
Mobile Web Service Provisioning and Discovery in
Android Days

Satish Narayana Srirama, Carlos Paniagua
Mobile Cloud Lab, Institute of Computer Science, University of Tartu

J. Liivi 2, Tartu, Estonia
{srirama, paniagua}@ut.ee

Abstract—Smart phones have pervaded almost all the environ-
ments where people perform their day-to-day activities. They are
now equipped with embedded sensors, camera, touchscreen, more
memory and processing capabilities as well as efficient power
saving mechanisms. Together, these improvements enable the
mobile devices to perform tasks that are normally run in personal
computers like the provisioning of services to other devices. The
idea of Mobile Host is not new and this paper tries to extend
the research in the domain to the current generation platforms,
technologies and standards such as Android OS, Open Services
Gateway initiative framework, ZeroConf and Representational
State Transfer. While the services provided from Mobile Host
like the push notification mechanism and the feasible applications
are interesting, for successful adoption of the technology, we need
to provide better discovery mechanisms for the offered services.
Mobile web service (MWS) discovery is highly dependent on
the size of the network and the mobility of the nodes. A peer-
to-peer based solution is proposed for the MWS discovery, to
avoid the troubles with centralized registries. The approach
is discussed thoroughly along with the extensions in semantic
discovery support and overlay support discovery mechanism for
small networks with low mobility using ZeroConf.

Keywords-Mobile web services, Mobile Host, discovery, An-
droid, performance analysis, ZeroConf.

I. INTRODUCTION

Mobile devices such as smart phones, tablets, etc. have
pervaded almost all the environments where people perform
their day-to-day activities. Extensive R&D is being carried out
in mobile technologies, which led to significant improvements
in hardware, software and transmission. Mobile devices are
now equipped with embedded sensors, camera, touchscreen,
better memory and processing capabilities as well as efficient
power saving mechanisms. Moreover, with the release of the
Apple iOS and Android OS, developing mobile applications
became simpler and this resulted in huge number of applica-
tions developed by the community. In addition, transmission
rates of mobile networks also have increased, thanks to 3G
and 4G technologies as well as ubiquity of WiFi networks,
enabling mobiles to access the Internet universally.

Together, these improvements enabled the mobile devices
to perform tasks that are normally run in personal computers
like the provisioning of services to other devices. For example,
context-awareness applications can greatly benefit from mobile
web services like location with Global Positioning System
(GPS), asynchronous notifications, file sharing, and weather
forecast, among others. Similarly, with the advent of cloud

computing, the mobile applications also started delegating
their resource intensive tasks to cloud services, through their
web service interfaces. This confluence between mobile cloud
services and mobile web services fosters the creation of more
complex and rich applications.

The idea of providing services from mobiles is not new
and has been in the ground for some time [refer Table I].
Mobile Host [1], where the mobile device acts as a service
provider, enables seamless integration of user specific ser-
vices to the enterprise by following web service standards,
also on the radio link and via resource constrained smart
phones. While the feasibility of the Mobile Host has been
proven in early developments, the recent improvements and
updates in web services domain propose new architectures and
protocols for enabling the communication between the clients
and Mobile Hosts. For instance, the Representational State
Transfer (REST) [2] architecture has emerged as an alternative
to the Simple Object Access Protocol (SOAP), enabling the
design of web services that focus on system’s resources. In
addition, the mobile horizon has also changed significantly,
since the first implementations of Mobile Hosts have appeared
in PersonalJava and J2ME. Symbian is toppled from its market
capture of ≈90% and today Android takes the place with more
than 70% market share, making it perfectly logical to call the
contemporary period as Android days.

This paper proposes a new architecture for the Mobile Host,
updating it to today’s technologies and standards. The Mobile
Host for Android is redesigned based on OSGi (Open Services
Gateway initiative) framework and is capable of providing
services in RESTful fashion using Hypertext Transfer Protocol
(HTTP) and Extensible Messaging and Presence Protocol
(XMPP). Applications from several domains, such as location
based services, m-banking, collaboration and content sharing,
context-awareness, social networks and smart environments,
benefit from such Mobile Host. Furthermore, Mobile Host is
well suited for the consumption and orchestration of mobile
cloud services by enabling a scalable and efficient asyn-
chronous communication mechanism for mobile devices and
mobile cloud services [3].

