using
default configuration, it can be noticed that, while generating more requests
the server was capable of serving, the throughput started to decrease, show-
ing that for each new request a new process was made. Because not using
correct number of limited maximum clients, the system had more jobs inside
than it was able to serve and affecting other jobs, making the response time
longer, resulting in one minute system load going over 20 units. Using 2 core
machine, meaning that when 1 minute load is going over 2, the job queue
is longer than the server is able to serve. It has been problematic, as with

27

higher loads the server tends to crash.

PHP configuration

PHP is most widely used scripting language for serving dynamic content
over web. The language is simple to use, there is no need to define variables
and each variable type can be changed on the fly, that is not possible for many
other languages. PHP is interpreted language, meaning that for every request
the written code is parsed again by the interpreter. This method is slower
compared to compiled languages, but gives more freedom for programming.
There are several applications and utilities out that helps to cache PHP code,
so it is not going to be parsed every time new request is made. This can lead
to 2 to 5 times faster code execution depending how complex the code is and
how many different source files are included. For complex and large PHP
files caching the code can help a lot as the server does not need to read the
files from the hard disk every time a new request is made, helping to reduce
response time. While decreasing response time, the server is able to serve
more requests. But it is not always good to use PHP opcode cacher, as going
through small codes can increase overall time.

MySQL configuration

Default MySQL configuration is modest and is meant to run along with
the other applications in the same server. Infrastructure configuration pro-
vided by the current thesis needs to run MySQL database on a separate
server for MediaWiki, meaning that MySQL can use more resources and to
improve the throughput, some of the parameters should be increased. In-
creasing max connections allows more connections to be handled by the
database. With higher loads, the old connections changed to idle state and
were not given to the new connections, limiting the amount of new con-
nections made to the database. Reducing TCP packet timeout for Ubuntu
allowed to kill such connections. If MediaWiki cannot make connection to
the database, it will return database error to the end user. While generating
at least 300 request per seconds, some of the connections were changed to
the idle state and MySQL ran out of free connections, blocking new incoming
requests and making service unreachable.

The other configuration part concerns where to store the database files.
The default option will use image file system to store the data, but it is limited
in size and has to be considered, while starting to upload data from Wikipedia
dumps to MySQL database. The second option is to use S3 (or Walrus)
storage space, but this means that the extra storage has to be mounted to

28

MySQL instance. MySQL configuration variable datadir has to be changed
and pointed to the mount point. If starting MySQL instance later, when the
image is already bundled, it will not be able to start the MySQL service,
because data directory is missing. It is needed to the first mount S3 storage
with instance and then start MySQL service. It makes things more complex
for configuring and setting up the infrastructure, as it has to make sure,
whatever the attached volume is correctly working and is mounted to correct
folder.

To mount Amazon S3 storage with instance, it is needed to run ec2-attach

-volume. When using newly created volume, it is need to format the volume
in order to use it. To see, if attached volume command has worked, it can be
used command sudo fdisk -l on the MySQL instance and check, whatever
the device is in the list, should be the last one. Mostly it can be /dev/sdd,
but may vary depending on the image. Using command sudo mkfs -t ext4

/dev/sdd, it is possible to format the volume with ext4 file system. After
this, it is needed to make mount point, this can be folder in the file system. To
create new directory, use command sudo mkdir /var/data and for mount-
ing attached volume, use command sudo mount /dev/sdd /var/data. Now
the /var/data is containing mounted volume and it is possible to write files
there. System administrator can copy MySQL data into newly created vol-
ume, change the configuration file datadir location and make sure, that
mysql user has rights to write into this volume. If everything is done, it is
possible to start MySQL service, it should start instantly. If it takes time or
freezes, it can mean, that there is something wrong with the configuration.
Rechecking permissions and whatever the image is mounted or not can solve
the issue.

3.6.3 Operating system configuration

There are some limitations in Ubuntu operating system, that might also
affect service quality and speed. Most important is to increase open file de-
scriptors [17] for nginx, memcached and MySQL servers as opened sockets
are also counted as file descriptors and under heavy load these servers might
run out of free sockets and eventually starting to block incoming connec-
tions making the service unresponsive. Because using same image for all
the servers, then these changes are system wide and affecting all the servers
running in the cloud by the framework.

29

3.7 Study of load balancers

There are different load balancer servers that work as a reverse-proxy
servers and are capable of redirecting traffic to the back end servers. Each of
them has different characteristics and maximum throughput, depending how
it was built and which language was used. This thesis will look two load bal-
ancers. First is a Pen and the other is nginx, they are written in C language,
meaning that they should have good performance and high throughput.

3.7.1 Pen

Pen is a simple reverse-proxy server, written in C language [39]. It is
easy to set up and make it running. It uses least round-robin algorithm
for distributing incoming requests. It keeps track of the clients and tries to
send them to the same server. It ensures that when using PHP sessions,
user state is remembered. This helps to stay user logged in and the state
of the user can be saved in the same server, meaning there is no need for
centralized session (but when removing the server from the cloud, the state
has to be transferred into existing server). If lookup table is full (this is
table, where pen is keeping track of the clients) it tries to remove oldest
entries from the table and use most idle server to direct the traffic. It is
possible to remove lookup method and only direct traffic to most idle server
(which has least connections). For benchmarking purposes, it would be best
to remove IP lookup table as load generators have fixed IP addresses and the
load is therefore not evenly distributed or distributed only to small amount
of servers, leaving other servers into the idle state. Note that nginx also
provides possibility to use lookup table (it is called hash table) to redirect
the traffic to the back-end servers, depending on the client IP.

Pen high availability and redundancy

Pen can ensure high availability by checking individual servers, what-
ever they are up and running or are down and maintained. Pen supports
active-passive failure server configuration when running multiple pen servers
increasing service redundancy, using VRRP (Virtual Router Redundancy
Protocol) to decide which of the Pen servers is active. The Virtual Router
Redundancy Protocol (VRRP) is a computer networking protocol that pro-
vides for automatic assignment of available Internet Protocol (IP) routers
to participating hosts [40]. This thesis only focuses for single load balancer
configuration and does not use active-passive failure configuration for load
balancers.

30

Running pen from command line

Pen starts from command line and can be completely configured there.
It is also possible to define configuration file. When trying to reconfigure the
servers, it is needed to kill the process first and start it again.

$ sudo pen -r -t 10 -S 2 -p /var/run/pen.pid

80 server-1:80 server-2:80

Above command will start pen load balancer, that accepts connections on
port 80 and redirects traffic to the servers server-1:80 and server-2:80.
It has connection timeout set to 10 seconds with parameter -t and ignores
IP lookup for the users with parameter -r. Parameter -p is used for storing
process ID for later usage and restarting the service. Starting services under
port 1024 in Linux, it is needed to have super user privileges. Following
command will shut down the pen. This can be easily written into shell script
to support running it as a service.

$ sudo kill -9 ‘cat /var/run/pen.pid‘

3.7.2 Nginx as reverse-proxy server

Nginx is reverse proxy application running on the server as daemon writ-
ten in the C language by Russian programmer Igor Sysoev [31]. It uses
network OSI layer 7 (Application layer) [32, 50] to processes and forward the
requests. This means that every request is entering to the operating system
and is not forwarded by the network card, thus meaning each request to ng-
inx (working as a reverse proxy), is taking computer CPU time to process
the requests to the back-end servers. Nginx uses native operating system
functions to poll the existing asynchronous connections, making it possible
to serve large amount of request with small CPU usage. It uses Unix socket
layers, which also decreases CPU overhead as it passes messages between
client and back-end server directly through network card, without need to
communicate with operating system.

On c1.medium, one nginx server is capable of handling over 10 000 re-
quests per second (but with this traffic rate, it is possible to run into network
bandwidth problem). Wikipedia is getting traffic at 75 000 requests per sec-
ond at the peak time [28]. To be capable of handling such load it means that
bigger machines should be used or servers should be separated between dif-

31

ferent regions to distribute load evenly and reducing traffic for one front-end
reverse proxy server. Testing at these scales is difficult task and this thesis
does not involve experiments with same amount of traffic as Wikipedia is
getting along. Nginx has been already installed in 19,121,348 (11.28% of
all servers) active servers based on Netcraft Web based survey on October
2011 [6], showing that large amount of system administrators are already
trusting nginx as a front-end servers.

Nginx load balancing algorithm

The default distribution model for nginx server is in the round-robin fash-
ion [7]. This model is one of the oldest and each system with capabilities of
distributing requests supports this model by default. Round-robin method
uses a list of servers and an indicator to determine, in which server the last
request was sent. For every new request, the indicator value is increased
and next server is picked from the back-end server pool. If the value ex-
ceeds servers count in the list, it starts from the beginning. This is not
effective method for distributing load, where request times vary, especially
if the servers are under high load or the requests are not in equal size in
terms of CPU time they take. Wikipedia content varies in size and com-
plexity, there are some pages that are just redirects and others, which are
full of information, meaning that they will need more CPU processor time
to parse the content. While distributing requests in round-robin fashion, we
might direct large page request to one server and redirects to other server,
meaning that the first server might not be able to serve the requests in rea-
sonable time, but the latter server is sitting in the idle state, the resources
are not distributed equally. Variation for back-end servers CPU usage from
50% to 90% has been observed, while conducting experiments with default
round-robin and using different size of page requests. Unequal distribution
can overload the servers with high CPU utilization and some of the requests
are dropped, thus not resulting in best performance, that could be achieved
from this configuration.

Nginx supporting least round-robin

To make distribution of the requests on the reverse proxy much better,
it is possible to use add-on module fair [8]. Fair module for nginx does
not use queuing on the proxy side. The main idea for using fair is to drop
excessive requests. It has option to define how many concurrent request one
server can have. If there has no room left to send the request to back-end
servers (i.e. all the servers are filled with the maximum amount of concurrent

32

request and there are no idle servers), the request is dropped. This behaviour
of dropping excessive requests helps to avoid overloading back-end servers.
Even if they are working at full power, they still manage to maintain good
response time and are capable of serving the requests. There is a thin line
between maximum throughput and overloading the server. This must be
carefully observed, but in the best case scenario, the maximum amount of
concurrent connections should be smaller, as running servers over 90% CPU
usage is not normal.

Nginx modules

Nginx has different modules 1 and addons 2. With HttpStubStatusModule

it is possible to gather information about active connections and how many
visits there have been done. This helps to gather how many requests per time
unit there have been and this can be used for provisioning correct amount
of servers using various policies. This module is deployed as a separate page
on the server and can be accessed with simple HTTP GET request and user
can define the page URI (Uniform Resource Identifier), where to access it.
Unfortunately the statistics given by nginx is not as good as compared to
HAProxy. HAProxy, is giving various information, including many connec-
tions to the back end servers have been done, how much bytes have been
transferred and maximum queue for each server. To get similar information,
it is needed for the back-end Apache servers to use module mod status 3.
It will give information amount of connections generated and can be logged
to identify where and how the requests are distributed. Keeping track of
this information can help to find possible bottlenecks in the service, are the
requests forward to the back-end servers and are the requests distributed by
load balancer equally.

3.7.3 Comparison between nginx and pen

Both of the load balancer with different configurations have been tested
to identify best suitable load balancer. Pen is simpler to start the service
as it can be done without any configuration file through the command line.
Nginx needs some additional tuning, manual reading to get configuration
right and how to use upstream module to set up reverse-proxy. Nginx has
better support for reloading the configuration on fly and has better documen-
tation. For both cases, the documentation of load balancers are incomplete

1http://wiki.nginx.org/Modules
2http://wiki.nginx.org/3rdPartyModules
3http://httpd.apache.org/docs/2.0/mod/mod status.html

33

and much of the configuration examples have to be looked from different
Internet communities and forums. Nginx has good support for Russian and
has complete documentation in Russian, but lacks of English help.

Nginx is capable of serving more requests and has better overall perfor-
mance compared to Pen. This is why the thesis will use nginx over Pen to
distribute the load. It was easier to read total requests from nginx, as it
was already provided by HttpStubStatusModule to show active connections
and how many requests have been made. This task was more complicated for
Pen, as there was a need to run shell script to receive the output of the statis-
tics. Pen authors are strongly advising to use cronjob for this task. But even
with this output it does not tell you how many requests have been generated
and how the requests have been divided. It only shows active connections,
list of last clients and how much traffic (bandwidth) has been gone through
and only possible indicator of arrival rates would be to use bandwidth and
average size for each request.

Nginx has plenty of third party libraries, but to use these, you have to
compile the nginx from source code and add library to the source. Some
of the libraries are only compatible with old builds of nginx as they have
not been updated by the authors and therefore cannot be used with latest
nginx versions. Some older nginx versions have problems with stability and
user has to be careful when running older version software as there might be
security holes and bugs. It is strongly advised to read mailing lists and other
resources to see, if there are any known major problems. This thesis uses
library called fair and in order to add it to nginx, it was needed to use older
version of nginx to get it working. For that purpose nginx version 0.8.32 was
used and no strange behaviour for different experiments was observed. Some
earlier versions had problems with reloading the configuration as they could
not terminate old daemons and the service became stuck and unresponsive.
It had to be killed manually and restart the service.

3.8 Configuration of the infrastructure

For keeping things simple, framework build by this thesis uses single image
and all the services are installed there. They are disabled at start up. The
idea is to run and start only necessary services depending which role the
server has. By default, additional HTTP server at port 8080 was started, that
was showing content from /mnt folder. This mount point had plenty of room
to write and content saved there is not bundled to the new image (it needs to
have writing permissions, otherwise only privileged user can access it). This
is good location to temporarily store private keys and bundle the new image

34

together. The image is packed and has to be uploaded to the cloud in order
to get the new image working and ready to launch new instances. This helps
to protect leaking the private key to other users, especially when the image
has marked as public, extra care has to be taken. HTTP server running on
port 8080 allows to easily download content from the cloud without the need
to use scp (secure copy tool under Linux). Cloud user has to make sure,
that additional ports are added into security group, otherwise they cannot
be accessed outside the cloud.

3.8.1 Endpoints for SciCloud and Amazon

Endpoints show where the SOAP service is accessible. From there, it is
possible to feed in commands to manage the cloud (kill instances, run new in-
stances, query list of already running instances). SciCloud is accessible from
https://katel42.hpc.ut.ee:8443 and Amazon EC2 us-east region is ac-
cessible from https://ec2.us-east-1.amazonaws.com. For each region,
Amazon EC2 has different endpoints. The excellent tool to get overview of
running instances, add or remove instances is Mozilla Firefox add-on Elastic-
fox 4. In order to get it working, user needs to configure endpoint location and
enter keys, that were retrieved from the cloud administrator or downloaded
from Amazon Web Service console. It is also possible to use euca or ec2 com-
mand line tools to run and terminate instances (look euca-run-instances

and euca-terminate-instances). Commands starting with euca are meant
for Eucalyptus cloud and ec2 commands are meant for Amazon EC2 cloud.
Elasticfox is compatible with Amazon EC2 cloud, but user can use Amazon
Web Service to log in to the web interface and manage keys, images and
instances there.

3.8.2 Setting up services and MediaWiki installation

In order to configure the infrastructure in the cloud, at the beginning
user has to use the base image, where to build its infrastructure. This
thesis uses 11.04 Ubuntu with 32bit architecture for Amazon EC2, it will
support running m1.small and c1.medium instances. Using aptitude tool
(apt-get install packages), following packages were installed: apache2,
apache2-mpm-prefork, mysql-server, php5, php5-mysql, php5-xcache, mem-
cached, sysstat, openjdk-6-jre, ec2-api-tools.

Apache and php5 are used to serve the dynamic content using MediaWiki
application. XCache will improve PHP script execution times as the code

4http://aws.amazon.com/developertools/609? encoding=UTF8

35

is cached and do not have to read it from the hard disk, MySQL is used
to run database and the content of MediaWiki is stored there, memcached
will enable caching support for MediaWiki, sysstat gives tools to measure
performance of the instance and openjdk is used to run Java jar files. EC2 api
tools add command line scripts that are necessary for framework produced by
this thesis. These are used to configure the cloud, add and remove instances.
Some of the packages might already be installed, depending which image was
used to run the instance.

MediaWiki was downloaded 5 (version 1.16.5, released in May 2011) and
unpacked to folder /var/www. This is default location for Apache home direc-
tory and files from there are shown to the users who visit the web page. Me-
diaWiki has simple installation interface and user is automatically redirected
from front page localhost/mediawiki/ to the installation page. To get in-
stallation process to be smooth, it is recommended to use single instances
to install all the necessary services and install MediaWiki to local MySQL
database. Make sure that MySQL service is running when installing the Me-
diaWiki. It will create necessary database structure to store the Wikipedia
content. Script for uploading the data from Wikipedia dumps to database do
not support using prefix for table names, meaning that when installing Me-
diaWiki, prefix form should be left empty. When installing the MediaWiki,
user can use localhost as a host for MySQL and memcached services. This
should later be changed to the correct instance IP addresses, where the ser-
vices are deployed, but this is automatically done by the framework. Using
MySQL and memcached service to install the application, it is possible later
to check whether both are running correctly and configuration works. This is
important step, because if later on bundling the image together and finding
out, the service does not work correctly, there is need to fix the errors and
problems. If later on requesting the new bundled image, for every instance,
these fixes have to be done again, meaning it would be better to fix the im-
age, bundle it again and upload to the cloud to retrieve new ID of the image
that can be launched with fixed configuration.

3.8.3 Wikipedia article dumps

If the installation of MediaWiki is done, it is time to download the articles
of Wikipedia. Wikipedia makes the database dumps in regular bases to
ensure data availability for mirror sites or for users who want to run it locally.
When using S3 storage to store the database data, make sure that it is
working correctly and it is mounted into correct place, MySQL is correctly

5http://www.mediawiki.org/wiki/Download

36

configured and MediaWiki tables have been created to the database.
In the current study the infrastructure configuration uses file system given

by the image to store the data for MySQL database. Amazon EC2 gives 10
GB disk space for c1.medium instance, it was enough to initialize database
with two Wikipedia article dumps of January 15, 2011 6 7, consisting of
166,977 articles. This corresponds to 2.8GB of file system space. The op-
erational dataset, however, is composed of about 1000 randomly selected
articles across the database. These restrictions have taken into account to
avoid having large time spending on filling the cache. Filling the cache was
necessary as the experiments conducted by this thesis were interested in per-
formance of stable system with high cache hit ratio. Using fully filled cached
for MediaWiki and using Wikipedia articles dumps, it is possible to achive
97% memcached hit ratio and 75% of queries are cached by MySQL.

