
 1

Abstract— Wireless communication technologies like

GPRS, UMTS and WLAN, combined with the availability
of high-end, affordable mobile devices enable the
development of advanced and innovative mobile services.
Devices such as mobile phones and Personal Digital
Assistants let the users access a wide range of new
offerings whenever and wherever they happen to be. A
strategic approach for the quality assurance of these
mobile data services should take into account a number of
characteristics unique to the mobile paradigm such as the
increased complexity of emerging handheld devices, the
greater sensitivity to security and load related problems in
wireless infrastructure and increased complexities of scale.
This paper identifies the major factors influencing the
development and testing strategies for these applications
and works out effective quality assurance principles to
ensure productive and scalable mobile data services.

Index Terms—Quality assurance, Software testing,
mobile data services

I. INTRODUCTION

ITH the proliferation of advanced wireless networks
and devices, mobile operators and enterprises can now

provide a variety of types of data services to their users.
Today’s mobile communication platforms such as GSM,
GPRS, EDGE, 3GSM and CDMA 1xRTT offer 'always-on',
higher capacity, Internet based content and packet based data
services. The array of mobile data services encompasses a
wide range of applications such as color Internet browsing, e-
mail on the move, powerful visual communications,
multimedia messaging (MMS), M-Commerce applications,
Mobile Office applications like calendar and location based
services. These advanced wireless applications are part of a

complex structure that spans wireless devices, wireless
networks, the Internet and back-end systems that typically
reside on enterprise platforms [1]. This paper presents the
strategies for effectively assuring the quality of mobile data
services. The strategies can be used by the application
developers, quality assurance professionals and the mobile
service providers to help them create productive and scalable
mobile data services and to provide to the service subscribers
a branded experience that will provide maximum return,
reduce churn, and increase average revenue per user. This
paper is organized as follows:

Section 2 of the paper explains the data services model
under consideration and provides taxonomy of these
applications. Section 3 identifies various factors which are
unique to the mobile data services paradigm and which may
have to be considered for development of testing and quality
assurance strategies. The testing guidelines for the mobile
device clients of these applications are given in the Section 4.
Section 5 focuses on the scaling issue and provides guidelines
for the back-end system performance testing. Section 6
concludes the paper and discusses the future work.

II. DATA SERVICES ARCHITECTURE

A typical networked wireless data service is comprised of
the following components:

• A network aware application residing on a wireless
device (the client)

• The wireless network and the Internet, and
corresponding communication protocols [1]

• The back-end system (generally, at the service
provider’s site) consisting of the load balancer, web
servers, application servers, content servers, other
servers such as LDAP servers storing client application,
and databases. It may also include the server replicas
with mesh interconnections to achieve fault tolerance,
scalability and better performance. A back-end system

Effective Testing Principles for the Mobile Data
Services Applications

Satish Srirama1, Rajasekhar Kakumani2, Akshai Aggarwal3, Pravin Pawar4

1Department of Computer Science, Informatik V, RWTH Aachen University, Germany.
srirama@i5.informatik.rwth-aachen.de

2Department of Electrical and Computer Engineering, Concordia University, Quebec, Canada.
krs175@yahoo.com

3Department of Computer Science, University of Windsor, Ontario, Canada.
akshaia@ uwindsor.ca

4Department of Computer Science, University of Twente, The Netherlands.
p.pawar@ewi.utwente.nl

W

 2

may have a number of tiers in the client’s n-tier
architecture [2].

• A gateway to the external network
A mobile host initiates a request for the data services

application. On this request, the client application is
downloaded to the mobile device. This application executes
inside the application runtime environment such as KVM (for
J2ME) or BREW depending on the implementation. The client
application and the server communicate using HTTP. A
sample scenario depicting the request for a data service
application and its execution is shown in [3]. Herewith, we
present taxonomy of the mobile data service applications. Note
that a particular application may fall in more than one category
described below.

Client only applications: For execution, the client only
applications do not have any server side counterpart in the
fixed network. However, the application needs to be
downloaded from the fixed network. An example of such an
application is taskscheduler application which lets the user
store various appointments. The application later reminds the
user of the appointments at the scheduled times.

Content applications: The content applications, on
execution, fetch the content requested by the mobile user from
the back-end system. The content is regularly updated in the
back-end system. These applications include the entertainment
and information applications like news, astrology, and songs.