Apart from this, the paper also proposes extensions to
the mobile web service discovery [4]. Updated Mobile Host
supports two discovery mechanisms: a directory-based with
overlay support discovery mechanism for large networks with
high mobility; and a directory-less with overlay support dis-



covery mechanism for small networks with low mobility.
The paper is organized as follows. Section II provides

the related work in the domain. Section III discusses the
architecture of the Mobile Host. Section IV introduces two
prominent services provided by Mobile Host along with details
of developing a new service. Section V later provides a
detailed performance analysis of the Mobile Host. Section
VI discusses thoroughly the mobile web service discovery
mechanism along with its performance latencies, while section
VII concludes the paper with a summary.

II. RELATED WORK

Provisioning of services from smart phones was studied
at RWTH Aachen University since 2003, where some of the
first architectures of Mobile Host have appeared [5], [6]. The
work addressed the challenges in design and implementation
of Mobile Host and presented prototypes and summarized
their evaluations. Several implementations of Mobile Hosts in
platforms like PersonalJava, J2ME were developed, commu-
nicating messages across several protocols like HTTP, reliable
UDP etc. The study also dealt with providing proper QoS
for mobile web services, in terms of security and scalability,
proper discovery approaches for mobile web services and in-
tegration frameworks for mobile web services [7]. In addition
to this work done at RWTH Aachen University, mobile web
service provisioning and discovery have also been addressed
by several other researchers across the years. Table I focuses
at the most prominent of them all, summarizing their key
contributions and extensions to the state of the art.

III. MOBILE HOST ARCHITECTURE

Due to the latest enhancements in mobile devices, it is
feasible to provide services from smart phones, with rea-
sonable performance latencies. However, several issues still
arise when providing web services from smart phones. For
instance, from the development perspective the services should
be maintainable, easy to install, and most often focus on
resources more than in services. In addition, from the provi-
sioning perspective, the mobile nature of smart phones brings
challenges such as addressability, reachability and reliability.
The upgrades to Mobile Host [10] address these issues relying
in several technologies and protocols such as OSGi, ZeroConf
and REST.

OSGi framework is a service platform for Java that imple-
ments a complete and dynamic component model. Applica-
tions in the form of bundles for deployment can be remotely
installed, started, stopped, updated, and uninstalled without
requiring a reboot. The service registry allows bundles to
detect the addition of new services, or the removal of services,
and adapt accordingly. The OSGi specifications originally tar-
geted embedded devices and home services gateways, but they
are ideally suited for any project interested in the principles
of modularity, component-orientation, and service-orientation.
Mobile Host for android utilizes Apache Felix, which is a
community effort to implement the OSGi R4 Service Platform
and other interesting OSGi-related technologies.

Fig. 1. Architecture of Mobile Host for Android

Similarly, REST and SOAP are two different mechanisms
for interacting with web services. REST is the logical option
for providing services from mobile devices due to its cacheable
and stateless characteristics. Moreover, REST does not rely in
heavy XML schemas which overload the network traffic and
impact the resource consumption at the devices. Thus, Mobile
Host has been upgraded from SOAP to REST fashion.

Mobile Host relies on ZeroConf networks for publishing,
discovering and addressing the services, explained in detail in
section VI. The architecture of the Mobile Host for Android
is shown in the Figure 1.

Mobile Host listens for HTTP or XMPP connections. When
a connection is received the HTTP/XMPP interface passes
the connection to the Request Handler which parses the
request and its parameters. As the Mobile Host for Android is
designed to follow a RESTful philosophy, the key resources
(entities, collections, services, etc.) are identified by their own
URIs. The standard methods are mapped to resource-specific
semantics and all the resources implement the same uniform
interface. In this way, for example: the picture ”logo1.png”
requested by the client can be accessed through a GET HTTP
request to the URI ”/logos/logo1.png”. Once the REST handler
parses the request to know the resource requested by the
client, the request is passed to the Request Resolver which
communicates with the OSGI engine for resolving the request.