These dumps are in XML format and in order to upload them in to the
database, they have to be converted to SQL queries. There is Java program
from WikiBench called (available on DVD) mwdumper.jar 8, that can be
used to convert XML to SQL, pipe the output of the dumps into database
using MySQL. Following is example how to upload dumps into database.

$ java -jar mwdumper.jar --format=sql:1.5

enwiki-20110115-pages-articles1.xml.bz2 |

mysql -u root -p wikidb --password=root

To check, if it is working, open up browser and visit MediaWiki web page
and click on ”Random article”. If new page is fetched and it is different than
”Main Page”, MediaWiki has been successfully installed. Framework build
by this thesis takes care of the rest, configuring correct IPs for MySQL and
memcached host, making it working in multi-server configuration, configur-
ing back-end servers and adding them into load balancer server list.

3.9 Framework scaling instances in the cloud

Prerequisite tools are needed in order to add, remove and retrieve infor-
mation about instances from command line. This study uses Amazon EC2

6http://download.wikimedia.org/enwiki/20110115/ enwiki-20110115-pages-

articles1.xml.bz2 (192 MB)
7http://download.wikimedia.org/enwiki/20110115/ enwiki-20110115-pages-

articles2.xml.bz2 (263.3 MB)
8http://math.ut.ee/∼wazz/mwdumper.jar

37

instance ami-e358958a (Ubuntu 11.04 32 bit, kernel 2.6.38) 9, it has repos-
itory for these tools and can be installed with ease using aptitude tool [30].
SciCloud is working on Eucalyptus cloud platform and it has euca tools to
manage the cloud. Amazon in the other hand uses ec2 tools to have ac-
cess with the cloud. The commands are same as Eucalyptus is built to be
compatible with Amazon cloud interface, only the first part of command
differs. To install Amazon tools on Ubuntu, you have to install package
ec2-api-tools [26] and have to make sure, that multiverse is enabled [27].

Using commands euca-run-instances or ec2-run-instances respec-
tively for starting the new instances. Using man page [29] under Linux, it
will give information how to use the commands and which parameters can
be used. With parameter -n user can define how many servers are going to
be started upon a request. These tools also need a private key and certificate
key to access Amazon EC2 service. Instances requested from the Amazon
EC2 cloud starts relatively fast, it takes average 2 minutes to get c1.medium
instance up and running, depending of the speed of the instance. Smaller
instance m1.small is slower to get running and takes more time compared
to c1.medium, because it has limited CPU power and the IO performance is
moderate.

Example of how to start instance on Amazon EC2

$ ec2-run-instances ami-e358958a -n 2 -key keypair -K user priv key

-C user cert key --instance-type c1.medium

--region us-east-1 --availability-zone us-east-1c

This command starts virtual machines image (image code ami-e358958a),
parameter -n defines how many servers are requested, -K is private key (can
get from AWS console) and -C is certificate key. Parameter --instance-type
defines, which machines are required, it is also possible to define in which re-
gion the instance is started (default is us-east). Parameter -key will define
key pair, that is used to allow SSH access with the instance. If the request
is successful, this command will output list of requested instance identifiers.
These can be used for tracking purpose, do check whatever requested in-
stances are up and running, or still waiting in pending state. The logic for
adding and removing servers is implemented by the framework and can be
found, when looking CloudController source code.

9http://thecloudmarket.com/image/ami-e358958a–ebs-ubuntu-images-ubuntu-natty-

11-04-i386-server-20111003

38

3.9.1 Calculating arrival rate

Nginx uses HttpStubStatusModule module, that will provide information
about how many requests has been made to the nginx. Knowing time and
arrivals from the first measurement and from the last measurement, it is
possible to calculate arrival rate for that time period in request per second
using following formula

λ =
h2 − h1
t2 − t1

(3.1)

where t notates time in seconds, h notates arrivals to the system, index
1 means first measurement and index 2 means latter measurement. With
this information, it is possible to calculate how many servers are going to
be needed, keeping in the mind the service time and maximum through-
put of one server. Requesting additional servers can be achieved running
ec2-run-instances. If this command is successful, it will return list con-
taining unique ID for each requested server and this can be used later to
determine, whatever the requested server has started and is running, is still
pending or in rare conditions have failed. When requesting a new server,
it takes some time to copy the image to physical host and start the virtual
machine. For programming logic, it is possible to use separate thread to
watch status of the requested instances and not affecting the main loop. If
the instance is becoming available, it needs to run automatic script to change
the IP addresses in the MediaWiki configuration file and start Apache server.
Addition to this, new servers have to be added to the list of upstream servers
in nginx configuration and reload nginx. Using command nginx and sending
signal with parameter -s to execute following command nginx -s reload

will reload already running nginx configuration. This will spawn new pro-
cesses and sends signal to the old processes. If there are many jobs in the
system, nginx old processes waits until all the requests are served and then
will kill itself. This allows transparent reloading of the load balancer, without
visitor of the web page knowing, that service are restarted, making it possible
to update and reload nginx configuration, without losing any connections.

3.9.2 Removing servers from the cloud

Removing the servers is easier than adding them, as there are only two
steps necessary to do. First step is to remove servers that are going to
put off from nginx upstream configuration and reload nginx. This makes
sure that we do not lose any connection in the process of shutting down
Apache server virtual machine. With command ec2-terminate-instances

instance-id we can terminate already running instance, it will closed down

39

quickly. Going through the steps for adding, keeping eye on already running
instances and removing servers, it will give idea, how auto scaling in the cloud
can accomplished. For further information, how server adding and removing
processes looks like and how the servers are monitored, you have to look at
the CloudController code.

3.10 Framework layout

Framework built by this study supports private (SciCloud running on
Eucalyptus) and public (Amazon EC2) cloud. It is capable of starting nec-
essary services and terminating unneeded services depending on the server
role. Output of this study is the development of three main programs that
will give complete overview of the cloud and have possibility to configure the
cloud on fly. The framework is still in experimental state and should not be
used to run in the real applications.

Figure 3.6: Displaying experiment configuration in the cloud environment

and how the requests are going through. All the servers are located in the

cloud, for reducing network latency, they are located in the same availability

zone.

Figure 3.6 shows experiment configuration and how the serves are con-
nected with each other. This figure shows how requests generated by the load
generator are passed through different servers. All the servers are running
ServerStatus for measuring the performance metrics.

40

3.10.1 CloudController

CloudController is a Java program that takes care of configuring infras-
tructure. It will run predefined commands using Secure Shell (SSH) depend-
ing on the role marked for the configuration on each server. It is capable of
provisioning servers. Using euca or ec2 tools, it can add or remove servers.
These changes are synchronized with nginx load balancer to immediately di-
rect traffic to the new instances and remove servers from the upstream list
to avoid bad responses. Between adding and removing servers, none of the
requests in the system nor upcoming requests are lost. It gathers arrival rate
from nginx HTTPStubStatusModule, this can be used by policy algorithms
to determine amount of servers needed. It will also gather statistics and
performance metrics from running instances, connecting with each instance
ServerStatus program and fetching collected data using TCP (Transmission
Control Protocol) connection. All the gathered statistics include time mea-
sured from the beginning of experiments and outputs are written to files, it
will help easily to compare results and parameters throughout the experi-
ment.

Figure 3.7: Showing interactions between cloud interface and virtual machine

running on the cloud through CloudController application.

Figure 3.7 shows common interactions made by CloudController to con-
trol and monitor the status of the instances. Its main purpose is to gather
statistics from running servers throughout the experiments to see how system

41

acts with varying load, giving vague idea how the requests are distributed
and how loaded the other servers are. There are two ways for provision of
servers in the cloud using CloudController. First way to measure arrivals
rate and run algorithm to determine, how many servers are needed to cope
with such load. Other option is to measure average CPU usage what is gath-
ered from back-end Apache servers and can define threshold, when to add
servers (e.g. average CPU exceeding 70%) or remove servers (e.g. average
CPU drops below 40%).

Adding or removing servers means additional configuration on the nginx
configuration, changing server list in the nginx upstream module. For adding
servers, CloudController will constantly request server state from cloud in-
terface, to see whatever requested servers have been booted and changed
its state for running. If the server changes state from pending to running,
CloudController will send predefined commands to the instance to config-
ure MediaWiki application with correct IP addresses to the memcached and
MySQL servers. When the configuration has finished, it will add the new
server to nginx upstream list and reload nginx. This process for c1.medium
takes on average 3 minutes.

Commands sent to the instances are defined in the files and can be
changed, depending whatever it needs to install additional software or start
additional services. It is possible to download files from public internet site,
to get additional programs or configuration files, or copy them from nginx
instance using scp. The framework is not using any DNS service or static
IP service from Amazon EC2 to define memcached and MySQL locations
in the cloud. This decision was made to reduce the cost of the experiments
and support dynamical allocation, without need to rely on other services.
Without using DNS service, all the traffic generated during the experiment
will stay inside cloud, meaning that no additional payment for bandwidth is
necessary as the traffic is not redirected out of the cloud.

3.10.2 ServerStatus

ServerStatus is a Java program, that is executed at the beginning of the
virtual machine operating system boot. To start it from the boot, execution
command to the start up script /etc/rc.local has to be added. This will
be executed, when the virtual machine operating system has booted up and
running. It works as a server and listens incoming TCP network packets on
port 5555. Every 15 seconds, it gathers performance measures from the cloud
and stores it in the memory. It does not output anything to the console nor
write any statistics to hard drive to minimize resource usage on the server
not to affect other service performances. CloudController will collect data

42

Figure 3.8: Common life cycle of instance running in the cloud and reconfig-

ured while the service change state [53].

gathered by ServerStatus and will save the results on the nginx instance.
There are different ways to connect with ServerStatus for gathering the

statistics. One way is to connect through port 5555 and send messages in
plain text mode (possible to use telnet) or generate HTTP requests, mak-
ing it possible to use web browser to see gathered performance metrics. It
will gather data about current CPU usage, memory usage, hard disk usage,
network usage, Linux load, how many running processes there are and how
many requests are made to the Apache server. ServerStatus includes full set
of different system metrics, that help to measure performance of the server.
It is easy to combine the results, as the ClountController gathers them into
the one place. These parameters can be used by CloudController making
provisioning decisions, do we need to add new servers or remove existing
servers, looking Apache back-end servers average CPU usage.

Possibility to access and see statistics with the web browser gives quick
overview of the current state of servers. These statistics can be also looked
from the ClountController output to check, if everything works as expected.
CloudController provides information about how the memcached is filled
and how many requests to the memcached gets a hit (the requested page is
fetched from the cache). Collecting data and showing them in real time helps
to notice problems early (e.g. one of the Apache servers is not reachable
by nginx load balancer) and restart the experiment. It still needs active
interaction by the user to keep eye on the server and does not include any
kind of warning systems, for example sending e-mail to the user, while one
of the server has become unresponsive or the cache hit ratio is low.

There are some limitations with ServerStatus, but is an excellent tool for
giving feedback about the performance of the server. Its sole purpose is to
track server usage, it does not contain any warning system and, therefore, it

43

is not suitable for live monitoring servers in real life environments. It would
be better do use Nagios and Ganglia combination while monitoring large
number of servers, as there is active support and user base behind it.

Following is an example command how to access ServerStatus statistics
from Ubuntu command line using bash.

$ echo "STATS" | /bin/netcat -q 2 127.0.0.1 5555

3.10.3 BenchMark

BenchMark is a Java program, that is stressing out load balancer and
Apache servers. It uses trace curves to follow the amount of requests needed
and uses URL list to make random page requests. It will output all the
response times with the response code for later analysis. The traffic curve
can be scaled depending of the user needs, it is possible to set maximum
and minimum arrival values (requests per second). User can also define
memcached IP to keep track of cache hit ratio to make sure that everything
is going as expected. With getting cache hit ratio and server response times,
it will give adequate information whenever the servers are ready for running
the full-scale experiment or not. Each experiments conducted by this study
use filled cache as it represents stable system. Looking cache hit ratio, it
helped to determine, when it is the right time to start the experiment.

BenchMark is using Java sockets for generating the load. The requests
are simple and only first line of the response is parsed by the program to
gather information whenever the request was successful or not, other lines
are discarded, buffer is cleaned and socket closed to make sure that servers
do not wait until all the content has been loaded. All responses with code
200 are marked as successful (page redirects from URL lists were removed).
MediaWiki uses error codes to define request state and gives information
about current state of the service. For example, when the MySQL is not
accessible or is overloaded, it will return 503 error and if pages does not
exist, it will return 404 error. There are also nginx error 502, that is given
by Fair module. This is returned, when the Fair module determines, that
there are no more free sockets left to connect with the back-end servers (Fair
is used to limit concurrent connections). Different error codes give an idea,
where or why the error occurred. Sometimes it is needed to visit MediaWiki
web page to see exact error code as the BenchMark tool does not download
requested files.

There are two options for generating the requests. First one is to equally
distribute the requests into one second, but with small load, it does not
present real traffic characteristics as the arrival rate varies. The other option

44

is to use randomly distributed requests that give better characteristics with
the real world applications. Making ramp up test or measuring service time
it would be better to use equally distributed requests as there is not so
much fluctuation in the traffic and is easier to interpret the data (to see
maximum throughput of one server). Under heavy load and using large
amount of back-end servers, it does not differ, if the requests are equally
distributed or randomly distributed for one second as the load balancer takes
care of distributing these requests. If the load balancer is configured correctly
it is not possible to overload back-end servers, while most of the requests
have been done in the first part of the second, back-end servers should work
well with such load as they have enough power to cope with rapid increase
and decrease in the load curve. Randomly distributed traffic varies between
seconds and do not guarantee the load defined by the user. Calculating
random arrival times can also affect amount of load that program is able to
generate and therefore using equally distributed load, the load generator is
able to send more requests to the server.

3.10.4 Additional HTTP server

For each instance, an extra HTTP server is running on the port 8080 and
home directory set to /mnt to be able to download experiment results from
the cloud. Folder /mnt uses external space, it does not use image file system,
and therefore has more room. By default, Amazon EC2 built in file system in
the image has 3 to 10GB total virtual disk space depending which instances
are used. When running large scale experiments, this room can quickly run
out and therefore it has been decisioned to use /mnt to store temporarily the
results. It is also possible to use scp program to copy the results from cloud
using private key to access the instance. It has to make sure, that folder
/mnt has set proper permissions, so the other programs can access and write
there.

3.10.5 Distinguishing different servers by their role

MediaWiki framework is using different servers and roles to run the ser-
vice. There are three options how to implement configuring the cloud. For
example, MediaWiki configuration file needs correct IP addresses for mem-
cachend and MySQL servers, these modifications have to be done for all
the Apache back-end servers. In order to distinguish different servers, it is
needed to assign tags or keep records of the running instances. One option
is to use Amazon AWS console to tag running instances. These tags can be

45

filtered out by using REST services for EC2 to query the requested servers.
This option requires that application takes care of configuration of different
servers, has private and certificate key copied to the cloud to access the EC2
services and could request list of running servers. Because of security reasons,
it is not a good idea to store your private and certificate key on the virtual
image and also using key hashes for running ec2-describe-instances as they
might be grabbed by third persons or if the image is made public and user
does not remember, that the key is stored there. This allows access to your
key and thus others are able to run the instances and access cloud behalf
of the key owner. When using AWS console to tag running instances, user
must copy its keys to the cloud to make sure that he can use Amazon EC2
cloud commands to gather information about running instances and filter
out correct roles for each instance.

Important caveat. When configuring IP addresses for MediaWiki con-
figuration, it is important to use private IP address as it will reduce the
latency and also no additional data transfer fees are taken as the traffic is
inside the cloud. When using public IP address, the traffic is redirected to
the outside of the cloud, thus increasing the latency and having to pay for the
traffic. Short experiment generating 15000 (4 request per second for a hour)
requests can use 1 GB traffic between load balancer and back-end servers.
1 GB traffic will cost 5 to 12 cents depending how much traffic has been
already processed in the US East region.

Next option is to define roles based on private IP addresses and configuration
is done solely relying on the predefined server list. This is used by CloudCon-
troller. In this way, CloudController is aware of servers running in the cloud
and which roles they have. Connecting with instances are done through SSH
(Secure Shell) using private key to access them. With SSH, it is possible to
execute commands and copy new files in to the server. When setting up the
cloud for the experiment, one instance needs to have CloudController already
copied or bundled with the image (make sure the private key is copied, not
stored on the image). CloudController support two types of configuration,
one is when user defines which servers to use and which roles to assign, other
option would use CloudController automatic function to retrieve list of run-
ning servers from the cloud and assign the roles automatically and make the
configuration. CloudController uses predefined commands in the text files to
configure the cloud instances (copying, removing files, changing permissions,
executing applications, etc), these instances can be changed by the user, de-
pending what he or she wants to achieve. When necessary software is copied
and services started, user needs to connect to worker instance and execute

46

BenchMark application to stress out the load balancer. Some parts of the
deployment has been still left to be done by the user, as some specific task
may needed to be done before starting full scale experiment (e.g. filling the
cache).

Example of secure shell, how to access instance in the cloud and execute
command.

$ ssh -o StrictHostKeyChecking=no -i private.key ubuntu@host ’ls’

SCP (Secure Copying Protocol) can be used to copy files from local machines
to remote machine. It uses same parameters as Secure Shell. In addition,
user has to define which file or files he wants to copy and where they are
copied. It is also possible to change file name.

$ scp -o StrictHostKeyChecking=no -i private.key /home/ubuntu/local.txt

ubuntu@host:/home/ubuntu/

If user is interested in making experiments with empty MySQL cache, he
has to call out MySQL query RESET QUERY CACHE. It will clear the cache of
recent queries. For clearing cache for memcached, one option is to restart
the service, next option is to send command flush all through TCP to
memcached (see shell command at the bottom) or modifying MediaWiki
configuration file for invalidating cache (if $wgCacheEpoch is not modified).