Client-Server applications: In these applications, the client
sends a request to the server. The server processes this request
and sends the response back to the client. Auctions on the
mobile, live games information, and location based services
are some of the examples of this type of applications.

Client-External Server applications: In such applications,
the service provider’s back-end system routes the request from
the client to the external application server via the local
application servers. Certain translation of the data in the
request may be required, so that external servers can identify
the request. Apart from e-mail and other office applications,
this category also includes m-commerce applications such as
mobile banking.

Applications Using Native API: Some applications invoke

the native applications for various purposes. For example, a
video application opens the native player for playing the video.
The appointment application sets the alarm on the phone by
using the corresponding API. The meeting application uses the
native API to fetch a local list of friends, which belong to a
particular group.

The categorization of the applications presented in this
Section is important, as every category may require different
testing strategies.

III. FACTORS INFLUENCING THE MOBILE DATA SERVICES

PARADIGM

The development and testing strategies for the mobile data
services are influenced by various factors, many of which are
different from those in the traditional applications. An
application may be developed on one platform and deployed
on ones which are vastly different. Every application has to
cater to a wide range of devices that implement different
versions of the application runtime environment, and may use
different proprietary extension APIs [4]. The quality assurance
team must be aware of the specific methods, which developers
use to take into account the effect of the following factors:

Increased complexity in handheld devices: The handheld
computing platform for the mobile data services is not just a
firmware, but consists of an operating system, native APIs as
well as the application runtime layer. New devices, which
support multiple mobile networks and communication
technologies, are emerging. This requires that the applications
should support multiple interface and rendering standards.
Another challenge for the developers and testers of the data
services applications is to conform their application to
multiple, older version of mobile device software [5].

New security concerns: With the ability to download
applications and to execute the code on the device, comes the
corresponding risk associated with the compromise of user
authentication, enterprise data and transactional security.
Viruses and other malicious code can also cause problems.
Information written by the data services application may be
hacked by unauthorized persons and is susceptible to misuse
[6].

Fig. 1. The Mobile Data Services Model

 3

Resource poorness of the mobile devices: The mobile
handsets have limited processing power, limited memory,
improper user interface with a limited set of features, and
finite energy source. This severely restricts the size of the
application, memory use, processing power, and the number of
applications running simultaneously on a mobile device [7].

Inherent limitations of the wireless medium: Wireless
connection is a decisive factor in contributing to mobility.
However, bandwidth limitations impose several restrictions on
the volume of data that can be transferred. The available
bandwidth differs depending on the location of the mobile
host. Moreover, the network operators prioritize the
connection for the voice call as compared to the data call [8].
These factors contribute to degradation of the user experience.

Increased complexities of scale: The mobile data services
are enjoying rapid growth in the number of service
subscriptions and popularity. Data enabled handhelds are
becoming pervasive worldwide, as content providers or
enterprises can be reached from many parts of the globe.
Performance is one of the critical factors to the success of data
services applications. It is required to regularly monitor the
performance of the back-end system to check the impact of
deployment of new applications on the existing applications
[9].�The back-end system must be able to provide reliable data
services even during the peak usage and emergency situations
without affecting adversely the throughput and latency. Hence,
the effective back-end system testing strategy should consider
the issue of providing scalable data services.

The testing activities for the data services applications can
be classified as the End-User console application testing and
back-end systems testing. The former deals with testing the
client part of data service applications. In the later, we
primarily concentrate on the performance testing aspects
arising due to the economy of scale in mobile data services.

IV. TESTING PRINCIPLES FOR THE CONSOLE

APPLICATIONS

Software testing is an iterative process and should start from
the very beginning of the project. The application developers
need to get used to the idea of designing software with testing
in mind. When creating applications, developers must consider
that the speed of the application should not compromise the
use and purpose of the application. This issue must be
considered in the very early phases of application design.
Depending on the type of application, developers must also
remember that end users may use other applications
concurrently. Therefore, excessive consumption of the
device’s processing power and memory should be avoided.
Such tests are well supported by the unit testing tools such as
J2MEUnit and BREWTestUnit.