The Request Resolver gets an instance of the service which
is running in the OSGi Engine. As mentioned before, the OSGI
Framework runs a pool of services, named OSGI Services,
which can be managed remotely and easily deployed. Each
OSGI Service deployed in the OSGI Engine implements a
Java Interface enforcing the service to handle the HTTP
methods such as GET, POST, DELETE, etc. Once the Request
Resolver acquires the service instance, it invokes the method
corresponding to the HTTP requests. For example, if the HTTP
Request was sent as a GET then the Request Resolver invokes
the doGet method of the service and the control is passed to
the OSGI Service. The OSGI Service implements the service
logic such as retrieving pictures, contacts, GPS location, etc.
and prepares the response. The response can be in any format
(XML, JavaScript Object Notation (JSON), plain text, etc.)
or a mime type based on the logic of the service. Finally,
the OSGI Service writes the response to the client socket
according to the HTTP or XMPP protocol.



TABLE I
RELATED WORK OF MOBILE WEB SERVICE PROVISIONING AND DISCOVERY

Year Authors Description
2003 Yang et al. [8] Proposes an infrastructure for organizing and efficiently accessing mobile web services (MWS) in

broadcast environments that defines a multi-channel model to carry information about mobile web
services. Discusses the preliminary MWS discovery still depending on centralized UDDI.

Pratistha et al. [9] Proposes an infrastructure that provides the capability of hosting web services on mobile devices.
2004 Srirama [5], Srirama et al. [1], [10] Master thesis [5] which studied mobile web service provisioning in detail. Provides a prototype

implementation in PersonalJava with fesibile applications, a detailed performace and scalability
analysis of the Mobile Host, and addressing mechanisms for the Mobile Host in radio networks of that
day like GPRS and HSCSD. Consolidated results are published in 2006 [1], [10].

2005 Gehlen and Pham [6] Propose an application framework simulating a mobile P2P environment.
2006 van Halteran and Pawar [11] Propose a proxy based solution for providing services from mobiles, in Jini technology

Srirama [12], Srirama et al. [4] Proposes MWS discovery mechanism exploiting P2P networks, especially JXTA. A detailed analysis of
the discovery mechanism is addressed in 2008 [4].

Srirama et al. [13], [14] Proposes a mediation framework for integrating MWS scalability and discovery solutions. MWSMF
was demonstrated with detailed performance analysis in 2007 [14].

Dustdar and Treiber [15] Propose a distributed P2P web service registry solution based on lightweight web service profiles.
2007 Srirama et al. [16] Studied the feasibility of providing secured web services from smart phones.

Asif et al. [17] Proposes a lightweight Web service provider toolkit, which supports the security in embedded environment.
Aijaz et al. [18] Handles asynchronous requests of Mobile Hosts that support the execution of long-lived services.
Doulkeridis et al. [19] Work involved a semantic model that structures the service direction/discovery recommendation

based on both client and server-side context.
2008 Srirama [7] PhD thesis summarized the complete research in mobile web service provisioning domain. Addressed

the QoS issues in terms of security and scalability, mobile web service discovery and mobile web
service mediation framework. Also provided applications in domains like mlearning, healthcare etc.

2009 Kim and Lee [20] Propose a lightweight framework that hosts web services on mobile devices and supports service migration.
Steller et al. [21] Proposes the mTableaux algorithm to optimize the reasoning process and facilitate web services discovery.

2010 AlShahwan and Moessner [22] Compared SOAP and REST for providing services from smart phones.
2011 Flores et al. [23] Proposes MCM which eases invocation of cloud services from mobiles, increasing the scope of offered

services from Mobile Host. MCM in turn uses Mobile Host for asynchronous communication with devices.
Asif and Majumdar [24] Discuss partitioning frameworks for mobile web service provisioning.
Chang et al. [25] Introduces context awareness into mobile web service provisioning domain.

2012 Paniagua [3] Master thesis which extended the architecture of Mobile Host to REST and OSGi frameworks. It also
extended the MWS discovery with semantics support and overlay discovery mechanism for small networks
with low mobility using ZeroConf. This work is the main basis for the current paper.