$ echo "flush all" | /bin/netcat -q 2 127.0.0.1 11211

47

Chapter 4

Measuring Performance of The

Cloud

This chapter gives overview of statistics gathering utilities, that can be
used to measure performance of the servers running in the cloud. Monitoring
server performance metrics gives good overview how the servers are working
in the cloud and it will help to solve bottlenecks and other issues, that can
occur while stress testing the system.

4.1 Using performance measuring tools un-

der Ubuntu

Ubuntu was used as a primary operating system, that has many useful
tools installed by default. These tools are capable of measuring performance
of the machine and monitoring the current state. Ubuntu repository gives
good set of applications and programs, that have built in functionalities to
measure and monitor performance of the server. They can be easily installed
using aptitude tool.

Ubuntu is storing some of the CPU, network, IO and memory metrics in
the /proc virtual directory, that can be used to read about the current state
of the server. It is possible to read server metrics, without having to install
extra tools from repository.

4.1.1 Apache tool AB

Important caveat. Benchmarking tools are meant for generating high
load for servers they are tested and, therefore, stressing out the system to get

48

idea of its limits. These tools should not be used for public services and web
pages, as it is more-or-less a tool for a distributed denial-of-service attack
(DDoS). One might look carefully, which systems it starts to test and make
sure that it does not affect other running services on that system. It is the
best to do these benchmarks in closed systems.

To check performance of the cloud and measure performance metrics, we
need to stress test the system. AB (Apache Benchmark) [18] is utility that
comes along with Apache installation. AB is simple tool to measure through-
put of the web server using different parameters. This tool supports multi-
threaded requests, giving possibility to define how many requests should be
generated and how many of the requests should run in parallel. Because
of its robustness and simplicity, it does not support any flexibility defining
custom load curve or having varying traffic. It is good to measure maximum
throughput of the server or getting service time of the system. It should be
tested on the same network (availability zone) or otherwise bandwidth limit
and latency could affect the results. Using Ubuntu manual man ab, it gives
following description for this tool:

ab is a tool for benchmarking your Apache Hypertext Transfer
Protocol (HTTP) server. It is designed to give you an impression
of how your current Apache installation performs. This especially
shows you how many requests per second your Apache installation
is capable of serving.

4.1.2 Ubuntu sysstat package

Sysstat package can be installed using command line tool aptitude: sudo
apt-get install sysstat. This package installs various shell tools that
can be used to collect system performance metrics. Using cron job, it is
possible for certain intervals collect the data into file and monitor system
performance. Cron only allows running its jobs with minimum in 1 minute
intervals. Following is an example how to access cron and add job in to the
list.

$ crontab -e

m h dom mon dow command

*/1 * * * * sar -u 1 1 >> /tmp/io usage.txt

With sysstat, important tools for gathering statistics are sar and iostat.
With sar, the user can get overview of computer performance as it logs all
the necessary performance measurements in 10 minute intervals (when the

49

Figure 4.1: Standard output of iosatat command.

Figure 4.2: Standard output of sar using parameter to show memory usage.

user installs it first time, he/she must enable logging in the configuration
file /etc/sysstat/sysstat). It is also possible to call out sar directly from
command line to gain information about current state of the system. Com-
mand sar 1 10 will output for each second ten times current average CPU
usage. Command iostat -k is useful, when trying to measure information
about disk operations and speeds. Parameter -k will force to show disk speed
and kilobytes, by default, operations are used for the counters.

Using combined shell script of previous tools, it is possible to gather
system performance statistics to monitor the usage and health for different
servers. This gathering process can be built into web service, that can be
accessed by other servers or use ssh to run the commands remotely.

4.2 Using third party tools

Here is a list of some of the popular third party tools, that can be used
for measuring server performance in the cloud.

Figure 4.3: Standard output of free to get information about physical mem-

ory usage.

50

Figure 4.4: Standard output of sar using parameter to show CPU usage.

Figure 4.5: Standard output of ifconfig to gather network interface traffic

bandwidth.

Figure 4.6: Standard output of uptime to see information how long the

computer has been running and also get Linux load for 1, 5 and 15 minutes.

Figure 4.7: Standard output of ps with various options to gather how many

processes are working. Because command itself counts as a single process,

these results should be subtracted by 1.

51

4.2.1 RRD database

Next tools collectd and cacti are using RRD (Round-Robin database) to
store its data. Round-Robin database is a flat file structure. The RRD works
as a circular array, that has no end or start point. Because of this structure,
the RRD files are always in fixed size. It contains information how the file
is structured and what variables it is containing at the header section of the
file. The other part of file will contain actual data. These data are divided
into the separate sections, supporting different time spans and density of
data (i.e. measurements for each seconds, weeks and months). This will
be useful when drawing the graphs for longer time span. RRDTool is used
for drawing the graphs from RRD files. Using different resolutions and time
spans, it will automatically select which data to use for plotting purpose.
With bigger time spans, it will use measurements averaged from small units
to larger units (from 10 second intervals to day, from day intervals to month
etc). This will reduce time it takes to draw graphs, when trying to plot
CPU usage for one year, but also the file size is fixed and smaller. Storing
CPU usage for one year with 10 second interval would not be feasible. Using
different resolutions and arrays in RRD file, it is possible to achieve data
gathering for larger time spans than 1 week.

4.2.2 Collectd

Collectd is tool written in C++ and it can be used to measure different
statistics in the server. It has built-in plug-ins that eases gathering statis-
tics from different servers to one central server, it is possible to define one
central collectd server, that will gather other collectd servers statistics or
use multicast support. Main server for collectd will create for all the other
servers different folders in the file system, where RRD files are created and
data fetched from the client servers added. Multicast will be good to use
in the cloud environment, where instance IP addresses are changing while
conducting new experiments, thus reducing effort to configure IP for client
servers.

By default, collectd gathers performance metrics at interval 10 seconds.
This can be modified to reduce the traffic, if using server-client configuration.
For local collection, it uses minimal amount of CPU to process requests as it
have highly optimized code written in C++ language and does not impact
the system performance, while measuring different metrics. With default
configuration, one RRD file takes up to 0.1 megabytes in the file system and
all the collected data with various RRD files can take up to 30 megabytes.
Plugin rrdtool will write out gathered metrics into RRD files. This should

52

be activated on collectd server. Using collectd as server-client configuration,
it is needed to use built-in plug-in network, this will gather statistics from
different servers into one server. One option would be to copy RRD files
from the servers, but because of large size, it is not feasible to copy them at
regular intervals, and network plug-in should be used when we want to draw
the real time graphics.

Collectd, in comparison to Ganglia (one of the most popular tools for
visualizing server performance in clusters), is not a visualization tool, it does
not have built-in function to show the graphs of the server performances.
RRDtool created by Tobias Oetiker [33] has functionality to draw the graphs.
There are some examples added to the collectd package, that uses RRDtool
to draw graphs using PHP or CGI, introducing possibilities that collectd
with RRDtool can provide.

Amazon EC2 cloud gives great variety of servers to be used and the archi-
tecture might be different (32bit or 64bit). If the architecture stays the same
for all servers, then there is no problem collecting and drawing the data using
collectd. If some servers are using 64bit architecture (e.g. database server,
needing more CPU power or memory) and some are using 32bit architecture,
to merge these graphs or draw them from another machine, the files have to
be converted. With rrddump it is possible to convert RRD files into XML
(Extensible Markup Language). They are at least 10× bigger, so it would
be wise to pack the results before downloading to local or another machine.
Converting should be done in the same machine (otherwise rrdump is not
able to read values from the file) or with the same architecture. If the files
are converted, it is possible to download them to another machine, that uses
different architecture. Program rrdrestore is used to convert XML files
back to RRD format. This should be done, where the graph drawing logic
is done. Otherwise trying to draw different architecture RRD graphs will
throw an error.

4.2.3 Cacti

Cacti is an application bundle that consist of web application and system
tools to gather various data and visualize it. It has administration interface,
where user can set up new graphs or download new ones from Cacti homepage
and export them. Public interface gives information about metrics gathered
from servers. The system itself is using RRD files to store the data. It
is possible to add as many servers into the list as needed and role for each
server can be assigned. Role will reduce user input, as they contain templates,
what graphs and what metrics to gather. There is no need to gather MySQL
statistics for memcached server.

53

Figure 4.8: Showing Linux load gathered with Cacti and drawn by Cacti

using RRDTool.

During writing this thesis, Cacti was tested to measure the performance of
servers in the cloud, but unfortunately gathering the data was CPU intensive
and there were several spikes in CPU usage. Cacti default gathering interval
is set to 5 minutes, which should give enough precision for longer time and
should hold network traffic as minimum as possible when transferring data
across different servers. Even though the gathering is done in 5 minute
intervals, it can generate spikes in CPU usage, while gathering parameters.
There was at least 20% of CPU increase, when gathering various information
(CPU, memory, network traffic, disk usage) from the server. For gathering,
Cacti uses PHP script, that has added to cronjob list to fetch necessary data.
While gathering metrics for 10 graphs, it took around 10 seconds for single
server to process the data. Increasing the measuring points to 80, the time
it takes to collect the statistics increased at least 60 to 100 seconds. Cacti
gathering process was highly affecting CPU usage and affecting performance
and speed of the service.

Cacti homepage suggested using of Spine (Cactid, written in C language)
for polling the performance metrics instead of the default PHP. Spine sup-
ports multiple threads and should gather statistics much quicker way and
with less overhead. Even though going over to Spine, there were still spikes
in the performance graphs. The CPU usage decreased compared to the PHP
poller, but still the spikes existed and affected service performance.

Cacti is not using caching when drawing graphs, meaning that when
browsing between different web pages, the graphs have to be drawn again
by the RRDtool impacting the server performance, where the graphs are
collected. This means, that the service has to run in a separate server from
the framework or it should be looked only at the end of the experiment.

Figure 4.9 shows clearly, that for every 5 minutes there are spikes, that

54

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 1 1.2 1.4 1.6 1.8 2

C
P

U
 u

ti
li

za
ti

o
n

 [
%

]

Time [hours]

Apache [%]

 100

 150

 200

 250

 300

 1 1.2 1.4 1.6 1.8 2

R
es

p
o

n
se

 t
im

e
[m

s]

Time [hours]

response time [ms]

Figure 4.9: Fraction of the experiment running 10 servers, showing average

CPU usage for Apache server and benchmark response time. For each 5

minutes, there is a spike, because cacti starts to measure metrics of the

server.

are caused by Cacti, trying to measure the different performance metrics.
The gathering process seemed to work at least 30 seconds and affected the
service performance. For each spike, the response time increased at least
100ms. Figure 4.10 shows 1 and 5 minute load for Ubuntu and indicating,
that too much resource is used while collecting data. This data collection
did not resulted in lost traffic for that hour, but still can be considered as a
performance issue.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 1.2 1.4 1.6 1.8 2

L
o

a
d

Time [hours]

load 1
load 5

Figure 4.10: Showing spikes caused by Cacti, when collecting different per-

formance metrics from the server.

55

4.3 Framework Performance Measuring Tools

While trying different tools, there was not a single good tool for the frame-
work to collect performance metrics from the cloud. Idea was to have simple
tool for giving current performance measurements through HTTP request.
Collectd is easy to install, configure and get it running, but usage of RRD
files to store the data complicated the use, as there is need to use RRDtool
to fetch measured values and synchronize the results with response times col-
lected by BenchMark. Synchronizing different files together was becoming
complex when using dynamical allocation policies as the timestamps were
different for each file for each server. The process was not straightforward
and, therefore, collectd was not used in the framework. Collectd speed and
performance was good and did not affect other services running in the server,
even if it was using small interval and frequently collecting the data. Cacti
used also RRD files to store the data. However, its performance was not
satisfactory even while collecting data with 5 minute intervals.

One option is to use sar utility, gathering statistics with 10 minute in-
tervals (or use cron job to collect data into one file). Tool sar is giving
metrics for different parameters and the previously measured values can be
retrieved again. But for this option, the time interval was too large (1 hour
experiment means, that you have only 6 measuring points) and still some
synchronization has to be done at the end of experiment to align the values
with BenchMark results.

Solution for gathering the metrics was to have for each virtual machine
a web service, that will run sar and iostat commands and parse the out-
put to gather performance metrics. These metrics are kept in the memory,
no output or files are written. Only way to access these stored metrics is
to connect through network with the service and it will return information
about gathered values. There is a central program running on nginx server,
that is aware of running virtual machines in the cloud and connects for cer-
tain time periods with each server and retrieves values collected by the web
service. This solution helped to collect the performance metrics of all servers
into one location using timestamps. These collected values can be easily
compared with timestamps generated by the BenchMark utility and no fur-
ther synchronization has to be done at the end of the experiment to put
the results together. ServerStatus program has been built, that will take
care of collecting and parsing performance metrics from instance for each 15
seconds and listens incoming connection. Logic for collecting the statistics
from ServerStatus is done in CloudController that maintains list of running
servers and knows, which servers have to be visited to gather the statistics.
For each gathering phase, CloudController shows in its output CPU, mem-

56

ory and network usage for each server, making it easy to keep an eye on the
experiment.

One option was to run sar and iostat commands through ssh (Secure
Shell), but under heavy load handshake, secure connection channel establish-
ment and authentication will take significant amount of time and might fail
to collect the data, making it unusable at higher loads.

Figure 4.11: Modifying ServerStatus code and using JavaScript, it is possible

to draw graph of the CPU usage that can be viewed when opening browser

on port 5555.

57

Chapter 5

Preliminary Experiments and

Evaluation of The Framework

This chapter overviews the experiments conducted to learn MediaWiki
characteristics. This gives overview how well the framework scales and the
maximum throughput of the servers. Experiments help to understand the
system behaviour under high load, whether it would be possible to optimize
the service or one of its components and what would be the most suitable
configuration to run the services in the cloud. Putting servers under high
load will help to determine maximum throughput of each server. This value
can be used for scaling purpose to know, when it is the right time to add
servers and when the servers should be removed from the cloud.

Conducting experiments will help to find possible bottlenecks in the sys-
tem. As the service configuration is complex, there is no single failure point
and without knowing the characteristics of application, there is no under-
standing where the slowdowns can occur. This chapter will give experi-
ments for different configuration, where the configuration files of services are
changed and different Amazon EC2 instances are used. If not told other-
wise, experiments running the MediaWiki application have been done with
c1.medium Amazon EC2 servers. Some of the servers can be downgraded,
e.g. memcached, as during the experiments it is not possible to overload
the memcached, but to have comparison between different services and how
much resources they use, same server types are used for all the servers.

Experiments conducted here to measure service performance were only
querying dynamical pages (PHP files). Static files (CSS, pictures, JavaScript
etc) were left out, as the service time for these two requests is too different
to load balance in the same manner between back-end servers. There is a
need to define another upstream load balancing group for the static pages on

58

different servers. Another issue with the static pages is, that the servers are
capable of handling more requests, meaning, that there has to be deployed
more load generators to reach the increased load and using more servers
means, that cost of conducting the experiments will definitely increase.

5.1 Importance of experiments and stress test-

ing

Experiments for stress testing the system have been a part of a QoS
(Quality of Service) for a long time. It has important role to determine
system flaws before it is going to the public and the system can be considered
as a final product. It gives performance measures and throughput limits for
each service, giving better vision in making capacity planning. Poor QoS
can lead to frustrated customers, which tends to lead to the lost business
opportunities [46]. QoS includes measuring time it takes to process single
response and measure server overall throughputs. Increase in response times
means, that the jobs are staying longer in the system, eventually leading into
backlogging and making system unresponsive. Longer response times will
keep off potential customers, as they will not want to waste their time for
waiting when the new pages will be rendered. Without making stress testing,
it might lead to following two outcomes [45]:

1. Service will fail at worst possible time, generating lots of frustrating
customers or losing important transactions.

2. While bottlenecks happen in the system under heavy load, system ad-
ministrator might not be aware, where or why they happen and finding
the problem solution a lot harder.

5.2 Identifying most suitable configuration

Amazon gives great number of different server types, that can be started
in the Amazon EC2 cloud. They vary in CPU speed, CPU threads, memory
amount, IO/Network performance and architecture (32bit or 64bit). For
example m1.small and c1.medium uses 32bit architecture and, therefore,
when building image for the Amazon, it is not possible to run the same
image on servers that are using 64bit machines. In order to achieve it, it is
necessary to re-bundle the same image for 64bit machines.

59

This study was looking for the best server type to be used from Ama-
zon EC2 cloud, when running MediaWiki application in the cloud. Exper-
iments with instances m1.small, m1.large and c1.medium were conducted
and performance measured. Servers m1.small and c1.medium shares the
same amount of physical memory (1.7 GB), but the latter one has 5 EC2
units of CPU power with 2 virtual cores and m1.small has only 1 EC2 unit of
CPU power with single core. 1 EC2 unit is approximately equal to Pentium
XEON 1.2GHz processor [10]. Instance m1.large has 4 EC2 units of CPU
power with 2 virtual cores and has more memory (7.5 GB) than previous
instances. Previous tests in the SciCloud have shown that Apache servers
running MediaWiki application is CPU bound and, therefore, most suitable
configuration would be to use servers that have more CPU power. Read-
ing characteristics for each server type, the most suitable server for running
the MediaWiki should be c1.medium. It has been proven by Cloudstone
paper [44] that when using High CPU instances (e.g. c1.medium), the per-
formance is better compared with Standard instances, as the most of the
applications are CPU bound, meaning that giving more CPU power will
significantly increase the throughput. Liu and Wee [50] demonstrated that
m1.small instance was more CPU-bound, whereas c1.medium instance was
usually bounded by a network bandwidth (800 Mbps).

CPU speed in Amazon EC2 cloud depends on two factors: (i) how much
resources virtualization gives for the instance and (ii) physical host CPU
speed and memory bandwidth. Information about CPU given for the in-
stance can be looked from Ubuntu under virtual file /proc/cpuinfo. In-
stance c1.medium was mostly using CPU E5410 @ 2.33GHz (6MB cache)
in us-east region. There were occasionally servers working with lower fre-
quency, e.g. E5506 @ 2.13GHz (4MB cache). Looking the results of ex-
periments, there was clear difference that servers with smaller clock speed
had maximum throughput smaller. While E5410 was capable of serving 30+
requests per second at maximum (with all the configuration optimizations),
E5506 was little bit slower and was able to serve only 26+ requests per sec-
ond. As the request complexity for different pages differs and performance
loss of virtualization [57], it is not possible to give the exact results, but the
estimates of average. Following command can be used to look CPU related
information, when using Ubuntu operating system.
$ cat /proc/cpuinfo

60

5.2.1 Experiments with m1.small, m1.large and c1.medium

instances

For selecting the best instance from the list, it would be good to perform
the comparison between the different instance types. These comparisons
have been performed based on the ratio between instance hour price and
how many requests one instance is capable of serving as a maximum with
one hour. Amazon EC2 pricing policy takes charges for full hour, making
it reasonable smallest time unit to compare the results. Running instance
for one hour the m1.small instance costs 0.085$, c1.medium instance costs
0.17$ and m1.large instance costs 0.34$ in Amazon us-east region [20].