Once the client application is developed, it should be tested
for the resource utilization and performance on the mobile
device. This can be achieved by inserting the test code in the
source and observing the logged results. The use of embedded
software testing tools such as Rational Test RealTime [10] is

quite advantageous. It provides the functionality to profile
memory and performance, to analyze code coverage, to obtain
runtime tracing, and to analyze the behavior of program
execution on the handset. One among its very useful features
provides detailed test and runtime analysis reports which are
hyperlinked to the relevant source code.

Part of the client application validation process can be
executed on the customized emulators which provide the input
mechanisms and screen appearance identical to that of the
target handset. Designing new emulators for the handsets and
integrating them with the development and testing toolkits is
relatively an easy task. For the mobile data services
applications, the testers must pay more attention to usability
and form factors than is the case with traditional desktop
applications. General usability testing guidelines for the
mobile applications are well elaborated in [1, 2, 6, 11]. Apart
from these, the applications should be tested for the use of
native APIs. For example, an Office Assistant application
fetches your schedule from your Office Outlook account and
stores the meeting information locally. In this case, mobile
devices have different constraints on the number of characters
to be accepted for the local scheduler component. Similarly,
the differences in the native implementations of the features
such as address book, SMS or MMS storage, and picture
formats should be considered for the applications like
greetings and Address Book Transfer, which share these
features across multiple handsets.

The application must also be tested for appropriate security
mechanisms. If the nature of an application requires saving
sensitive data, the data must be encrypted and hidden to retain
confidentiality. In addition, the user must be informed clearly
that sensitive data is being stored into the device’s memory.
The application should be checked for the use of secure
communication if sensitive information is to be transmitted
between two end points or if a user may be charged for the
result or consequences of a transaction. Encryption is also
needed if sensitive data is transmitted via Bluetooth or
Infrared [6].

One among the most ignored issues by the developers of the
mobile data services application is that of error conditions,
exceptions handling and proper reporting to the user. It is
usual to see the exceptions displayed on the screen for
commercially available mobile data services applications. The
comprehensive testing strategy should have test cases for
handling all the possible error conditions. If the application
exceeds the persistent memory quota allotted or if it does not
have enough space to store the data, the user should be
notified accordingly. In case, an application is updated, it
should be tested for the compatibility of the existing data with
the newer version. The tests should also include call and SMS
interrupt tests, system notification interrupts and user’s
unnecessary key press events to check that the application
pauses and resumes its state once the interrupts are processed
[11]. For the client-server applications, it is necessary to
ensure that the connection timeouts are properly handled, and

 4

the user is notified about them. The network connection should
be closed when it is not needed anymore or when the
application is closing.

For the client-server applications, creating network logic
requires that the developers to be familiar with how HTTP
works, which services are available and their location, and
how to encode requests and decode responses [1]. The
communication between the client and server needs to be
verified to assure that no unnecessary data is sent and
encoding of the requests and responses is optimal. Not every
user input should be sent to the server. Suitable compression
techniques should be explored. Mobile clients benefit from
compression when the available bandwidth is scarce. But even
when resource-constrained devices have better connectivity,
the performance loss caused by decompression is almost
negligible [12].

A client application should do some preliminary validation
checks on the input data prior to sending the request to the
back-end system. The back-end system should also check for
the error conditions and propagate proper error messages back
to the client. For example, if the external bank server is down,
the application server of the back-end system should send to
the user, a response with the message ‘The bank server is
down. Please, try after some time.’ instead of the ‘connection
timeout’ message.

V. BACK-END SYSTEM PERFORMANCE TESTING

The mobile data services are among the most popular
mobile applications. For the key mobile services providers, the
data services environment consists of around a thousand
services with a few million users resulting in more than eighty
million hits in a week [3]. However, there are numerous non-
technical challenges in ensuring the quality of performance of
an application. Often performance testing does not have the
same priority as feature delivery and it is often ignored when
delivery schedules reach the specified limits. However,
ignoring performance testing inevitably leads to disaster [13].
To effectively carry out performance analysis of the back-end
systems, two broad approaches of load testing and
performance modeling should be considered.