Chang et al. [26] Proposes a mobile device-hosted service-oriented workflow-based mediation framework for mobile
social network in proximity by delegating some of the discovery activities to the cloud.

IV. WEB SERVICES PROVIDED BY MOBILE HOST

Mobile Host aids in the development of the next gener-
ation of context-awareness and ubiquitous applications. The
implementation of Mobile Host for Android introduces, as
samples, a Location (GPS) Data Provisioning Service and a
Push Notification Service. Both services can be widely used
for ubiquitous and context-awareness scenarios. In addition,
the section also describes the procedure of developing custom
services for the Mobile Host.

A. Location (GPS) Data Provisioning Service (Location In-
formation Service)

This web service provides the location information of the
mobile device by using the embedded GPS device. The
GPS is a worldwide satellite-based radio navigation system
developed by the Department of Defense which consists of
31 operational satellites. GPS provides two levels of service,
Standard Positioning Service and the Precise Positioning Ser-
vice. The Precise Positioning Service is a highly accurate US
military positioning, velocity and timing service. The Standard
Positioning Service is a positioning and timing service which
is available to all GPS users on a continuous, worldwide
basis with no direct charge. However, this standard positioning
service lacks the accuracy when the receiver device is indoors.

As an alternative, smart phones can also determine the device
location by using Wi-Fi networks.

The Location Information Service developed for Mobile
Host returns the latitude and longitude of the device, in JSON
format. There are several scenarios that can benefit from such
service. For instance, we can envision a pro-active service for
recommendations. Typically, recommendation services such as
foursquare [27] are reactive, it means the mobile user should
ask for recommendations to the provider and send its location
along with the recommendation request. With the GPS service
in Mobile Host, the provider can shift to a proactive approach,
asking the device for its current location and then push the
recommendations to the device.

B. Push Notification Service

The current generation mobile applications provide more so-
phisticated functionality to the user but are generally resource
intensive. Therefore, mobile technologies are looking into the
emerging cloud computing domain to satisfy the increasing
demand for processing power, storage space and energy. While
offloading the resource intensive tasks to cloud is interesting,
it is not a straight forward task. To help with the procedure, we
have developed Mobile Cloud Middleware (MCM) [23], that
eases the invocation of services provided by multiple cloud
providers from the smart phones.



Generally, this cloud based processing is very time con-
suming. For example we have developed the CroudSTag [28]
application, which takes as input, a set of pictures and videos
collected at an event like a conference, that are stored on a
cloud. The application later processes these pictures/videos
to identify the people in them, recognizes them on social
networking cites like facebook and later tries to form a
social group with the identified people. The application uses
several third party services and the face recognition on the
cloud. CroudSTag takes approximately 35 minutes to process
a three-minute video recorded with a mobile phone in high
definition. Such waiting time is not tolerable from the user
and mobile application usability perspective. Moreover, the
operating system may kill the process when it is running
out of memory (Android case). So such applications need an
asynchronous notification mechanism for the mobile devices.

Today, several mobile application providers and platform
vendors offer the push notification services to the respec-
tive clients, like the Google Cloud Messaging for Android
(GCM) and Apple Push Notification Service (APNS). They
are generally based on XMPP or Push Proxy Gateways (PPG)
standard from Open Mobile Alliance (OMA). Most often, the
quality of service (QoS) offered by some of these providers
is low to the extent that they cannot be used in real-time
applications, as they are public services and user is competing
with several others [3]. However, with the Mobile Host, the
notification mechanism can be exposed from the smart phone
as a service, and the messages can be sent directly to the
device, without having the necessity for a proxy or a third
party service provider.