Two types of experiments were conducted for different instances to mea-
sure (i) service time (making one request for each second) and (ii) maximum
throughput (increasing load in certain time period). All the experiments per-
formed here have necessary optimization already done, meaning that mem-
cached is running and filled with pages and PHP is using XCache to improve
speed of showing dynamical pages. Service time was calculated by taking
average response time for one hour experiment, where for each second, one
request was made. This would use minimal load for the server and theoret-
ical value of maximum throughput can be calculated. Notice that two core
machines are able to serve twice as much. If having service time 100 ms,
it means that for one second one core machine is able to serve 10 requests
and two core machines are able to serve 20 requests. Second experiment
was conducted to measure the maximum throughput of the servers. This
was achieved using incremental ramp up test, where for certain time period,
load was increased by one unit (request per second). This will give enough
information to calculate the price for single request, using estimated value
how many requests one server is able to process in one hour and what is cost
of server. Most suitable instance should have lowest cost for one request.

5.2.2 Experiments configuration

The configuration consisted of one Apache server, one nginx server, one
memcached server, one MySQL server and one load generator instance. In-
stances m1.small, c1.medium or m1.large used as Apache depending of the
purpose of the test. Other servers were selected c1.medium to make sure, that
the other services are not slowing down the Apache instance and the compar-
ison would be fair. It was important to run the experiments with the same
requested instances (nginx, MySQL, memcached) and they were located in
the same availability zone to reduce latency. Running with the same instances
is vital as it might significantly affect end results. For example, if requesting

61

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180 200

D
is

tr
ib

u
ti

o
n

 [
%

]

Response time [ms]

c1.medium
m1.small
m1.large

 0

 1

 2

 3

 4

 5

 6

 7

 8

 60 80 100 120 140 160 180 200

D
is

tr
ib

u
ti

o
n

 [
%

]

Response time [ms]

c1.medium
m1.small
m1.large

Figure 5.1: Instance m1.small, c1.medium and m1.large service time dis-

tribution. Left side shows service time cumulative distribution.

new servers and for some reasons memcached or MySQL server is working
with lower speed (host system wear, different CPU), it will not give us com-
parable values as the service speed is affected by other parameters. Load
generator used the same URI list for request to remove randomness of one
experiment getting slightly smaller page requests than others, meaning that
the pages are served faster and the pages were requested in the same order.
Throughout the experiment, memcached hit ratio was over 97%, meaning
that the most of the pages were fetched from the cache. This will represent
stable system, as for typical web server running for a long time, the cache
should be mostly filled and response times should not vary. It is easier to
determine service time, as the variation is smaller. Purpose of the ramp up
test was to check maximum throughput and how it works, when overloading
the system. To achieve this, maximum connections were increased to 30 for
nginx and Apache.

5.2.3 Measuring service time

First test was to measure the service time for each instance, to know how
much time it takes to process one job by the server. Note that instances
c1.medium and m1.large use two cores, meaning that two jobs can be pro-
cessed concurrently. Service time was determined with the experiment, where
for each second one request was generated. Average service time can be used
also for different algorithms to calculate how many servers are going to be
needed to successfully respond for every request entering into the system.

Table 5.1 shows the results for the service times between different instance
types. Using mean or median value, it is possible to calculate theoretical
maximum throughput of the server. This value can be validated with the next

62

Percentile m1.small (ms) c1.medium (ms) m1.large (ms)

min 62 57 56

25% 108 66 65

50% 140 70 68

75% 149 74 74

90% 165 80 82

95% 175 83 94

99% 210 96 131

max 459 278 367

Table 5.1: Service time distribution for m1.small (mean 132 ms), c1.medium

(mean 71 ms) and m1.large (mean 71 ms).

experiment, where maximum throughput is measured. Instance m1.small is
able to serve half of the requests faster than 140 ms. Using formula 5.1,
theoretically m1.small is capable of handling 7 requests per second.

µ =
1

service time
× CPUcores (5.1)

With high CPU instance (c1.medium), half of the requests with in a
70 ms, meaning that for one second, one core can process 14.29 requests per
second and two cores are capable of serving 28 requests per second. In the
same way, instance m1.large is capable of handling half of the requests with
in a 68 ms and because of two cores, should be capable of serving 29 requests
per second.

Instance m1.large response time distribution is similar to c1.medium.
This can be related, that they both use 2 cores to process the request. The
difference comes with maximum throughput, where m1.large has 4 EC2
units of CPU power (c1.medium has 5 EC2 units), meaning that with the
same physical core, it has fewer CPU cycles to use. Next experiment showed
that at least 26% of the CPU went to the steal, but for c1.medium, the
number was around 6%.

5.2.4 Measuring maximum throughput

Second experiment was to test overall throughput of the system, making
ramp up test, where load was increased in every two minutes by 2 requests per
second. All the experiments consist also network latency, but it is relatively
small and mostly it was less than 1 millisecond and, therefore, it is not

63

consider as an important factor to be interested, while comparing different
server types.

In this experiment, the load was increasing from 1 request per second
to 30 requests per second with in 1 hour. Load generator requested same
pages in order to have fair comparison. Theoretical throughputs have been
calculated from the previous experiments.

Single Apache server, running c1.medium, had the largest throughput
compared to the others servers. It was capable of serving 28 (see figure 5.3)
requests per second. Response times during the ramp up experiment were
stable and did not fluctuate, some of the requests were larger, meaning that
for some time periods there were more jobs in the system than the server
was capable of handling, this is why there were several pikes in the response
time. Another problem with this experiment was, that when starting ex-
periment with Apache from the cold start (instance was just booted), there
weren’t enough workers started by the Apache. Center of the experiment,
the response time was slightly increased as the workers were not able to
serve the incoming requests. When Apache was spawning new workers, the
response time dropped and everything worked again as intended. Observing
this behaviour through experiment, the experiment was restarted. Before
re-running, Apache server was spammed with large amount of request, to
make sure that there were enough workers by Apache to process the requests
to remove the strange waves and increases in the response times.

Even though c1.medium and m1.large use the same amount of cores
and the service time experiment shows the similar results, the latter instance
has been capable of only serving 18 requests per second at maximum (see
figure 5.4). It was observed, that for this instance there was a large CPU
steal usage (over 25%), meaning that the Apache server was not capable of
fully utilizing CPU. The situation with m1.small was even worse, as more
CPU usage (over 55%) was blocked by virtualization and the system was
capable of serving only 6 requests per second (see figure 5.2).

5.2.5 Summary of different instance types performance

The results of different comparisons as well as the selection of the best
option is presented in table 5.2. We were seeking instance that is capable
of serving one request at the smallest possible price maximizing throughput
over the cost.

In the ramp up experiment, the load was increased for every 2 minutes
and statistics were gather for every 30 seconds, thus having 4 measured values
for each load. From the figures 5.2, 5.3 and 5.4, the response time average
is taken for every minute and showing minimum and maximum values for

64

 0

 200

 400

 600

 800

 1000

 1200

 0.2 0.4 0.6 0.8 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

R
es

p
o

n
se

 t
im

e
[m

s]

A
rr

iv
al

 r
at

e,
 λ

 [
rp

s]

Time [hours]

response time [ms]
throughput [rps]
arrival rate [rps]

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

C
P

U
 u

ti
li

za
ti

o
n

 [
%

]

A
rr

iv
al

 r
at

e,
 λ

 [
rp

s]

Time [hours]

CPU usage [%]
CPU steal [%]

throughput [rps]
arrival rate [rps]

Figure 5.2: Instance m1.small response time and CPU usage for ramp up

test. In the case of this instance type server was able for 6 requests at

maximum and then the service became unresponsive. Only 40% of the CPU

cycle was enabled for user. Most of the CPU cycle, over 55%, was going to

steal, meaning that virtualization was dividing available CPU usage to other

instances on the same physical machine.

that minute. These graphs show the performance for each instance to get
understanding, how they work under the high load. Overloading m1.large

server shows clearly, that when exceeding the threshold of the maximum
throughput, the service degrades and actual throughput decreases. Using
configuration for all the instances to allow 30 maximum clients, there were
more jobs coming into system and overloading the system. This will explain
why for m1.large the throughput will decrease, while the arrival rate will
increase. This can be easily fixed reducing the maximum number of clients
in Apache configuration or using connection limit for load balancer.

It was interesting to see that for m1.large instance, serving one request
costs more money than for m1.small. Customers of Amazon EC2 pay extra
money for the extra memory (7.5 GB of memory) while using m1.large

instance. However, this amount of memory is not necessary for running
MediaWiki on Apache, as it will be never fully used. This is paying more
money for the resources that actually will not be used. This instance would
be better to use for memcached or MySQL as there is more room in the
memory to cache the requests and objects. The best option for running
MediaWiki application with the framework was to use c1.medium instance
(1.7 GB of memory). Memory consumption was small and it was cheaper to
use compared to the other instance types, as one request was significantly
less expensive.

65

 0

 200

 400

 600

 800

 1000

 1200

 0.2 0.4 0.6 0.8 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

R
es

p
o

n
se

 t
im

e
[m

s]

A
rr

iv
al

 r
at

e,
 λ

 [
rp

s]

Time [hours]

response time [ms]
throughput [rps]
arrival rate [rps]

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

C
P

U
 u

ti
li

za
ti

o
n

 [
%

]

A
rr

iv
al

 r
at

e,
 λ

 [
rp

s]

Time [hours]

CPU usage [%]
CPU steal [%]

throughput [rps]
arrival rate [rps]

Figure 5.3: Instance c1.medium response time and CPU usage for ramp

up test. Server was able for 28 requests at maximum and at the peak the

average response time increased to 3 seconds and server started to become

oversaturated.

 0

 200

 400

 600

 800

 1000

 1200

 0.2 0.4 0.6 0.8 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

R
es

p
o

n
se

 t
im

e
[m

s]

A
rr

iv
al

 r
at

e,
 λ

 [
rp

s]

Time [hours]

response time [ms]
throughput [rps]
arrival rate [rps]

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

C
P

U
 u

ti
li

za
ti

o
n

 [
%

]

A
rr

iv
al

 r
at

e,
 λ

 [
rp

s]

Time [hours]

CPU usage [%]
CPU steal [%]

throughput [rps]
arrival rate [rps]

Figure 5.4: Instance m1.large response time and CPU usage for ramp up

test. Server was able for 18 requests at maximum and at the peak the average

response time increased to 5 seconds and server was heavily overloaded.

66

measurement m1.small m1.large c1.medium

min. response time 62 ms 56 ms 57 ms

avg. response time 132 ms 71 ms 71 ms

max. response time 459 ms 367 ms 278 ms

max. throughput 6 rps 18 rps 28 rps

max. CPU steal 56.04 % 25.14 % 6.23 %

cost per hour 0.085 $ 0.34 $ 0.17 $

price per request 3.935× 10−6 $ 5.247× 10−6 $ 1.687× 10−6 $

Table 5.2: Comparison between different instance types, showing their capa-

bilities, cost and how much single request will cost (this is calculated using

estimated value how many request one instance is capable of serving in one

hour, dividing the total request count with the instance price for one hour).

Response time statistics are taken from service time experiment.

5.2.6 CPU cycle waiting behind Xen hypervisor

Figure 5.1 shows how response time distribution differs for m1.small

instance, having one portion of the requests served faster than the other por-
tion. This can be caused by, because some of pages are relatively short and do
not need excessive CPU usage to process the content, but for others it is nec-
essary to process more objects through, meaning that operating system uses
more CPU while processing these requests. But because of virtualization and
having limited amount of CPU power given, the Xen hypervisor is blocking
CPU usage for virtual image, meaning that for processing request the appli-
cation has to wait until CPU usage is allowed again, making the response
time longer. Therefore, we selected out randomly two requests to compare
the page complexity and time it takes to serve it. First selected page (Stron-
tianite) was relatively short and second page (Summary of Decameron tales)
was larger and contained more items and links. Processing larger page was
using more CPU and because m1.small instance is allowed to use 44% of
the CPU for one core in the virtual environment, the CPU usage is being
blocked away by virtualization, increasing response time for larger pages at
least 2×.

There is a reference [49], that instances, which have large CPU steal usage,
is not suitable for real time application (like web server) where under the
heavy load all the CPU power is needed. It is better to run web applications
at a constant speed without need to worry about virtualization taking away
CPU cycles. Results for m1.small are pretty bad, as it is really not capable

67

of serving adequate number of requests. At the peak it was able to serve 6
requests per second that was too few taking into account today’s traffic and
bandwidths. It will be easy to overload the server with excessive incoming
requests, making it harder for dynamically adding new servers depending of
the load, as there is a need to run extra spare servers or add servers in pairs
(while the load increases, at least 2 servers should be added).

During the experiments, it was observed, that when Apache was spawning
new processes, there were some peaks in CPU usage affecting the performance
of the server. If MaxClients was set to high and server reaches maximum
throughput, it was no longer capable of serving excessive request, but would
generate many new processes. This moment, the maximum throughput de-
creases, as more CPU will be used by Apache to manage the PHP workers.
This can be also noticed while looking Apache process count and CPU usage.
There seems to be a common trend.

5.2.7 Measuring CPU utilization with ramp up

To see how CPU utilization changes over time for different servers, an-
other ramp up test with c1.medium instances was used (see figure 5.5). Next
experiment shows results for ramp up stress test, where for 1 hour, load from
1 request per second to 150 requests per second was generated in the increas-
ing manner. The configuration consisted of 5 Apache, 1 nginx, 1 MySQL and
1 memcached servers. Using Fair module, at the beginning of the experiment,
most of the requests were going to the first two servers, as the other three
were staying in idle state. At 25 requests per second, all the 5 servers were
getting requests. This behaviour happened, because with the small loads,
fewer servers were capable of serving request faster than they were coming
in, meaning that the server became again into the idle state and, therefore,
the next request is served by the same server. This configuration was using
Fair module with nginx using least round-robin algorithm to distribute the
load.

At the middle of the experiment, the jobs were evenly distributed and the
CPU utilization stayed the same between Apache servers. Further increase
in traffic will disrupt the evenness, this shows that some of the instances are
faster and capable of serving request with fewer CPU utilization. Through
different experiments and tests conducted by writing this thesis, there were
some server running as c1.medium acting unexpectedly and capable of serv-
ing only 20 requests per second with 100% of CPU utilization, others have
been able to serve sometimes almost 34 requests per second. For servers per-
forming only 20 requests per second, reboot, service restarts and other things

68

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1
 0

 25

 50

 75

 100

 125

 150

C
P

U
 u

ti
li

za
ti

o
n

 [
%

]

A
rr

iv
al

 r
at

e,
 λ

 [
rp

s]

Time [hours]

Apache, %
arrival rate, rps

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1
 0

 25

 50

 75

 100

 125

 150

C
P

U
 u

ti
li

za
ti

o
n

 [
%

]

A
rr

iv
al

 r
at

e,
 λ

 [
rp

s]

Time [hours]

arrival rate, rps
MySQL, %

nginx, %
memcached, %

Figure 5.5: Ramp up experiment using c1.medium instances with 5 Apache

servers showing CPU utilization for different servers, while generating load

between 1 request per second to 150 requests per second.

have been tried to do, but none of them have worked, meaning that virtual-
ization does not work well [57] or the physical host has been overloaded.

Even though the portion of servers working not as expected (c1.medium
instance serving only 20 requests per second) has been relatively low, but
still it needs some attention, while deploying and running them in a real life
application. One option is to measure performance for each server while they
become available, indicating any performance issues before they are added
to the load balancer server list. If there is any performance issue, this can be
easily killed and a new one requested. Other option is to see, if load balancer
supports weighted traffic distribution, then it is possible to set small weights
for low performance servers compared to the other servers.

5.2.8 Determining concurrent connections

Load balancer nginx used in the experiments has been compiled and built
using Fair module that allows determining maximum amount of concurrent
connections each back end servers allowed to have. This helps to prevent
overloading Apache servers, as load balancer is dropping excessive connec-
tions. It uses least round-robin algorithm to distribute traffic between back-
end servers. This means, that nginx tries to find from server pool the most
idle server and pass the request there. In this way, nginx is populating jobs
evenly and under heavy load, load balancer is not overloading the servers
with excessive connections. With low arrival rate and using more servers
than needed, the requests are not equally divided, as the first servers are
only loaded. The reason is simple, because with low load, the first servers

69

are capable of serving the request faster than they enter into the system
making them again for nginx as a idle server, where next request will be
sent.

Determining difference between default round-robin and least round-

robin

To see difference between default and least round-robin distribution model,
a small experiment with 5 back-end servers has been conducted to have pic-
ture, how requests are distributed with varying traffic for one hour, using
ramp up test. Ramp up test gives large variation in the traffic, that helps to
explain, what happens when the load is small, what happens if the servers are
moderately loaded and what happens under the high load. Highest arrival
rate is selected by the maximum throughput the servers should be capable
of serving, using 5 × 30 = 150 requests per second, as this should be the
maximum possible throughput in perfect situation.

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 125 130 135 140 145 150

C
P

U
 u

ti
li

za
ti

o
n

 [
%

]

Arrival rate, λ [rps]

Max. 6 conn
Max. 10 conn

unlimited conn

 0

 5

 10

 15

 20

 25

 125 130 135 140 145 150

L
o

ad
 (

1
 m

in
)

Arrival rate, λ [rps]

Max. 6 conn
Max. 10 conn

unlimited conn

Figure 5.6: Ramp up experiment showing difference between two Fair config-

uration (using 6 or 10 concurrent connections per Apache server) and without

Fair using c1.medium instances with 5 Apache servers. Left side graph shows

CPU usage for Apache servers and right side shows 1 minute load.