In the first approach, load testing tools are used to generate
artificial workloads on the system so that the performance can
be measured under load conditions. Sophisticated load testing
tools can emulate hundreds of thousands of virtual users that
mimic real users interacting with the system. The performance
metrics such as response time, latency, utilization and
throughput measured during the test run can be used to
identify and isolate system bottlenecks, to fine-tune
application components and to predict the end-to-end system
scalability [14]. The following must be considered while
creating the successful load tests:

Identifying demand forecast: Considering the data service
lifetime, the peak and average usage of the service needs to be
estimated. A few applications such as MMS, ringtones, videos
are among the most popular. The seasonal applications such as

New Year Greetings receive maximum hits within the span of
a few days. The applications providing live summary of a
game are expected to receive tremendous hits within the span
of a few hours! The behavioral patterns of the service users
over a period of days, weeks or months as well as based on
sex, region and other attributes need to be considered for
identifying demand forecasts. The data mining techniques such
as associative rule mining have been successfully used for
such purposes [3].

Mimic realistic usage scenarios: The scripts for the load
testing of a mobile data service should mimic realistic user
distribution. For instance, the scripts for mobile banking
should simulate more percentage of the transactions for the
balance checking activity compared to those for the funds
transfer. Similarly, each of the email service testing scripts
should start with the login activity. Depending on the usage
pattern, further actions of the script should simulate email
reading or writing activities. Special attention needs to be paid
to maintaining the virtual user sessions during the script
execution.

 Elimination of the bottlenecks in the testing process: It
must be ensured that the components other than the System
under Test like links, switches, authentication servers and the
testing tool should not become a bottleneck in performance
measurements [9].

Performance of the external servers: For the client-external
server applications, the external server where the requests
terminate is a potential bottleneck.

The results obtained from the load and stress testing prove
to be of great use in suggesting the design changes to alleviate
the bottlenecks. Interesting back-end system performance
testing case studies identifying fatal memory leak, disk I/O
bottleneck, scalability bottleneck due to semaphore contention,
and database I/O bottleneck due to poor use of caching are
presented in [13].

In the performance modeling approach, performance
models are built and then used to analyze the performance and
scalability characteristics of the System under Study. These
models can be grouped into two categories: simulation models
and analytical models. Simulation models are software
programs that mimic the behavior of a system as requests
arrive and get processed by various resources. Analytical
models are based on mathematical laws and computational
algorithms are used to generate performance metrics from
model parameters [14]. Analytical performance models
frequently employ Markov Chains models, specified by using
Queuing Networks and Stochastic PetriNets. The applications
of performance modeling for large scale J2EE applications
and EJBs are elaborated in [14, 15]. J2EE and EJBs are
frequently used implementations for large scale mobile data
services back-end systems.

The work done in [14] studies a real-world J2EE
application of a realistic complexity and shows how to exploit
analytical performance models in order to address the
problems in the capacity planning. In this work, an Infinite

 5

Server queue is used to model the client machine. The queue
emulates virtual clients sending requests to the system.
Processor Sharing queues model the CPUs of the WebLogic
servers and two CPUs of the database server. A First-Come-
First-Served queue is used to model the disk subsystem of the
database server. A queuing network model generated by
following this procedure can be fed to the performance
evaluation and prediction systems such as PEPSY-QNS [16].
Such systems support various performance measurement
methods and calculate performance measures including the
throughput, utilization, average service time and average
response time for every job class.

The work reported in [15] considers the performance
prediction for an EJB system based on the modular structure
of an application server and the application components. It
describes a framework for constructing the layered queuing
models and for their inclusion in the server. The queuing
models are structured around the software components, based
on the templates for EJBs, and for their inclusion in the server.

The performance modeling exercises elaborated in [14, 15]
should be useful for large back-end systems as shown in Fig.
1. For smaller implementations, the experimental results
obtained in the modeling of Apache Web Server [17] should
prove helpful. The work done in [17] describes a model of the
Apache web server, which consists of a processor sharing node
with a queue attached to it. The total number of jobs in the
system is limited. The arrival process to the server is assumed
to be a two-state Markov Modulated Poisson Process which
represents bursty arrival traffic.

VI. FUTURE WORK AND CONCLUSION

This paper has presented the guidelines for testing key
aspects of the mobile data services. These aspects determine
the behavior of an application on a mobile device and are to be
considered for studying the performance issues of back-end
systems for large scale mobile systems. We have listed the
main factors influencing the testing strategies for mobile
applications. We have also presented some important issues,
which are likely to be overlooked while designing the testing
methodologies. The guidelines, described in this paper, are
designed to help the developers and mobile data service
providers in ensuring the bug free and scalable applications.