C. Developing Custom Services for Mobile Host

Apart from the above mentioned services, the architecture
of Mobile Host, makes it easy to develop new services. The
OSGI Services are deployed as bundles and each bundle needs
to be registered in the OSGI engine to make the service
available for invocation. During the registration process, the
OSGI Service provides the OSGI Engine, information about
itself such as the name of service. This name is later used
by the Request Resolver for invocation purposes. From a
developer perspective, an OSGI Service needs to implement
two Java Interfaces, BundleActivator and SroidService. The
BundleActivator contains the methods required to start, to stop
and to register the service in the OSGI Engine. Similarly,
SroidService contains the methods required for the service
provisioning. The SroidService interface enforces the provi-
sioning of the services in a REST fashion and guarantees that
the OSGI Services are capable of handling the HTTP methods
GET, PUT, DELETE and POST. In this interface, the method
doCreate can be used for any variable or process initialization.

For handling requests and responses, Mobile Host pro-
vides two Java Classes, SroidRequest and SroidResponse
respectively. SroidRequest encapsulates the logic for pars-
ing the HTTP request and maps the parameters, if any, to
a HashMap which is accessible from the OSGI Services.
Similarly, SroidResponse encapsulates the logic for writing

Fig. 2. Class diagram for a service provided by Mobile Host

information to the socket previously established by the client
with Mobile Host. The Class diagram shown in Figure 2
describes the classes and relationships needed to create a
mobile web service for Mobile Host in Android.

The OSGi services can be deployed as Java Archive (JAR)
files containing the implementation of both interfaces, Activa-
tor and SroidService. When Mobile Host starts, it takes each
JAR file from the folder SroidServices, in the Android file
system, and deploys the services in the OSGI Engine. Once
the services are registered in the OSGI Engine they are ready
to be invoked.

V. PERFORMANCE ANALYSIS OF THE MOBILE HOST

The Mobile Host was also analyzed for its performance and
here we discuss the analysis with the File Browsing Service.
This web service provides access to files such as pictures
and documents in the public folder of the mobile device.
Following the REST philosophy, each file is a resource and can
be accessed through its corresponding URL. The experiments
consider a GET request for downloading a picture of 1.5MB
size. Tsung, a load testing tool, was used for conducting the
experiments. A Samsung Galaxy SII phone [29] was used for
the analysis. The phone has a Dual-Core 1.2GHz Cortes-A9
CPU, 1GB of RAM and 16GB for storage. The services and
applications were developed based on the Android platform,
compatible with Android 2.2 API or higher. The experiments
were conducted under Wifi and 3G networks. So, the tests
were taken in a wifi network with upload rate of ≈ 4393 kbps
and download rate of ≈ 5648 kbps, respectively and a 3G
network with upload rate of ≈ 1487 kbps and download rate
of ≈ 4597 kbps.

From Figure 3 we can observe that Mobile Host for
Android can handle ≈ 20 concurrent users with a response
time of ≈ 31 seconds (in the worst case) in Wi-Fi networks,
and ≈ 6 concurrent connections with a response time of ≈ 30
seconds in 3G networks. In this case we are assuming that
a waiting time of 30 seconds is reasonable from the user
perspective. One should observe that the timestamps are for the
slowest invocation in a set of n concurrent requests. Similarly,
assuming that the user is willing to wait 60 seconds for the



Fig. 3. Simultaneous connections handled by Mobile Host

results, Mobile Host is capable of handling ≈ 40 concurrent
connections in Wi-Fi and ≈ 15 connections in 3G. Comparing
these results with those of the PersonalJava based Mobile
Host [10], actually show how far the capabilities of today’s
mobile devices and networks have advanced.

VI. MOBILE WEB SERVICE DISCOVERY MECHANISM

From the performance analysis of the Mobile Host we can
assume a commercial Mobile Web Enterprise with Mobile
Hosts and mobile web service clients and with each Mobile
Host providing some services for the Internet. However, in
this case we need to provide better discovery mechanisms for
the provided services. Generally web services are published
by advertising WSDL (Web Services Description Language)
descriptions in a UDDI (Universal Description, Discovery
and Integration) registry. But with huge number of services
possible with Mobile Hosts, a centralized solution is not the
best idea, as they can have bottlenecks and can introduce
single points of failure. Besides, mobile networks are quite
dynamic due to the node movement. Devices can join or leave
network at any time and can switch from one operator to
another operator. This makes the binding information in the
WSDL documents, inappropriate. Hence the services are to be
republished every time the Mobile Host changes the network.
This pushes the necessity for a dynamic service discovery
mechanism for the mobile web services [4].