Figure 5.6 shows the difference between using Fair module for nginx with
different configurations and also without Fair activated on the nginx side.
While reducing concurrent connections to 6, the experiment was only able to
stress the back-end Apache servers to use 75% of CPU cycle, also the 1 minute
load stayed low and reasonable, indicating that there were no excessive jobs
waiting for the execution. While not using Fair module, the system gets easily
oversaturated and excessive jobs will enter into the system. There is a large
variation for different Apache servers in terms of CPU usage and 1 minute

70

load, showing that the requests are not evenly distributed, congesting some
of the servers, but the others are still able to serve the content, but the traffic
is routed in wrong way and therefore decreasing the potential throughput.
With Fair, the traffic is tried to be routed to the servers, which have least
concurrent connections, making sure that busy servers do not get excessive
requests and trying to serve by least busy servers. Using cached data, the
difference between least round-robin and default round-robin was not large.
Using empty memcached, the distribution was much better with the least
round-robin algorithm.

 128

 256

 512

 1024

 2048

 125 130 135 140 145 150

R
es

p
o

n
se

 t
im

e
[m

s]

Arrival rate, λ [rps]

Max. 6 conn
Max. 10 conn

unlimited conn

 23

 24

 25

 26

 27

 28

 29

 30

 31

 125 130 135 140 145 150

A
p

ac
h

e
ar

ri
v

al
 r

at
e,

 λ
 [

rp
s]

Arrival rate, λ [rps]

Max. 6 conn
Max. 10 conn

unlimited conn

Figure 5.7: Ramp up experiment showing difference between two Fair con-

figurations (using 6 or 10 concurrent connections per Apache server) and

without Fair using c1.medium instances with 5 Apache servers. Left side

graph shows average response times for requests and right side shows how

many jobs are being processed by Apache servers.

Figure 5.7 shows difference in response times and how the requests have
been served between different Apache servers. At the higher loads, using
default round-robin and not dropping the excessive connections, some of
the servers have to serve only 24 requests per second, while others have
to serve over 30 requests per second pushing some of the servers to the
limits. It expresses also in the response times, seeing at least 2 seconds
average response time (for servers and clients, socket timeout was limited to
10 seconds, actually the timeout is much higher in real systems).

It is logical to see that when using fewer connection, the response time
is also smaller as the load balancer is not saturating the service. Using 6
concurrent connections, the average response time stayed around 160 ms.
Increasing concurrent connections to 10, it was 245 ms, one and a half times
larger. It is not possible to say, that 6 concurrent connections is the best
option, as it depends on the configuration and also in the management de-

71

cisions. At the peak traffic, 150 requests per second, back-end servers were
able to serve 147 requests per second using 10 concurrent connections for each
back-end server, while with 6, the throughput was 139 requests per second.
Losing 8 requests per second, improves response time 85 ms.

 125

 130

 135

 140

 145

 150

 125 130 135 140 145 150

T
h

ro
u

g
h

p
u

t,
 µ

 [
rp

s]

Arrival rate, λ [rps]

Max. 6 conn
Max. 10 conn

unlimited conn

Figure 5.8: Ramp up experiment showing difference between two Fair con-

figurations (using 6 or 10 concurrent connections per Apache server) and

without Fair using c1.medium instances with 5 Apache servers. This shows

amount of successful requests going through the system.

Experiments

Several experiments were conducted to see how concurrent connections
can affect overall system performance by measuring the overall response time,
CPU utilization and traffic lost. From the experiment it looks, that 10 con-
current connections for c1.medium (that is capable of serving 30 requests per
second) is the limit where the system is already saturated. Increasing this
number will increase response time drastically and affect service badly.

The results showed that the perfect configuration would have to decrease
the concurrent connections to 6 as the system is more stable and the average
response time does not vary so much. Using fewer connections the service
maximum throughput decreases, as fewer jobs are allowed into the system.
Using only 2 concurrent connections per server and 5 Apache servers, Apache
servers utilize on average 50% CPU, showing clearly that using small amount
of concurrent connections, large number of jobs will be rejected, decreasing
significantly the maximum throughput of service.

Figure 5.9 shows that even if the throughput stays almost the same, the
jobs are executed with much less CPU utilization. What happens is that
using larger amount of concurrent connections, extra jobs are entering in to

72

 40

 50

 60

 70

 80

 90

 100

 200 220 240 260 280 300 320 340

C
P

U
 u

ti
li

za
ti

o
n
 [

%
]

Arrival rate, λ [req/sec]

Max 16 conn.
Max 14 conn.
Max 10 conn. 20

 22

 24

 26

 28

 30

 32

 34

 200 220 240 260 280 300 320 340

S
er

v
ic

e
ra

te
,
µ

 [
re

q
/s

ec
]

Arrival rate, λ [req/sec]

Max 16 conn.
Max 14 conn.
Max 10 conn.

Figure 5.9: Concurrent connections experiment using c1.medium with 10

Apache servers showing CPU utilization and servers throughput. Service

rate shows, how many requests one Apache server is capable of serving.

the system and congesting the server, while using smaller number, those extra
requests are dropped to maintain good throughput with better response time
and smaller CPU utilization.

 0

 2

 4

 6

 8

 10

 12

 14

 200 220 240 260 280 300 320 340

L
o
ad

 [
1
 m

in
]

Arrival rate, λ [req/sec]

Max 16 conn.
Max 14 conn.
Max 10 conn.

 150

 200

 250

 300

 350

 400

 450

 200 220 240 260 280 300 320 340

R
es

p
o
n
se

 t
im

e
[m

s]

Arrival rate, λ [req/sec]

Max 16 conn.
Max 14 conn.
Max 10 conn.

Figure 5.10: Concurrent connections experiment using c1.medium with 10

Apache servers showing Apache servers 1 minute load and response time.

Figure 5.10 shows that when using fewer concurrent connections, it is
possible to reduce response time as fewer jobs enter into the system. When
using 10 concurrent connections the load balancer slightly overloads the back-
end servers. The response time has increased and the serves 1 minute average
load is over 2, meaning that there are more jobs in the system than the
server is capable of handling (job queue is larger than the server capable of
processing them). Instance c1.medium is having two cores, meaning that one
minute load should stay below 2.

73

Observations and findings

Even though, using fewer concurrent connections seems to be the better
choice, the latter experiments use still 10 concurrent connections. This has
been selected, because it allows much higher throughput and shows how
service under heavy load actually works. It is getting better with the larger
amount of back-end servers (the saturation point is shifted further away,
making response time faster). Using fewer concurrent connections does not
work well, when having small amount of back-end servers running as the
nginx is not capable of distributing incoming request to the free sockets (they
are filled) and they are dropped. Experiments shows, that when using 5 back-
end Apache servers and 6 concurrent connections, 3 requests per second per
server have been lost on average and average CPU usage is 75%, meaning
that there is some unused room for serving the requests. Selection of the right
number how many concurrent connections to use depends, how the services
is going to be distributed for the end users and are the clients willing to wait
more time or lose interest quickly and quit using the service. The intention
of thesis was to run servers in optimal way, meaning that amount of requests
dropped had to be minimum and meantime, to hold load high for all the
servers. With 20 Apache servers and using 10 concurrent connections, it was
possible for some cases to serve 600 requests at the peak (30 requests per
second per server) and CPU utilization was varying for Apache instances
from 90% to 98%.

5.3 Experiment to establish limits of the ser-

vice for current configuration

This thesis set the border to run at maximum 20 back-end Apache servers,
as it is capable of handling large scale traffic and overall experiments cost is
not high. This experiment should give feedback if the MediaWiki is config-
ured correctly and is capable of handling the large amount of traffic. This
will also show how many MySQL, memcached or other instances are needed
to support traffic for 20 back-end Apache servers. This amount of traffic is
generated by using three load generators, it also reduces CPU usage for the
load generators resulting in precise measured response times as they are not
affected by excessive CPU usage. This test tries to increase utilization for
other services in the MediaWiki architecture in order to establish the limits
for other servers.

74

Instance Sending Receiving Utilization

1 nginx 313.17 319.31 79%

1 memcached 37.57 3.12 5%

1 MySQL 121.32 25.83 18%

1 Worker 3.34 102.76 13%

1 Apache 15.78 9.46 3%

Table 5.3: Showing network traffic bandwidth for different servers using

c1.medium instance, while generating load of 600 requests per second (all

the values are shown as megabits per second).

5.3.1 Deadlock triggered by MySQL

First re-runs of this experiment were failures, as the MySQL server trig-
gered deadlock error. This occurred every time and the deadlock error seems
to happen when generating HTTP request to nginx load balancer at rate of
400 requests per second. Following error was thrown by MediaWiki applica-
tion:

1213: Deadlock found when trying to get lock;

try restarting transaction

5.3.2 Fixing deadlock

This problem took some time and struggling to get rid of it. Finding
glues from various mailing lists and going through MediaWiki manual there
was an option disabling the page counter. Page counter is used to keep track
of how many visits have been done for one page for statistics purpose. While
generating large amount of requests, MySQL database was not able to cope
with all the update queries sended by MediaWiki application and triggered
deadlock error while trying to update values in the same time. Its imple-
mentation for counting the pages has been badly implemented and should
be reconsidered. It should probably use memcahed for temporary count in
the case of some visits and push them later into the database. Luckily, this
option can be easily turned off from LocalSettings.php configuration file,
modifying variable $wgDisableCounter to false. This solved the problem
and deadlock did not occurred anymore.

75

Instance min avg max

1 nginx 25.46% 27.3% 29.18%

1 memcached 8.54% 9.48% 11.65%

1 MySQL 54.28% 57.9% 64.32%

20 Apache 92.2% 94.06% 99.36%

Table 5.4: Showing average CPU utilization for different servers (c1.medium),

while generating load of 600 requests per second for 5 minutes.

5.3.3 Network utilization

Table 5.3 shows network usage for different server types under the high
load. The values presented here are taken maximum for 30 second time span
to see the maximum network usage for each instance to give idea of the
limitations for running the service on the cloud with following configuration.
Only instance, that can be congested with network traffic is nginx as it is
sending and receiving pages from back-end servers to clients doubling the
amount of traffic. Other studies have been shown, that 800 Mbps is the
limit of traffic for single instance, meaning that nginx network is highly
utilized, but still has some room for serving 600 requests per second without
a problem. The limit for this configuration was hit with 800 requests per
second and that was expected result.

5.3.4 CPU utilization

Framework built for this thesis measured performance and statistics met-
rics from the cloud during the experiments. Table 5.4 shows instance CPU
utilization using 20 Apache servers, while generating 600 requests per sec-
ond to see how the jobs entering into the system are divided by different
resources. Please note, that these values were collected, while using only
one memcached and one MySQL server. Apache servers had very large CPU
utilization, but still were able to serve all the 600 incoming requests (some of
the requests were blocked by nginx, 3 rps). Some of the servers were slower,
because they were using different CPU, where clock speed was slower and
cache size was smaller of the CPU. The difference can be looked from the
table 5.4, where faster servers were using only 92.2% of the CPU and slower
servers were overloaded and using 99.36% of the CPU.

Figure 5.11 shows CPU usage and variation with different arrival rates,
when using 20 back-end Apache servers. This experiment used ramp up test

76

with increasing load for one hour. Fair module distributed requests to only
small portion of the servers with low arrival rate, thus the figure showing
larger variation between Apache CPU usage between the servers for the first
part of the experiment.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500

C
P

U
 u

ti
li

za
ti

o
n

 [
%

]

Arrival rate, λ [rps]

Apache
nginx

MySQL
memcached

Figure 5.11: Ramp up experiment with 20 c1.medium Apache servers and

generating load up to 550 requests per second, showing CPU usage for dif-

ferent servers. Nginx used Fair module to distribute the traffic (used the

least round-robin), therefore there were large CPU usage difference between

various Apache servers at the beginning of the experiment.

5.3.5 Replicating MySQL and memcached instance

In this thesis, different configuration options were looked, whether it
would be possible to decrease the response time and to increase the over-
all throughput. Adding another memcached and/or MySQL instance should
theoretically improve the service speed, as the MediaWiki database and cache
requests should take smaller time as they are processed by more servers, re-
sulting in lower response times. When adding a new server, it reduced the
jobs in one system by half and, therefore, meaning that each job can be served
faster and probably reducing response time. Memcached CPU utilization for
different experiments was small, when nginx was getting 600 requests per
second traffic, it was mostly under 10% and adding a new memcached in-
stance did not really decreased response time as the amount of the jobs was
already relatively low in the memcached.

On the other hand, MySQL had quite a big CPU utilization, staying
around 60%. Adding replicated MySQL server, it was possible to reduce
MySQL CPU utilization to 20% for both MySQL instances. Even tough
MySQL load was significantly decreased, the response time dropped only

77

25 ms (from 492 milliseconds to 467 milliseconds, note that the Apaches
were already little bit saturated, as the average response time was relatively
large). Because the change in response time was small, this would indicate
that the Apache servers were not really waiting behind MySQL database nor
memcached server to serve the content and were more CPU bound by its
processing speed, how fast they could parse the PHP file and rendered the
page.

5.3.6 Finding out network bandwidth upper limit

Previous experiments have shown, that 600 requests per second with 20
servers is not a problem to be served. This rate was possible by tuning some
parameters in MediaWiki application configuration and changing some vari-
ables for the operating system to allow more file descriptors to be opened.
With default configuration (out of the box), the limits were hit quickly, as the
first problem was with MySQL database, as it was becoming oversaturated
with update requests. Other problem was that memcached hit ratio was low
and pages were not stored in the list. Tuning and changing parameters from
various places, the maximum throughput for one server in Amazon EC2 was
achieved. Network usage demonstrated that nginx had already very large
network utilization, meaning that when adding new Apache servers and in-
creasing the load, it was possible to hit the limit. Next experiment was ramp
up test, generating load from 600 requests per second to 900 requests per
second for one hour to see the limits of other services or the nginx instance.
10 extra back-end servers were added, ending up with 30 Apache servers,
to make sure, that the connections were not dropped because Apache was
overloaded.

When generating 700 requests per second, experiment showed, that MySQL
was largely overloaded (while using 1 MySQL instance) and jobs in the sys-
tem were taking larger amount of time to be processed. As the jobs were
staying longer in the system, nginx quickly ran out of 10 concurrent con-
nection limit for each server, as the Apaches were not able to serve the
content in reasonable time. Looking CPU statistics gathered from the back-
end servers showed, that Apache was only moderately utilized, using only
50% of the CPU, this can mean that the Apache servers were waiting behind
other services. Even adding new Apache servers did not help to solve this
problem, as the CPU usage was still low and nginx was dropping incoming
requests. MySQL was the bottleneck, as the Apache servers had to wait
behind database queries. MySQL was using 95% of CPU and 1 minute load
was over 10, while generating 700 requests per second.

Network bandwidth limit was still not reached for nginx. To improve the

78

service for much higher arrival rate, there is need to upgrade MySQL server
with larger instance or replicate the server, so the read operations are divided
by the two database servers. Looking results of the experiments showed,
that nginx and memcached servers CPU usage was still low, indicating that
they were not CPU bound. Using command iftop (tool to see network
transmission speed) while the generated load was around 700 requests per
second, it was showing as a peak network bandwidth (incoming and outgoing
requests) 763Mbit/second. This is close to the maximum value given for
c1.medium instance 800Mbit/second, meaning that nginx was already close
to hit the limit.

Next experiment was trying to push the limits and used 2 MySQL servers
to reduce query time in the MySQL database as the CPU usage was reduced
and the servers had to cope with incoming requests, in same time reduc-
ing Apache response times. Experiment showed that the bandwidth upper
limit is between 700 and 800 requests per second, depending which requests
were sent and how much traffic other Amazon EC2 customers instances were
using. While hitting the bandwidth limit, Apache average CPU (using 30
servers) usage was around 64%, for both MySQL server it was around 30%,
nginx was using 57% of the CPU and memcached 13%. Increasing amount
of concurrent connections did not improve service throughput, as it seemed
like the connections were left opened and nginx lacked the network capacity
to pass the requests and responses. At peak the traffic rate was at least
792Mbit/second traffic (combined incoming and outgoing traffic) for the ng-
inx instance and looking other parameters (CPU usage was normal for all
the servers), it could be concluded that nginx with c1.medium was not able
to go over 700 requests per second. If there is need to serve more requests,
additional load balancer or server with larger bandwidth to cope with the
traffic is needed. With extra nginx it is possible to use DNS entries to dis-
tribute the load between different nginx servers or use Amazon Elastic Cloud
to distribute the traffic between those two instances (look figure 5.12 for one
of the possible solutions).

5.4 Validating difference between different avail-

ability zones in the same region

Currently region us-east-1 gives 6 different availability zones to run the
instances. With in the same availability zone, the network latency should
be minimal. Next experiment is to identify problems that might happen,
when servers are scattered in different availability zones. One might think,

79

Figure 5.12: How to implement two nginx load balancers to increase re-

dundancy and fault tolerance, and in the same time increasing maximum

throughput of the service. For MySQL, there should be master-slave config-

uration, where updates and saves are done to the master and slave is used

for reading operations.

that the response time increases as the network latency affects each request
made out of the availability zone. This can affect requests to memcached
and MySQL servers, as the MediaWiki is doing lots of queries to cache and
database server, meaning each request will increase delay in the response
time and can affect throughput of the server.

Table 5.5 shows average response times for 10 ping requests to different
availability zones. Zone us-east-1c seems to have slowest connection while
connecting to us-east-1b and us-east-1e. It would be advised not to
use these combinations of zones, especially when deploying memcached and
MySQL servers into the different zones from Apache server. This definitely
increases latency of the response time.