The future work consists of developing the performance
models and metrics for the m-health monitoring services [18].
The m-Health monitoring service gathers patient’s vital signs
collected from the medical sensors attached to the patient’s
body and delivers this data in a near real time fashion to the
healthcare professionals who access this data from the back-
end systems. One of the interesting features of this service is
that the mobile device acts as a data producer and entities in
the fixed network act as the consumer [8]. This inversion of
the role is an interesting aspect in modeling the performance of
an m-Health monitoring service.

REFERENCES
[1] SUN White Paper, “The Complexity of Developing Mobile

Networked Data Services”, whitepapers.zdnet.co.uk, June 2003.
[2] AppLabs White Paper, “AppLabs Wireless Application Testing

Whitepaper”, AppLabs Technologies, Philadelphia, PA 19103.
[3] P. Pawar, A. K. Aggarwal, “Associative Rule Mining of Mobile

Data Services Usage for Preference Analysis, Personalization &
Promotion”, in proc. of WSEAS International Conference on
Simulation, Modeling and Optimization, Izmir, Turkey, Sept.
2004.

[4] Q. H. Mahnoud, “Testing Wireless Java Applications”, Sun
Developer Network, Nov. 2002.

[5] M. Cundy, “Testing Mobile Applications is Different from
Testing Traditional Applications”, Veritest Tester’s Network,
Aug. 2001.

[6] “Developer Platforms: Guidelines For Testing J2ME
Applications”, version 1.2, Forum Nokia, Nov. 2004.

[7] G. Foreman, J. Zahorjan, "The Challenges of Mobile
Computing," IEEE Computer, April 1994, pp. 38-47.

[8] N. Dokovsky, A. V. Halteren, I. Widya, “BANip: enabling
remote healthcare monitoring with Body Area Networks”,
International Workshop on Scientific Engineering of
Distributed Java Applications, Luxemburg, Nov. 2003.

[9] R. Udupa, P. Adiga, "Performance issues and Evaluation
techniques for Networking Devices", 3rd Annual International
Testing Conference, India, 2001.

[10] J. Campbell, “Memory profiling for C/C++ with IBM Rational
Test RealTime and IBM Rational PurifyPlus RealTime”, IBM
Developer Works, Apr. 2004.

[11] “Application Developer’s TRUE BREW Test Guide:
Requirements and Test Cases”, Quallcomm Incorporated, Oct.
2001.

[12] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and J. Schiller,
“Performance Considerations for Mobile Web Services”,
Elsevier Computer Communications Journal, Volume 27, Issue
11, July 2004, pp. 1097-1105.

[13] A. Avritzer, R. Farel et. al., “Performance Analysis in the Age
of the Internet: A New Paradigm for a New Era”,
www.cse.iitb.ac.in/~varsha/allpapers/itc17sig.pdf, (2002?)

[14] S. Kounev, A. Buchmann, "Performance Modeling and
Evaluation of Large-Scale J2EE Applications", 29th
International Conference of the Computer Measurement Group
on Resource Management and Performance Evaluation of
Enterprise Computing Systems, Dallas, Texas, Dec. 2003.

[15] J. Xu, A. Oufimtsev, M. Woodside, L. Murphy, "Performance
Modeling and Prediction of Enterprise JavaBeans with Layered
Queuing Network Templates", The fourth workshop on
specification and verification of component-based systems (to
be held in), Lisbon, Portugal, Sept. 2005.

[16] G. Bolch, M. Kirschnick, “The Performance Evaluation and
Prediction System for Queueing NetworkS - PEPSY-QNS”,
Technical Report TR-I4-94-18, University of Erlangen-
Nuremberg, Germany, June 1994.

[17] M. Andersson, J. Cao, M. Kihl, C. Nyberg, "Performance
Modeling of an Apache Web Server with Bursty Arrival
Traffic", in Proc. of International Conference on Internet
Computing, Las Vegas, Nevada, USA, June 2003.

[18] D. Konstantas, R. Bults, R. Herzog, “MobiHealth: Innovative
2.5/3G Mobile Services and Applications for Healthcare”, 11th
IST Mobile and Wireless Telecommunications Summit,
Thessaloniki , Greece, June 2002.