Mian et al. [30] characterized the service discovery proto-
cols on the basis of the size of the network and mobility of
the nodes. Mian defines three levels of mobility (low, medium
and high) and three sizes of networks (small, medium and
large). Small networks (up to 10 nodes) with low mobility (up
to 5 km per hour, such as within a building) bring different
requirements than a large network (greater than 100 nodes)
with high mobility (greater than 50 km per hour, such as
highway traffic speeds). For example, in large networks and
low mobility, overlay networks provide an efficient routing
mechanism for searching. Moreover, the low mobility does
not bring any issues in terms of maintenance. However, if
the mobility turns to be high, the maintenance of the overlay

networks becomes an issue. Another example is the small
networks with high mobility where the maintenance of di-
rectory service is unfeasible and the overlay networks are not
necessary. Mobile Host supports two discovery mechanisms: a
directory-based with overlay support discovery mechanism for
large networks with high mobility (Peer to Peer (P2P) based);
and a directory-less with overlay support discovery mechanism
for small networks with low mobility.

A. Mobile Host Directory-less with Overlay Support Discov-
ery Mechanism for Mobile Ad Hoc Networks (MANET)

MANETs are self-configuring infrastructure less networks
of mobile devices which are connected by wireless links. Each
device in a MANET can move independently in any direction,
and therefore changes its links with other devices periodically.
Moreover, each device forwards the traffic unrelated to its own
use acting as a router in the network. These networks can
be connected to a larger link such as the Internet. However,
several challenges arise in this type of networks such as ad-
dressing, naming, and service discovery. Most often, MANETs
are networks of small size with medium or low mobility.

Mobile Host uses ZeroConf for exposing itself and its
services to external devices in MANETs. ZeroConf dynam-
ically configures the host in the network assigning them an
IP address and also a domain name. Furthermore, ZeroConf
provides a mechanism for service discovery and domain res-
olution. Network users no longer have to assign IP addresses,
assign host names, or even type in names to access services
on the network. Users simply query what network services
are available, and decide from the list. Applications can also
automatically detect services they need or other applications
they can interact with, allowing automatic connection, com-
munication, and data exchange. Mobile Host uses JmDNS,
a service discovery protocol which is an implementation of
ZeroConf for Android devices. JmDNS assigns a local domain
name to Mobile Host which can be used by other devices
to access the services exposed by the host. JmDNS is also
totally compatible with implementations of ZeroConf for other
platforms such as Bonjour for Apple.

ZeroConf tackles the Addressing issue by self-assigned link-
local addressing. This addressing approach uses a range of
addresses reserved for the local network, typically a small
LAN or a single LAN segment. The self-assigned addressing
simply picks a random IP address in the link-local range and
tests it. If the address is not already used, the device is assigned
with that name, otherwise it picks another address and checks
again whether the name is in use or not. Furthermore, the
name-to-address translation capabilities of ZeroConf rely on
Multicast DNS (mDNS). In Multicast DNS the DNS-format
queries are sent over the local network using IP multicast,
therefore no single DNS server with global knowledge is
required to answer the queries. Each service or device can
provide its own DNS capabilities in such a way that if a
query is received asking for its own name the device provides
a DNS response with its own address. This name-to-address
translation mechanism requires the service names to be unique



Fig. 4. Discovery Mechanism in Mobile Ad-hoc Networks

in the network. Implementations of ZeroConf such as JmDNS
and Bonjour automatically rename the service in case of
collisions. The service name convention follows a DNS-format
which includes the service type, transport protocol, and the
domain where the service is exposed. In case of MANETs
the domain happens to be ”local.” and the type should follow
the DNS SRV (RFC 2782) Service Types standards [31]. For
example, the service name http. tcp.local. corresponds to a
Mobile Host service of type http, for web services, provided
through tcp protocol in the local network.