Running Apache server in us-east-1b and all the other servers in us-east-1c

zone, Apache was able to serve 25 requests per second as a maximum, over
that, the average response time was going over 1 second and started losing

80

zones east-1b east-1c east-1d east-1e

east-1b 0.322 ms 1.678 ms 0.967 ms 0.671 ms

east-1c 1.630 ms 0.332 ms 0.941 ms 1.654 ms

east-1d 0.886 ms 0.978 ms 0.327 ms 0.802 ms

east-1e 0.673 ms 1.928 ms 0.814 ms 0.321 ms

Table 5.5: Pivot table showing average response times for different availabil-

ity zones for ping command in us-east region. Availability zone us-east-1a

was not accessible when this thesis was written and, therefore, left out from

the table.

of jobs. It is clear, that running servers in different zones, it will increase the
response time as requesting content from memcached and MySQL will take
more time. Running service time experiment, where MySQL and memcached
were in the other availability zone it was showing 125 ms as an average for
c1.medium instance compared to running all the services in the same zone,
the average response time was 70 ms, indicating that multiple requests take
more time to be processed through network channels. For this experiment
ping command between MySQL and Apache server was resulting on average
1.7 ms latency.

81

5.5 Conclusion of the configuration optimiza-

tion

First experiment demonstrated very bad results in terms of performance
and receiving large response times, thus request per second was relatively
lowwe than expected. Various improvements and configuration tuning have
been done to improve the performance and throughput of the services. Pro-
cess to optimize the configuration has been long and slow, as there is not
know-how for setting up such system in the cloud environment.

There are many variables that can affect the service performance. Chang-
ing smaller instances m1.small with faster instance c1.medium helped signif-
icantly to increase the throughput. Tuning parameters of Apache and PHP
for Amazon EC2 m1.small instance did not really improve the service speed
and the servers were easily crashing under heavy load.

Tuning of different services (MySQL, MediaWiki, Apache, PHP, nginx)
eventually paid off. For example, c1.medium without any tuning and not
using memcached was only capable of serving 8 requests per second at full
steam. Adding additional services and changing configuration files, it was
possible to raise the maximum throughput to 28 requests per second. Later
experiments showed, that depending which CPU was assigned to the in-
stance, the maximum throughput varies between 26 to 34 requests per sec-
ond. Linux TCP parameters and open file descriptors have been changed to
allow more connection and kill connection staying too long in the idle state.

5.5.1 MediaWiki configuration and tuning

MediaWiki gives system administrator a lot of different options to tune
and configure the application. It gives great variety of choices for caching: (i)
memcached, (ii) store in MySQL and (iii) store in the file system. Enabling
memcached improved the speed of service significantly. Caching will store
already rendered page, making retrieving the same page much faster than
for the first request. For small MediaWiki configurations (containing one
server), it was advised to use file system caching as it was the easiest to set
up. Memcached is the best solution for large MediaWiki installations, where
there are tens to hundreds servers actively requesting cached information
from centralized location. Value retrieval from the memcached is fast as all
the content is stored in the physical memory and is limited to the network
speed.

Using default MySQL configuration, deadlock was triggered with the
heavy load when trying to get lock for update query by MySQL system

82

making any further queries impossible, unless the services or transactions
were restarted. It was caused by page counter, that had statistical purpose
to log how many view to the page were made. While generating at least
400 requests per second, some of the requests might have been for the same
entry or there were too many updates, that MySQL was not able to keep
track with, resulting in the blocked content. This option can be turned of
from the configuration file setting variable $wgDisableCounter to the true,
disabling the page counter updates.

Another problem that occurred during essential experiments was that the
cache hit ratio was staying under 30%, meaning that requesting same pages
had to be processed again by PHP to generate the page, because they were
not stored in the cache. Cause of this problem was that memcached had
limits for storing key-value pairs in the cache, the value had to not exceed
over 1 megabyte. To ensure that the content was not large to store it in the
cache, the content was packed by MediaWiki to reduce the size significantly,
but the problem was trigged, because variable $wgMaxMsgCacheEntrySize by
default was small, 10 kilobytes. This means that packed content, exceeding
10 kilobytes were not stored in the cache and, therefore, resulting in small
cache ratio. The problem was solved by increasing the cache entry to 750
kilobytes to allow larger pages to be stored in the cached. This helped to
increase the memcached hit ratio to 97%, improving the response time.

MediaWiki has built in a way, where configuration file changes will in-
validate the cache immediately and every time configuration changes have
been done, the cache has to be filled again. In order to overcome this
problem, administrator can overwrite value in the configuration file for field
$wgCacheEpoch to number 1, this will ensure that even if making changes
to the configuration file, cache is not cleared. Field $wgCacheEpoch is hav-
ing a value, storing previous configuration file date. If the configuration
file date will changes, the MediaWiki application will take care of invali-
dating the cache entries in the memory. This is not a proper mechanism,
while adding new servers, as the configuration file has to be changed to add
memcached and MySQL server IP addresses. While doing it, the cache is in-
validated, increasing average response time and increasing load for back-end
servers for every time a new server is added to the server list. Parameter
$wgParserCacheExpireTime defines how much time it takes to expire entry
from the cache. To make sure that during the experiments, the cache is not
going to be invalidated, the value is set to 25 * 3600 (seconds are used to
define the cache length), making the cache valid at least for one day and one
hour.

83

5.5.2 PHP caching

PHP code can be cached using opt code, this will reduce disk reads as it
holds pre-interpreted PHP code in the memory and each time a new request
is made, it will not have to interpret the code again. Also this reduces mem-
ory usage of the PHP scripts. For opt code caching, XCache [25] was used,
available from Ubuntu repository as a package named php5-xcache. XCache
uses validation check to ensure, that the files have not been changed, when
they are interpreted. If there are changes in files, cache is invalidated and
the new source is interpreted to execute code with the latest version. Exper-
iments showed that when XCache opt code cacher was enabled, there were
at least 3 times faster response times. Without opt code cache, one Amazon
EC2 c1.medium server was able to server 8 requests per second. Figure 5.13
shows the difference between both configurations. When enabling XCache
on PHP it dropped average service time from 200 ms to 70 ms. This con-
figuration was already using memcached showing that not only caching with
memcached helped to improve the service time, but other services needed to
be also tuned to maximize the throughput.

5.5.3 MySQL tuning

For MySQL max connections was increased from 100 to 500 to ensure
enough connections are available, when service was under heavy load. Socket
wait timeout value was reduced from 28800 (it is 8 hours) to 180 seconds.
8 hours is long time to have sockets in the idle state waiting for new connec-
tions, eating up available resources. Another variable changed in the con-
figuration was connect timeout to make sure long queries or unresponsive
server connections were killed and released for other connections.

84

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.2 0.4 0.6 0.8 1

R
es

p
o

n
se

 t
im

e
[m

s]

Time [hours]

without XCache
with XCache

Figure 5.13: Comparisons when running MediaWiki infrastructure with

XCache enabled and without XCache on c1.medium Amazon instance. These

are response times with 30 second resolution. Both configurations used mem-

cached with filled cached.

85

Chapter 6

Policies and Validation of

Scalability

This section describes two policies used in running large scale experiments
for 24 hours to validate the framework. First policy uses the revenue function
to calculate the optimal amount of servers, whereas, the other policy uses
Auto Scale service provided by Amazon to add and remove servers from
the cloud. Both of the policies are limited to 20 servers as maximum to
give better comparison. For comparing the policies, important parameters
are monitored with 30 seconds interval for every instance running on the
cloud. At the end of each experiment, CPU utilization, server hours, jobs
lost, average response time and revenue generated have been calculated.

6.1 Why is elasticity of the cloud important

Cloud computing allows users to add and remove servers on fly depend-
ing on their current needs, making possible to regulate servers count in the
cloud by the number of incoming requests. This helps service owner to save
money in terms of running smaller number of servers at night and serving
all the clients in the peak hours. This will save money, as there is no need
to run the extra servers needed at the peak hours for whole time, reducing
cost significantly.

Example of elasticity. Let’s consider that owner of a service has at peak
600 requests per second to his homepage and have cloud configuration same
as defined in the Table 6.1. Each server is capable of serving at maximum
30 requests per second, this means at the peak there should be at least 20

86

servers to serve all the incoming requests. At midnight the service is visited
at interval 100 requests per second. Roughly at average, if the traffic curve is
constantly increasing and decreasing, the service equals to 350 requests per
second for a whole day. If the provisioning is done by the incoming traffic,
it will use 350

30
× 24 = 280 server hours, thus having to pay 47.60$ for the

resource used for a one day. For comparison, using fixed amount of servers
running, provisioning servers count for the peak of 600 requests per second,
meaning that 600

30
×24 = 480 server hours are being used for a whole day and

having to pay 81.60$ for the resources. This is 1.7× larger than using the
dynamical amount of servers, thus showing that with correctly provisioning
it will save money for the service provider and therefore can increase net
revenue.

This configuration can be used by PaaS or SaaS providers, who are trying
to minimize the cost to run the services, but in the same time trying to be
able to serve every client using their service, maximizing the profit. PaaS
and SaaS provider are charging customers based on monthly usage or how
many requests have been done, in the same time IaaS provider Amazon EC2
is charging PaaS or SaaS provider by instance hours. Using dynamically
allocated servers, running servers at minimal costs at the night hours and
serving all the customers at the peak hours, it is possible to take most out
of the service provided by maximizing profit.

Figure 6.1 shows three different ways how to provision servers. If the
arrival rate is exceeding the throughput, it is under provisioning. If there are
more servers than needed, then it is over provisioning and paying more money
to run the servers. Ideal case would change servers depending of the arrival
rate. Optimal allocation tries to find the best configuration to meet these
demands. To improve optimal allocation, one needs to predict the traffic or
trend of the traffic, as traffic fluctuates over the time, it is hard to provision
servers for the next hours without knowledge, how the traffic changes. These
experiment does not include traffic prediction and therefore with increasing
traffic, there is a slight loss in the incoming requests, depending how large is
the increase.

6.2 Basic configuration for running the ex-

periments

For using optimal policy and for comparing revenue for different exper-
iments, it is needed to describe some basic parameters. The configuration
for experiments is shown below in table 6.1. Service time for each request

87

 0

 20

 40

 60

 80

 100

 120

 140

 0 1

A
rr

iv
al

 r
at

e,
 λ

 [
rp

s]

Time

arrival rate
max throughput

throughput

 0

 20

 40

 60

 80

 100

 120

 140

 0 1

A
rr

iv
al

 r
at

e,
 λ

 [
rp

s]

Time

arrival rate
max throughput

throughput

 0

 20

 40

 60

 80

 100

 120

 140

 0 1

A
rr

iv
al

 r
at

e,
 λ

 [
rp

s]

Time

arrival rate
max throughput

throughput

Figure 6.1: Left graph shows over provisioning, where the policy is running

more servers than needed. Right graph shows situations of under provi-

sioning, running fewer servers than needed. Graph at the top shows how

dynamically allocated servers can handle traffic fluctuating in time.

88

is set to 70 milliseconds, this is time it takes to serve 50% of the fastest
requests. Amazon EC2 cloud charges clients based on full hour for the in-
stance they are using, there needs to be time limits when the servers can be
added and removed. To be safe side, for each full hour, servers are added and
for each full hour before 5 minutes, servers are removed. This will ensure,
that no server, what is removed, is charged for an extra full hour, because
the instance termination takes more time than regularly. This type of server
adding and removing cannot be managed when using proactive policies like
Amazon Auto Scale and this approach is used only for the optimal policy.

Apache server is using the multi-core configuration, two jobs can be con-
currently executed in the server, meaning that we can serve 2 requests with
70 milliseconds (one request can be counted as 35 milliseconds). That ex-
plains, how the service rate can be 28 requests per second, as it determines
how many 35 milliseconds jobs server could serve during one second. Charge
per job is selected through multiple simulations in a manner, that with peak
load, there are at least 20 servers involved.

Using at maximum 20 servers, the maximum generated load for the ex-
periments was set to 600 requests per second. This gives the feedback how
the servers work under the saturation point. This amount of requests should
ensure, that load balancer is not hitting the network bandwidth limitation
(800 Mbps). From previous experiments, the network overall utilization was
around 79%. The limit of 800 Mbps has been tested and verified by Huan
Liu and Sewook Wee [50]. Otherwise exceeding this limitation means, that
there is need to use DNS load balancer or Amazon tools to distribute the
load.

Parameter Description Value

µ Service rate 28.571 jobs/sec

c Charge per job 0.0017¢

d Cost per server 17¢/hour

n Running servers 1–20

Table 6.1: Parameters used for revenue based policy.

89

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14

A
rr

iv
al

 r
at

e,
 λ

 [
rp

s]

Time [day]

Figure 6.2: Two week ClarkNet traffic trace with 1 minute intervals showing

arrivals per second. The red line defines section of the trace used to generate

the load for the service. This section has been scaled up to 600 requests per

second in the experiment.

6.3 Traces used to test policies

For testing the framework and how well service scales in the cloud, ClarkNet
traces were used, that were available from The Internet Traffic Archive 12 web
page. It contains two sets of ClarkNet traces with overall of two weeks of
traffic from WWW service provider. The traces were with one second preci-
sion, but these were changed to 1 minute intervals. For certain time periods,
there were sudden drops in arrival rate (from 200 requests per minute to 5
requests per minute), the spikes were replaced with similar values from pre-
vious minute. Figure 6.4 shows section of trace marked in a red color (one
day), that was used to run the experiments. The trace was scaled between
35 requests to 600 requests per second for better fitting into the experiment
configuration.

6.4 Utilization policies

Amazon Cloud gives great set of tools to manage cloud configuration on
fly. One of the practical tools is auto scaling option based on variety of
parameters that user can set. Because the current configuration has bottle-
necks mostly on Apache side, especially with CPU usage, it would be wise

1http://ita.ee.lbl.gov/
2ftp://ita.ee.lbl.gov/traces/clarknet access log Sep4.gz

90

to monitor CPU Utilization on Apache instances and manage server count
based on average CPU usage over the certain time.

6.4.1 Auto Scale

Auto Scale allows scaling of Amazon EC2 capacity up or down automat-
ically according to conditions defined [9]. This ensures, that enough servers
are running during demand spikes to maintain performance and servers are
released, when demand drops to minimize the cost. This service is available
with Amazon CloudWatch and no additional charge is taken beyond the net-
work transfer and API call fees. Auto Scaling is particularly well-suited for
services that experience variability in hourly or daily usage, and job size and
time it takes to be processed is not fixed.

Configuring and setting up Auto Scale is simple, user needs the additional
tools that are available on Amazon web page 3, have a valid Amazon account
and has configured instance, used for scaling. If each server has its own
database, no additional configuration is needed. It is up to user if they want
to use Load Balancing provided by Amazon or implement their own load
balancing mechanism. Using Amazon Elastic Load Balancer, it provides the
single IP, where the back-end servers are available and accessible, additional
fee is charged by amount of traffic it processes and how many hours it has
been working. For each hour, user has to pay 0.8¢to 2.5¢for each GB, price
depends how much data has been already processed [20]. Compared with
m1.micro spot instance for balancing load between back-end servers, it is
still cheaper to use Amazon Elastic Load Balancer.

It is more complicated, when user wants to implement their own load
balancing or use some other program for load balancing, but still use Amazon
Auto Scale to scale the servers in the autoscale group. It needs to track, when
new instances are started or already running instances have been terminated.
One option is to use Amazon command line or API tools to retrieve list of
active servers using command ec2-describe-instances and keep track of which
servers have been terminated and which have been added. The other option
is to build a script on the Auto Scale instance that sends the heart beat
to load balancer at certain intervals. Load balancer has to listen incoming
packets and if it is coming from a new IP, it means that a new instance has
been started and if it does not receive the heart beat from already known
instance for certain time period, it can be removed from list as the server is
probably removed by Auto Scale.

In order to replicate benchmarks and compare Amazon Auto Scale with

3http://aws.amazon.com/developertools/2535

91

optimal policy, nginx was used as the load balancer that had 10 concurrent
connections set to each back-end servers to avoid overloading the system.
Going through Amazon manuals, there was no option to change maximum
amount of concurrent connections with the back-end servers, while using
Amazon Elastic Load Balancer. Script for keeping eye on the cloud was
deployed on the nginx instance. Script was responsible of keeping track of
the active back-end servers allocated by Amazon Auto Scale in the scaling
group and knows IP addresses for load balancer (nginx), cache (memcached)
and database (MySQL). This allowed easier configuration, when the new in-
stances were added by the Auto Scale algorithm into the cloud. The program
main loop queried running instances from the cloud, configured the new in-
stances MediaWiki configuration with correct memcached and MySQL IP,
and made modifications in nginx server list, adding the new servers. In the
same manner, terminated servers were removed by the program from the
nginx server list and the service was restarted.

Figure 6.3: Showing Amazon Auto Scale experiment configuration in the

cloud. Servers were kept in the same availability zone to reduce the latency

of requests. Autoscaling group has been created, where Auto Scale algorithm

can replicate servers when the demand increases and terminate servers from

the group, while the demand decreases.

Figure 6.3 shows configuration in the Amazon cloud. Auto scale group
was created with Amazon tools helping for Amazon to keep track of servers,
which were added, when the demand increased. In that way, Amazon knows,
which servers can be removed, if the demand decreases, as it takes from the
autoscale server pool existing server and terminates it. Auto Scale config-
uration requires, which instance (instance ID) has to be run and in which
availability zone they has to be deployed. Auto Scale was configured with

92

following parameters: 1 server at minimum, 20 servers at maximum, up-
per CPU utilization threshold 70%, lower CPU utilization threshold 60%,
the breach time 15 minutes, upper breach increase as 1 and lower breach
decrease as 1. CPU utilization is taken based on average among all of the in-
stances running in the autoscale group. Breach time defines how much time
certain threshold has to be in order to add or remove servers. For current
experiment configuration, when average CPU utilization stays over 70% for
15 minutes, it starts adding servers one by one and if it drops below 60%, it
removes servers in the same way as it adds.

The scaled traces from ClarkNet were starting with over 100 requests
per second, meaning that 1 back-end instance is not capable of serving the
request. As the arrival rate for the first hour was much larger than for the
last hour, it was not possible to set minimum amount of servers higher, as
it might affect the results. Amazon Auto Scale has to be warmed up with
constant arrival rate of 100 requests per second in order to add necessary
amount of servers. If this was achieved, the experiment was started. The
results are shown on the figure 6.4.

Auto Scale removing servers. During the experiment, Auto Scale al-
gorithm removed instance from the running server pool that was not closest
to the full hour, sometimes removing instances that was 30 minutes away
from the hour. Considering that Amazon charges for full hour, this is good
for increasing their profit as many users use this service and they are not
able to use the server provided by auto scale in full extent.