The final element of ZeroConf is the service discovery. This
service discovery enables other devices to find all the available
instances of a particular type of service and to maintain the
service directory. Once a device has discovered a service, it
resolves the service name to an IP address and port number
which can be used later on for the service invocation. The
service directory provides a layer for indirection between a
service and its current IP address and port. Furthermore, this
indirection enables the application to keep a persistent list of
available services and resolve an actual network address just
prior to using a service. The service directory can be relocated
dynamically with low network traffic penalties. This dynamical
updating capability of the service directory addresses the mo-
bility of the devices which can enter and leave the MANETs at
any time. The service discovery is accomplished by sending
an mDNS query for a given type of domain. Later, all the
matching services reply with their names. The service names
received are listed in the local service directory.

ZeroConf is a service-oriented discovery mechanism. The
devices query for service, not for host providing the ser-
vices. The service directory stores service names instead of
addresses. If, due to the mobility of smart phones, the IP
address, port number, or host name changes, the devices can
still invoke the mobile web services. Figure 4 illustrates the
discovery mechanism in MANETs.

B. P2P based Mobile Web Service Discovery

Discovery of mobile web services is studied for a while
and earlier implementations of Mobile Host relied on JXTA
networks for advertising, indexing and addressing the services

Fig. 5. Discovery Mechanism in Wide Area Networks

provided by the device [4]. This study updates the mecha-
nism to the latest Android developments and extends it by
adding ZeroConf support. In this P2P approach, a virtual
P2P network is established, and then the services deployed
on Mobile Host are published as JXTA advertisements con-
taining the WSDL information of the service. Advertisements
are language-neutral metadata structures represented as XML
documents. Peers discover each other, the resources available
in the network and the services provided by peers and peer
groups, by searching for their corresponding advertisements.
Peers, especially rendezvous peers, may cache any of the
discovered advertisements locally. Every advertisement exists
with a lifetime that specifies the availability of that resource.
Lifetimes give the opportunity to control out-of-date resources
without the need for any centralized control mechanism. To
extend the life time of an advertisement, the advertisements
are to be republished.

The services advertised in the mobile P2P network can
be discovered by using the keyword-based search mechanism
provided by JXTA, which also extends to the WSDL level.
However, this search happens to be basic and thus returns
a large number of services that match the keyword, which
is not suitable for smart phones. To tackle this problem, the
basic JXTA search is improved with Solr [32], an open source
search platform based on Apache Lucene Project [33]. Solr
prepares an index of the data and supports full-text search, hit
highlighting, faceted search, dynamic clustering etc.

This mechanism shows reasonable performance and time
responses. We observed that the highest time response (≈ 3.01
seconds) occurs under 3G networks. However, the time re-
sponses under Wi-Fi networks are below 0.4 seconds. The
experiment considered a mobile client application in Android
querying an index of 1000 services in Solr. However, this
mechanism still lacks the accuracy in the results. For example,
when querying for notification services in android, the
results included all the services that contain at least one of the
keywords, thus returning a large list of services that include



services for android, not necessarily notification services, and
also notification services for other OS. Solr provides a high
performance keyword-based service search but lacks semantics
capabilities to enrich the meaning of the results.

To introduce semantics into the discovery, we developed
Semantic Search Engine (SSE), on a machine also acting as
rendezvous peer, which considers Jena [34] and OWL-S API
[35] to support the Service Ontology and to resolve the queries
for services from the clients. Jena provides a collection of tools
and Java libraries for developing semantic web and linked-data
apps, tools and servers. Similarly, OWL-S API provides a Java
API for programmatic access to create, read, write, and execute
OWL-S described atomic as well as composite services.

C. Complete Publishing and Discovery Process

When a Mobile Host joins the network, it advertises its
services first into the local ZeroConf network. The services
are later registered with the JXTA service directory in the
form of advertisements and are included into the Mobile Web
Service Ontology maintained by the SSE.

When a client needs to discover a service, it sends the query
through the local network via mDNS to other peers and to the
rendezvous peer. The request contains the required service,
context information of the client such as geographical location,
weather, bandwidth connection, if it is connected through Wi-
Fi or 3G, among other, user preferences such as whether to
automatically download the content or to be notified about the
service availability, the maximum size of downloaded content,
etc. It is logical that the services which are in the same radio-
link are more relevant for mobiles and are discovered faster
than those services in the global network. Consequently, the
client receives first a list of services published via ZeroConf
in the local radio link, using the text-based search provided
by the framework.