6.4.2 Auto Scale results

Experiment using Auto Scale was using large CPU utilization upper
bound, meaning that new servers were added too late, thus losing the traffic.
Characteristics of this approach are that it will try to increase rapidly more
server, when the certain threshold has been reached. Even if one server has
been already added and the load is still high, it tries to add a new server.
There is an option called cool-down when using command as-update-auto-
scaling-group [12] that will freeze Auto Scale for the certain time period
when it has made a new decision to avoid excessive adding or removal of
servers. Parameter cool-down was set to 2 minutes as it would help to gain
quickly more servers, when the load increases more than the system capabil-
ities available for serving the load. Probably a small cool down time would
be bad, when the traffic is fluctuating more, as it might remove and add
rapidly servers, making cost of the servers much higher, as they are removed
too quickly from the cloud and are not used to full extent and the partial

93

 20

 40

 60

 80

 100

 0 5 10 15 20

C
P

U
 u

ti
li

za
ti

o
n

 [
%

]

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 5 10 15 20

R
es

p
o

n
se

 t
im

e

Time [hours]

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20

S
er

v
er

s
ru

n
n

in
g

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20

A
rr

iv
al

 r
at

e
[r

eq
/s

ec
]

Time [hours]

Arrival rate λ
Throughput µ

Traffic lost

Figure 6.4: Running servers compared to arrival rate λ, CPU usage and

response times over 24 hours using Amazon Auto Scale policy.

94

hours are charged as full hours.
The second part of the experiment gave better results as the traffic was

decreasing and all the requests went successfully through. Auto Scale did
descent job determining when to add or remove servers. There has some
room to improve the algorithm by changing some of parameters, thus it
would cope also with rising trend (one option would to decrease upper CPU
threshold to 60 %). One side-effect of the Auto Scale is that it tries to remove
sometimes servers to early not letting them to run proper amount of time
reasonable for the Amazon Cloud service user.

6.5 Revenue based policies

Revenue based policies are calculating amount of servers depending how
much revenue one request is generating, maximum throughput of the server,
server charge for an hour and arrival rate for the next time interval. Every
processed request by a server generates a fixed revenue. This revenue might
come from advertisements or from sales. It is not straightforward to set
revenue, as there is no clear linkage between how much one request can
increase overall income. Using these parameters, the revenue based policies
tries to find the best trade off adding or removing servers, while maximizing
the profit. It needs to be careful when setting up parameters as all the
parameters can largely affect policy decisions how many servers are needed.
Setting income for each request larger, the servers are most likely to run in
an idle state. Decreasing the income will decrease the amount of running
servers, which will decrease the maximum throughput, increases amount of
jobs in the system and increasing system utilization.

6.5.1 Algorithm for provisioning the servers

To use optimal policy for provisioning servers, there needs to be algorithm
that takes care of process of using policy to calculate the amount of servers,
provisioning servers in the cloud and updating load balancer with the new
server list. Algorithm works as follows:

1. 5 minutes before the full hour measures arrival rate for the last hour
(weighted average does not improve the net profit for policy based
algorithms and therefore is left out). Arrival rate is taken from nginx
HTTPStatusModule that is running on address localhost/server-status

2. 5 minutes before the full hour, run policy algorithm to determine the
servers count using average arrival rate calculated from the previous

95

step

3. Removing servers from the cloud, if the algorithm calculated fewer
servers than currently running and re-configures the load balancer

4. If algorithm calculated more servers than running, wait for 5 minutes
and then request new servers from the cloud server pool

5. For each 30 seconds, check if requested servers have changed state from
pending to running. If yes, configure the MediaWiki servers with cor-
rect MySQL and memcached IP addresses, add new servers into the
load balancer list and reload nginx

6. If all requested servers are configured and added into the load balancer
server list, halt previous step

Charge point

Allocation
point

t
tD

n- servers are released

Release completed

Figure 6.5: Removing servers should be done before full hour, because oth-

erwise there is need to pay for the extra instance hour.

Charge point

Allocation
point

ttU
n+ servers become available

n+ servers are acquired

Figure 6.6: Adding servers is done at the full hour mark to make sure that

while the servers are added and needed to be removed, there is no need to

pay for the extra instance hour.

Figures 6.5 and 6.6 show how the servers are added and removed from
the cloud. Removing step occurs first and algorithm, calculating the amount
of servers is triggered at this point. If there is no need to remove any servers,
algorithm will wait until full hour, when the adding servers function is called
out. For adding servers, calculated amount of servers can be taken from the

96

previous step, as there is no need to calculate it again. Adding and removing
servers in a way described by the algorithm ensures that there is no need to
pay for extra instance hour for the resources that cannot be use (i.e. instance
has been working for 1 hour and 1 minute and is terminated, meaning that
the instance is charged for two hours).

6.5.2 Arrival rate for the next hour

There are several options how to feed in average arrival rate for algorithms
determining needed servers count for the next hour. Simplest way is to
take average arrival rate for the previous measured hour and use this as an
input. The downside of this approach is that the average arrival rate can
increase or decrease for the next hour, because of the characteristics of the
traffic fluctuate over the time. To improve giving better arrival rate for the
algorithm, it is possible to use weighted average, where the last measured
units have more weight while calculating the average, meaning that it should
give slight trend, whatever the arrival rate is going up or down. Because
servers are charged based on full hours, the arrival rates should be measured
more than once per hour to improve the accuracy of the trend. For example,
if the load starts to increase at the end of the hour, probably it has to be
increased at the beginning of the next hour, making the given average arrival
rate more precise.

Experiments showed, that when using 20 servers, having 600 requests per
second at peaks and using ClarkNet traces, there was not a big difference
between using the regular average and weighted average (calculating arrival
rate with 5 minute intervals), as the algorithms were resulting the same
amount of servers needed for the next hour.

Previous hour traffic gives a good presumption, what the traffic might be
for the next hour. In the case of best scenario, it will stay at the same level.
If the arrival rate increases, then amount of servers have been underprovi-
sioned. It depends how optimistic the parameters are when using different
algorithms. If letting too much room for the traffic and the arrival rate drops
for the next hour, then the servers have been over provisioned. This means
that there are more servers running than needed and we have to pay more
for running the service.

Second option is to predict the load for the next hour, based on the train-
ing set or using previous arrival rates for each hour. Visits to the sites are
mostly deterministic and can be predicted. You might say, that at the day
time, there are more visits than at the night, when everybody is sleeping. It
also depends, who are the visitors. In the site, visited from various locations
of the world, the traffic between night and day time does not differ, fluctuat-

97

ing only little. To increase the prediction, the predictor function has to take
into account what weekday it is, since at the weekends the traffic volume
tends to be smaller.

Even for both options, the decision should be taken carefully when to add
or remove servers. It is rather easy to do if one takes an average hour during
a day, but it is hard to predict, when looking at much smaller time scale.
Traffic fluctuates largely when looked arrival rates per second. Service owner
must ensure, that these spikes can be handled by the configuration provided
and service is reachable for everyone, who tries to connect with it.

6.5.3 Optimal heuristics

Second experiment was using the optimal heuristics to determine the
servers needed to run the service in the cloud. It uses several parameters
to maximize the outcome, using hill climbing method. Tuning parameters
for optimal heuristics is tricky, as it can significantly change the end result.
It needs to take into account, that service time used by optimal heuristics
has to be divided by number of cores, as the jobs can executed in parallel.
Service time, cost of server and throughput are fixed values and the policy
mainly depends on how much income one request gives (or charge Saas or
PaaS user pays for each request).

Formulation

Let us give a mathematical formulation for optimal heuristics. Consider
arrival rate λ over time period one hour. Algorithm goal is to find the best
optimal using hill-climbing method. It is unimodal function [56], meaning
that there is only one single maximum. This policy tries to maximize param-
eter net revenue. The idea is to find the best option where enough jobs are
going through the system, but still is capable producing maximum amount
of money. It needs to find maximum for a function 6.1

rn = µ× c− n× d (6.1)

where µ is the maximum throughput for one hour for current configuration
calculated from arrival rate (using predictive arrival rate or last hour arrival
rate) using equation 6.6, c shows income per request, n is the incremental
value that shows how many servers there should be, d is charge for each
server for an hour and r is the net revenue, that is tried to be maximized.
These values are all presented in table 6.1. To find optimal solution, Erlang B
and erlang unit is used to calculate maximum throughput for each n, while

98

knowing the arrival rate to the system. For each n, hill-climbing method
is used to find out local maximum. Server amount is increased until the
revenue function starts to decrease, indicating that function has reached to
its maximum.

Erlang B gives probability traffic going through the system and is used
by telephone companies to calculate, how many agents are needed to be able
to receive all the calls made by the customers. It uses service time, arrival
rate and amount of servers to show how many requests can be processed.
Using Erlang B in the optimal policy calculations, it is possible to calculate
maximum theoretically throughput of the configuration, thus making possible
to find maximum of equation 6.1 (e.g. we cannot serve 60 requests per
second, while using only 1 server with maximum throughput of 28 requests
per second).

The formula provides the GoS (grade of service) which is the probability
Pb that a new request arriving will be dropped by the load balancer since,
all the back-end servers will be busy [55].

Pb = B(E,m) =
Em

m!∑m
i=0

Ei

i!

(6.2)

E = λ× h (6.3)

Using equation 6.3, we can calculate the offered traffic rate in erlangs,
using λ as an arrival rate and h as a service time (hold time). Because
of using two core machine for the back-end servers, the service time is two
times smaller as the server is capable of handling two requests concurrently
(70ms/2cores = 35ms). Putting E from formula 6.3 to formula 6.2 and
using m as an amount of servers, we can calculate the blocking probability.
Value Pb will be used, when calculating revenue for formula 6.1, calculating
λ from equation 6.6, thus getting the maximum throughput.

For finding optimal configuration, hill-climbing method is used in equa-
tions 6.1 and 6.6 to find best local maximum. This approach iterates through
the list of possible server configurations from 1 to ∞ (see equation 6.4) and
stops only when finding that the next iteration has got a smaller value than
current iteration, meaning that the current iteration has got a maximum
value. This function will return n, that represents amount of servers needed
to run the service.

rbest = max(r1, r2, ..., r∞) (6.4)

Running several experiments and tests, Erlang B calculated throughput
is not the same as the throughput achieved by the real environment. Erlang

99

B assumes that for each agent (server) is capable of handling only one call
(request). This does not match with computer networks, where computer
is capable of handling multiple requests in the same time. Blocking value
calculated by Erlang B is much higher than in the real situation. Load
balancer uses as maximum 10 concurrent connections for each back-end server
and excessive requests are dropped. This is M/M/n/n queue model and does
not fit well with Erlang B.

Second approach is to use server count and traffic rate in erlangs calcu-
lated by equation 6.3, this will give system utilization that is similar to the
Linux 1 minute load. Equation 6.5 shows the way to calculate the block-
ing probability, that is similar to the results of experiment. If the value is
under 0, it means no job is blocked and the value is assigned to 0, not to
allow negative values. Using calculated blocking probability and lambda (see
equation 6.6), equation gives how many requests will go through the system.

Pb = 1− scount
E

= 1− scount
λ× h

, ifPb < 0 : Pb = 0 (6.5)

µ = (1− Pb)× λ (6.6)

In equation 6.5 the parameter scount is amount of servers and other param-
eters are the same as previously described. Using modified version of erlang
formula it shows the similar results as the experiments does, thus making the
calculation of revenue more precise. Figure 6.7 shows how the optimal max-
imum is calculated with revenue function. The revenue is increasing in the
first section of the graph, because more jobs are going through the system and
each job earns more money than there is a necessity to pay for engagement
of additional servers. When the maximum is reached, adding more servers
do not improve throughput and the revenue starts to decrease, as we have to
pay more for the extra servers, but the income does not increase. Using for
arrival rate 600 requests per second and other values are the same as shown
in the table 6.1, the optimal maximum is achieved with 21 servers, meaning
that at the peak, there needs to be at least 21 servers to accommodate the
traffic.

Hill-climbing method. It is an iterative algorithm that starts with an
arbitrary solution to a problem, then attempts to find a better solution by
incrementally changing a single element of the solution. If the change pro-
duces a better solution, an incremental change is made to the new solution,
repeating until no further improvements can be found [21].

100

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

R
ev

en
u

e
ea

rn
ed

 [
$

]

Num. of servers

λ = 300 rps
λ = 600 rps

Figure 6.7: Revenue function values, when trying to find the optimal max-

imum for 300 requests per second and 600 requests per second using erlang

units to calculate the throughput.

6.5.4 Optimal heuristics results

For optimal heuristics, service time was set as 35 ms (using 2 core ma-
chines, meaning 70 ms service time has to be divided by 2, as it is possible
to concurrently process two requests) and Fair module used 10 concurrent
connections for each back-end server. Figure 6.8 shows, that while load is
increasing, the servers are added later and maximum throughput is smaller
than actual arrival rate, thus losing jobs. There should be at least 1 extra
server in spare, when calculating amount of servers needed to run the service.
The other half of the experiment was with the decreasing traffic closing to
the evening and fewer clients were visiting the page. Removing the servers
worked well and failure count was minimal.

To improve the optimal policy, it needs to have a trend function that can
determine, when the traffic increases and if that happens, an extra server
should be added to the already provisioned servers to accommodate the in-
creasing arrival rate.

This configuration seemed to work better than Amazon Auto Scale func-
tion, resulting in a fewer jobs lost. This is caused by, that Auto Scale uses
large CPU utilization threshold when trying to add the new servers or the
breach time was set large. Decreasing one of these values should improve the
outcome.

101

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

C
P

U
 u

ti
li

za
ti

o
n

 [
%

]

 80
 100
 120
 140
 160
 180
 200
 220
 240
 260

 0 5 10 15 20

R
es

p
o

n
se

 t
im

e

Time [hours]

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20

S
er

v
er

s
ru

n
n

in
g

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20

A
rr

iv
al

 r
at

e
[r

eq
/s

ec
]

Time [hours]

Arrival rate λ
Throughput µ

Traffic lost

Figure 6.8: Running servers compared to arrival rate λ, CPU usage and

response times over 24 hours using Optimal policy.

102

6.6 Summary and results

Each policy has its own pros and cons and using one of those policies
mainly depends on the system, and what the decisions management is taking
in terms of what they are willing to pay. Amazon Auto Scale is mostly
enough when determining the needed servers count for the system. Current
configuration will work fine for traffics, where the load is steadily increasing
for each hour and does not have large spikes. Amazon Auto Scale has variety
of parameters, that can be tuned, but this mainly relies on the fact, which
traffic the service is getting. If there are more spikes and traffic is fluctuating
largely, lower CPU threshold for adding the servers should be used. It is
possible to define, how many servers are going to be added or removed when
certain threshold is exceeded. However, the system owner has to be careful
when defining this, as adding too many servers may result in lower CPU
usage, meaning that those extra servers are removed in no time. Amazon
Auto Scale policy will work fine for different traffics, that varies in response
time as the primary unit for taking the decisions for server provisioning is
taken from average CPU and therefore making it an easy service that can
be set up with small time and little effort, as mostly there is no need to do
additional experiments to identify service time.

Revenue based policies are much more complex as system owner must
be aware of the servers capabilities and how they are running in the cloud.
This is why some preliminary experiments with the servers have to be done,
to know the limits for each server. Even though the service time is mostly
fixed value if the response time does not vary much and server hour based
charge is fixed, there is need to calculate the correct charge (income) value
for each request made. There is a trial and error process that involves many
simulation and running experiments to see the best configuration. Compared
with Amazon Auto Scale, revenue based policies are harder to set up, as
it involves mathematical complexity and other factors like response time
variation that can affect the results.

103

measurement Auto Scale Optimal policy always on

min. response time 56 ms 55 ms 53 ms

avg. response time 144.6 ms 116.0 ms 101.8 ms

99% response time 409 ms 321 ms 254 ms

avg. CPU usage 44.62% 37.22% 23.84%

Instance hours 312 351 480

Cost of the servers 53.04$ 59.67$ 81.60$

Amount of jobs lost 343763 32288 2148

Revenue 318.52$ 317.18$ 295.76$

Table 6.2: Summary table of Auto Scale and optimal policy algorithms.

Experiment conducted lasted 24 hours and the same traffic was used resulting

on 22.2 millions of requests. Cost of the servers and revenue are calculated

only using Apache servers and one instance hour for c1.medium charge is

0.17$.

104

Chapter 7

Conclusions

This master thesis studies possibilities to develop infrastructure to run
MediaWiki application on the cloud, that is capable of scaling MediaWiki
replica instances vertically, depending on arrival rate. This infrastructure
will support measuring performance of the cloud, making it possible to find
possible bottlenecks from the service. This work includes tools how to mea-
sure and monitor performance of servers in the cloud.

Amazon EC2 cloud is used to deploy the infrastructure. It allows to run
virtual images on the cloud, that are charged by instance-hours used. Ama-
zon users can make their own virtual images with the required software, that
can be easily replicated throughout the cloud. MediaWiki application was
installed one of those images running Ubuntu operating system. Framework
was built to support scaling the cloud and configuring servers for different
experiments.

During development phase, different experiments were performed to clar-
ify the best possible solution to run service in the cloud environment, as
Amazon EC2 cloud gave users great variability of servers and other services,
that could be used. In the case of some servers and applications there was a
need for configuration tuning to improve performance and throughput of the
system, as they did not work well as out-of-the-box.

This master thesis studied possibilities to scale servers in the cloud, using
Amazon own Auto Scale service, which is free of charge and optimal heuristic
for provision of needed servers. Two algorithms were used and compared,
to see pros and cons and how to configure algorithms to support scaling.
Amazon EC2 API tools were used to support managing the cloud. All the
instances were constantly measured and statistics gathered to get informa-
tion about CPU, memory and network usage. Validating scaling properties
and algorithms, large scale experiment for 1 day was conducted for both

105

of algorithms where at least 22 million requests were generated. Different
experiments demonstrated that when calculating the cost function to hold
server up in the cloud would pay less money if using the dynamical allocation
of servers than having the fixed number of servers running.

106

Chapter 8

Future Work

This section describes some important topics not covered within this the-
sis. This topics have to be considered as the crucial ones and they should be
studied in future in order to improve the work flow of experiments or policies.

8.1 Benchmark Tool Updates

Wikijector, which came with Wikibench, was taken as an example, while
building BenchMark program. BenchMark program supported the predefined
arrival rate (λ) for each time period and had URI list to make the traffic for
the front-end server. It made easier to conduct the experiments as the trace
logs provided by the Wikijector meant that the requests had to be changed
to fit with the data dumped into the MySQL database or whole database
had to be uploaded into the database. With Wikijector, it was harder to fill
the cache and remove 404 Not Found page errors from the trace files, making
it time consuming to conduct various experiments.

BenchMark had some certain fall-backs that degrades the performance
for generating new requests. It uses fixed size thread pool to hold generated
connection. Initializing the thread and starting the thread took time. If
setting thread pool count too small, the available threads might run out with
large experiments and already running threads were terminated, while still
processing response from the web service. Using c1.medium instance type,
that had 2 cores, was only capable of generating 500 requests per second. The
solution would be to use the non-blocking sockets for generating requests
to the server. It will allow to generate larger volume of traffic with lower
number of load generators and reducing experiment cost. Instance running
the load generator CPU usage was tried to hold under 50%, as larger usage
might affect response time measurement precision and this made comparing

107

different experiments harder.

8.2 Server Comparison

With cloud based configuration there are thousands of computers that
have been bought in separate times have different conditions in terms of wear
and have different components. These results in inequality between different
servers requested from the cloud server pool. Experiments conducted by this
thesis did not take into account the performance of a single server. It is
possible to have some script on an instance image, that will be executed at
server boot and would measure the performance of the server, e.g. measure
CPU speed, how much time it takes to calculate complex formulas, also speed
of a virtual hard disk, measure of time and throughput of writing and reading
from it. It is possible to build metrics from previously mentioned parameters
and this value can be used to compare with the other servers, and the load
balancer could use this as a measurement when putting servers weight while
reconfiguring server list in the configuration file. This will reduce load on
servers that are slower and increase load on servers that are faster, but still
maintain a stable performance and not overloading the system.

There were some cases, where one server was working at 1
2

or even 1
3

of
speed of the fastest server under heavy load, even if they were same instance
type. Using above mentioned method to compare all the servers currently
running, we could eliminate the problem, but there is still a problem with
policies, because they have to consider maximum throughput based on the
measured performance.

108

Raamistik pilvel põhinevate

veebirakenduste skaleeruvuse ja

jõudluse kontrollimiseks

Magistritöö (30 EAP)

Martti Vasar

Resümee

Antud magistritöö uurib võimalusi, kuidas kasutada veebirakendust Me-
diaWiki, mida kasutatakse Wikipedia rakendamiseks, ja kuidas kasutada an-
tud teenust mitme serveri peal nii, et see oleks kõige optimaalsem ja samas
kõik veebikülastajad saaks teenusele ligi mõistliku ajaga. Amazon küsib raha
pilves toimivate masinate ajalise kasutamise eest, ümardades pooleldi kasu-
tatud tunnid täistundideks. Antud töö sisaldab vahendeid kuidas mõõta
pilves olevate serverite jõudlust ning võimekust ja skaleerida antud veebirak-
endust.

Amazon EC2 pilvesüsteemis on võimalik kasutajatel koostada virtuaal-
seid tõmmiseid operatsiooni süsteemidest, mida saab pilves rakendada XEN
virtualiseerimise keskkonnas, kui eraldiseisvat serverit. Antud virtuaalse
tõmmise peale sai paigaldatud tööks vaja minev keskkond, et koguda and-
meid serverite kasutuse kohta ja võimaldada platvormi, mis lubab dünaamiliselt
ajas lisada servereid ja eemaldada neid.

Magistritöö uurib Amazon EC2 pilvesüsteemi kasutusvõimalusi, mille
hulka kuulub Auto Scale, mis aitab skaleerida pilves kasutatavaid rakendusi
horisontaalselt. Amazon pilve kasutatakse antud töös MediaWiki seadis-
tamiseks ja suuremahuliste eksperimentide rakendamiseks. Vajalik on teha
palju optimiseerimisi ja seadistamisi, et suurendada teenuse läbilaske võimsust.
Antud töö raames loodud raamistik aitab mõõta serverite kasutust, kogudes

109

andmeid protsessori, mälu ja võrgu kasutamise kohta. See aitab leida süsteemis
olevaid kitsaskohti, mis võivad põhjustada süsteemi olulist aeglustumist.

Antud töö raames sai tehtud erinevaid teste, et selgitada välja parim
võimalik paigutus ja seadistus. Saavutatud seadistust kontrolliti hiljem 2
suuremahulise eksperimentiga, mis kestis üks päev ja mille käigus tekitati
22 miljonit päringut, leidmaks kuidas raamistik võimaldab teenust pilves
skaleerida ülesse päringute arvu tõusmisel ja vähendada servereid, kui päringute
arv väheneb. Ühes eksperimendis kasutati optimaalset heuristikat, et selgi-
tada välja optimaalne serverite arv, mida on vaja pilves rakendada. Teine
eksperimentidest kasutas Amazon Auto Scale teenust, mis kasutas serverite
keskmist protsessori kasutamist, et selgitada välja, kas pilves on vaja servereid
lisada või eemaldada. Antud eksperimendid näitavad selgelt, et kasutades
dünaamilist arvu servereid, olenevalt päringute arvust, on võimalik teenuse
üleval hoidmiseks säästa raha.

110

Bibliography

[1] Scientific Computing on the Cloud (SciCloud) - Distributed Systems
Group site;
http://ds.cs.ut.ee/research/scicloud;
last viewed 2. December 2011

[2] Satish Srirama, Oleg Batrashev, Eero Vainikko; SciCloud: Scientific
Computing on the Cloud ; 10th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid 2010), May 17-20, 2010,
pp. 579. IEEE Computer Society.

[3] Cloud IaaS — Cloud Computing Software from Eucalyptus ;
http://www.eucalyptus.com/products/eee;
last viewed 2. December 2011

[4] Manual:File cache - MediaWiki ;
http://www.mediawiki.org/wiki/Manual:File cache;
last viewed 2. December 2011

[5] memcached - a distributed memory object caching system;
http://memcached.org/;
last viewed 2. December 2011

[6] October 2011 Web Server Survy ;
http://news.netcraft.com/archives/2011/10/06/ october-2011-web-
server-survey.html;
last viewed 2. December 2011

[7] HTTPUpstreamModule;
http://wiki.nginx.org/HttpUpstreamModule#upstream;
last viewed 2. December 2011

[8] Dipankar Sarkar; Nginx 1 Web Server Implementation Cookbook ; PACKT
publishing, 1st Edition, 2011, Pages: 192, ISBN 978-1-849514-96-5.

111

[9] Auto Scaling ;
http://aws.amazon.com/autoscaling/;
last viewed 19. January 2012

[10] Amazon EC2 Instance Types ;
http://aws.amazon.com/ec2/instance-types/;
last viewed 26. January 2012

[11] Percona - Documentation - The tcprstat User’s Manual ;
http://www.percona.com/docs/wiki/tcprstat:start;
last viewed 26. January 2012

[12] Auto Scaling Command Line Tool : Developer Tools : Amazon Web
Services ;
http://aws.amazon.com/developertools/2535;
last viewed 31. January 2012

[13] Twenty-One Experts Define Cloud Computing ;
http://cloudcomputing.sys-con.com/node/612375/print;
last viewed 09. February 2012

[14] Foster, I.; Yong Zhao; Raicu, I.; Lu, S.; Cloud Computing and Grid
Computing 360-Degree Compared ; Grid Computing Environments Work-
shop, 2008. GCE ’08, Pages: 1-10, 12-16 Nov. 2008

[15] LAMP - (software bundle) - Wikipedia, the free encyclopedia;
http://en.wikipedia.org/wiki/LAMP (software bundle);
last viewed 09. February 2012

[16] PHP: Description of core php.ini directives - Manual ;
http://www.php.net/manual/en/ini.core.php#ini.memory-limit;
last viewed 09. February 2012

[17] Linux Increase The Maximum Number Of Open Files / File Descriptors
(FD);
http://www.cyberciti.biz/faq/linux-increase-the-maximum-number-of-
open-files/;
last viewed 09. February 2012

[18] ab - Apache HTTP server benchmarking tool - Apache HTTP server ;
http://httpd.apache.org/docs/2.0/programs/ab.html;
last viewed 09. February 2012

112

[19] Amazon Elastic Compute Cloud (Amazon EC2);
http://aws.amazon.com/ec2/;
last viewed 02. March 2012

[20] Amazon EC2 Pricing ;
http://aws.amazon.com/ec2/pricing/;
last viewed 09. February 2012

[21] Hill climbing - Wikipedia, the free encyclopedia;
http://en.wikipedia.org/wiki/Hill climbing;
last viewed 14. February 2012

[22] The CLOUDS Lab: Flagship Projects - Gridbus and Cloudbus ;
http://www.cloudbus.org/cloudsim/;
last viewed 14. February 2012

[23] Rajkumar Buyya, Rajiv Ranjan, Rodrigo N. Calheiros; Modeling and
Simulation of Scalable Cloud Computing Environments and the CloudSim
Toolkit: Challenges and Opportunities ; High Performance Computing &
Simulation, 2009. HPCS ’09. International Conference on, Pages: 1-11,
21-24 June 2009

[24] [mediawiki] Contents of /trunk/phase3/docs/memcached.txt ;v
http://svn.wikimedia.org/viewvc/mediawiki/trunk/
phase3/docs/memcached.txt?view=markup;
last viewed 25. February 2012

[25] XCache; http://xcache.lighttpd.net/;
last viewed 25. February 2012

[26] EC2StartersGuide - Community Ubuntu Documentation;
https://help.ubuntu.com/community/EC2StartersGuide;
last viewed 25. February 2012

[27] Repositories/CommandLine - Community Ubuntu Documentation;
https://help.ubuntu.com/community/Repositories/CommandLine
#Adding the Universe and Multiverse Repositories;
last viewed 25. February 2012

[28] Wikimedia Technical & Operational Infrastructure - A high level
overview of Wikimedia Operations ;
http://upload.wikimedia.org/wikipedia/commons/3/33/Rob Halsell -
Wikimania 2009 - Wikimedia Operations %26 Technical Overview.pdf;

last viewed 27. February 2012

113

[29] Man Page - Wikipedia, the free encyclopedia;
http://en.wikipedia.org/wiki/Manpage;
last viewed 27. February 2012

[30] Apt-Get ;
https://help.ubuntu.com/8.04/serverguide/C/apt-get.html;
last viewed 27. February 2012

[31] Interview with creator of NGINX Igor Sysoev — Web Hosting Skills ;
http://www.webhostingskills.com/open source/articles/interview with creator of
nginx igor sysoev;

last viewed 28. February 2012

[32] osi 7 layer model ;
http://www.escotal.com/osilayer.html;
last viewed 28. February 2012

[33] RRDtool - About RRDtool ;
http://oss.oetiker.ch/rrdtool/;
last viewed 1. March 2012

[34] Elastic Load Balancing ;
http://aws.amazon.com/elasticloadbalancing/;
last viewed 2. March 2012

[35] Amazon Simple Storage Service (Amazon S3);
http://aws.amazon.com/s3/;
last viewed 9. March 2012

[36] Amazon EC2 Spot Instances;
http://aws.amazon.com/ec2/spot-instances/;
last viewed 2. March 2012

[37] Erik-Jan van Baare; WikiBench: A distributed, Wikipedia based web
application benchmark ; Master thesis, VU University Amsterdam, May
2009.

[38] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Yous-
eff, L., Zagorodnov, D.; The Eucalyptus Open-source Cloud-computing
System; Cluster Computing and the Grid, 2009. CCGRID ’09. 9th
IEEE/ACM International Symposium on. 18-21 May 2009. Pages: 124 -
131.

114

[39] TimingEvents - haproxy-docs - Timing events - HAProxy Documenta-
tion;
http://siag.nu/pen/;
last viewed 16. March 2012

[40] Virtual Router Redundancy Protocol - Wikipedia, the free encyclopedia;
http://en.wikipedia.org/wiki/Virtual Router Redundancy Protocol;
last viewed 16. March 2012

[41] Software as a service - Wikipedia, the free encyclopedia;
http://en.wikipedia.org/wiki/Software as a service;
last viewed 16. March 2012

[42] Platform as a service - Wikipedia, the free encyclopedia;
http://en.wikipedia.org/wiki/Platform as a service;
last viewed 16. March 2012

[43] Infrastructure as a service - Wikipedia, the free encyclopedia;
http://en.wikipedia.org/wiki/Infrastructure as a service;
last viewed 16. March 2012

[44] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen,
Hubert Wong, Arthur Klepchukov, Sheetal Patil, Armando Fox, David
Patterson; Cloudstone: Multi-Platform, Multi-Language Benchmark and
Measurement Tools for Web 2.0 ; 2008.

[45] Chuck McAuley; Watch Out for That Hockey Stick: The Need for
Network Device Product Evaluations — BreakingPoint ;
http://www.breakingpointsystems.com/community/blog/network-
device-product-evaluations/;
last viewed 22. March 2012

[46] Daniel A. Menascé; Load Testing of Web Sites ;
http://cs.gmu.edu/ menasce/papers/IEEE-IC-LoadTesting-July-
2002.pdf;
last viewed 22. March 2012

[47] Byung Chul Tak, Bhuvan Urgaonkar, Anand Sivasubramaniam; To
Move or Not to Move: The Economics of Cloud Computing ; USENIX
HotCloud’11 Conference, Portland, USA, June 14–17, 2011..

[48] What is ’steal time’ in my sysstat output? — Racker Hacker ;
http://rackerhacker.com/2008/11/04/what-is-steal-time-in-my-sysstat-
output/;
last viewed 22. March 2012

115

[49] Nicolai Wadstrom; Why Amazon EC2 CPU Steal Time does not work
(well) for Web apps — Nicolai Wadstrom;
http://nicolaiwadstrom.com/blog/2012/01/03/why-amazon-ec2-steal-
cpu-does-not-work-for-web-apps/;
last viewed 22. March 2012

[50] Huan Liu, Sewook Wee; Web Server Farm in the Cloud: Performance
Evaluation and Dynamic Architecture; Lecture Notes in Computer Sci-
ence, 2009, Volume 5931/2009, 369-380, DOI: 10.1007/978-3-642-10665-
1 34

[51] Scalr - Cloud Management Software;
http://scalr.net/;
last viewed 5. April 2012

[52] Cloud Comptuing Management Platform by RightScale;
http://www.rightscale.com/;
last viewed 5. April 2012

[53] Rafael Moreno-Vozmediano, Ruben S. Montero, Ignacio M. Llorent;
Elastic management of web server clusters on distributed virtual infras-
tructure; Volume 23, Issue 13, Article first published online: 14 FEB 2011;

[54] Mike Kirkwood; Enterprise Cloud Control: Q&A with Eucalyptus CTO
Dr. Rich Wolski ;
http://www.readwriteweb.com/cloud/2010/03/eucalyptus-amazon-
vmware.php;
last viewed 10. April 2012

[55] Erlang (unit) - Wikipedia, the free encyclopedia;
http://en.wikipedia.org/wiki/Erlang (unit);
last viewed 27. February 2012

[56] Mathematical Programming Glossary ;
http://glossary.computing.society.informs.org/second.php?page=U.html;
last viewed 08. May 2012

[57] S. N. Srirama, O. Batrashev, P. Jakovits, E. Vainikko; Scalability of Par-
allel Scientific Applications on the Cloud ; Scientific Programming Jour-
nal, Special Issue on Science-driven Cloud Computing, 19(2-3):91-105,
2011.
IOS Press. DOI 10.3233/SPR-2011-0320.

116

Appendix

All the necessary instructions, commands and scripts are located on the
DVD.

117

	Introduction
	Contributions
	Outline

	The State of Art
	Cloudstone
	To move or not to move
	Wikibench
	Web server farm in the cloud
	Services that support provisioning and auto scaling properties

	Framework for Verifying Scalability and Performance
	Problem statement
	Cloud Computing
	Cloud computing as a Service

	SciCloud project
	Eucalyptus
	Eucalyptus architecture

	Amazon Cloud
	Amazon EC2 and Auto Scaling
	Amazon pricing

	MediaWiki architecture
	Memcached reducing load on database server
	LAMP stack
	Operating system configuration

	Study of load balancers
	Pen
	Nginx as reverse-proxy server
	Comparison between nginx and pen

	Configuration of the infrastructure
	Endpoints for SciCloud and Amazon
	Setting up services and MediaWiki installation
	Wikipedia article dumps

	Framework scaling instances in the cloud
	Calculating arrival rate
	Removing servers from the cloud

	Framework layout
	CloudController
	ServerStatus
	BenchMark
	Additional HTTP server
	Distinguishing different servers by their role

	Measuring Performance of The Cloud
	Using performance measuring tools under Ubuntu
	Apache tool AB
	Ubuntu sysstat package

	Using third party tools
	RRD database
	Collectd
	Cacti

	Framework Performance Measuring Tools

	Preliminary Experiments and Evaluation of The Framework
	Importance of experiments and stress testing
	Identifying most suitable configuration
	Experiments with m1.small, m1.large and c1.medium instances
	Experiments configuration
	Measuring service time
	Measuring maximum throughput
	Summary of different instance types performance
	CPU cycle waiting behind Xen hypervisor
	Measuring CPU utilization with ramp up
	Determining concurrent connections

	Experiment to establish limits of the service for current configuration
	Deadlock triggered by MySQL
	Fixing deadlock
	Network utilization
	CPU utilization
	Replicating MySQL and memcached instance
	Finding out network bandwidth upper limit

	Validating difference between different availability zones in the same region
	Conclusion of the configuration optimization
	MediaWiki configuration and tuning
	PHP caching
	MySQL tuning

	Policies and Validation of Scalability
	Why is elasticity of the cloud important
	Basic configuration for running the experiments
	Traces used to test policies
	Utilization policies
	Auto Scale
	Auto Scale results

	Revenue based policies
	Algorithm for provisioning the servers
	Arrival rate for the next hour
	Optimal heuristics
	Optimal heuristics results

	Summary and results

	Conclusions
	Future Work
	Benchmark Tool Updates
	Server Comparison

	Raamistik pilvel põhinevate veebirakenduste skaleeruvuse ja jõudluse kontrollimiseks
	Appendix