Later the discovery is extended to the services in the wide
area network. The search is handled by the rendezvous peer
on behalf of the mobile. The rendezvous peer receives the
search request and passes it to the SSE. The SSE keeps an
ontology of a large number of services registered in the set of
rendezvous peers available in the network. After the query is
received, first the services are filtered using the keyword search
feature provided by Solr which returns a reduced, but still
large, list of services (e.g. 50 out of 1000 services). Later, the
SSE performs a SPARQL query over the OWL-S description
of the services returned by Solr, retrieving the services that
semantically match the client’s preferences and needs.

However, semantic applications are resource demanding and
time consuming. So the result set is sent asynchronously to the
device, along with the WSDL of each service, using Mobile
Host based push notification. The results are then appended to
the list already obtained by ZeroConf search. The WSDL of
each service lets the mobile device to know about the service
invocation details such as the end point, port, and parameters.
The invocation process relies on the wide area bonjour and
the client application does a simple HTTP request to the
corresponding DNS/IP Address and port, as shown in figure 5.

Fig. 6. Mobile web service discovery - timestamps (in seconds)

D. Performance of the Mobile Web Service (MWS) Discovery

In MWS discovery, the total service query time Tt is:

Tt
∼= Ttr + Tk +

n∑
i=1

(Ttoi
) + Tq + Tpn (1)

Where, Ttr is the transmission time taken across the radio
link for the service query delegation between the mobile phone
and the SSE. The value includes the time taken to transmit the
request and the time taken to send the acknowledgment back
to the mobile. Apart from these values, several parameters
also affect the transmission delays like the TCP packet loss,
TCP acknowledgements, TCP congestion control etc. So a true
estimate of the transmission delays is not always possible.
Alternatively, one can take the values several times and can
consider the mean values for the analysis. Tk is the time taken
for the keyword text search by Solr. Ts is the sum of the time
taken by the SSE to load each OWL-S description in the list
of services returned by Solr (

∑n
i=1(Ttoi

)) plus the time taken
by the reasoner to query the ontology Tq . ∼= is considered in
the equation as there may be other timestamps involved, like
the client processing at the mobile phone. Tpn, represents the
notification time, which is the time taken to send the response
of the mobile service discovery to the device.

From Figure 6, it can be observed that the mechanism
retrieves the list of services in ≈ 21 seconds (Note: mobile
already got results from local Zeroconf network within a
second). Most of this time is consumed by the reasoner when
querying ontology (Ts) after the services are first filtered by
Solr (Tk), and a little fraction of the total response time (Tt) is
spent in the network transmission (Ttr) and the asynchronous
notification (Tpn). The test used a pool of 1000 service
advertisements in the JXTA network. Solr retrieved 50 services
out of the 1000 services presented in the index and the SSE
returned 5 services out of those 50. Thus the MWS discovery,
improves the quality of the results and returns a smaller set
fitting better to the mobile devices’ screen.

The results also give a way to a very interesting discussion.
Solr presents short time responses but low quality results
while the semantic service discovery improves the quality of
the service search but with some performance penalties. The



decision can be left to the mobile user or the domain expert
who may design an application on top of Mobile Host and such
MWS discovery mechanism. Moreover, Ts can be reduced
significantly by vertical scaling the capacity of SSE with much
powerful servers. However, improvising the performance of
semantic discovery is beyond the scope of this research.

VII. CONCLUSIONS

The improved capabilities of today’s mobile devices make
them feasible to provide services to other devices. Mobile
Host is upgraded to Android, the architecture considered
OSGi for service management, and ZeroConf for publishing
the services. The clients can access the MWS via HTTP or
XMPP protocol using REST philosophy in which services
are abstracted as resources. The paper introduces prominent
services provided by Mobile Host like the push notification,
along with details of developing new services.

However, for successful adoption of the Mobile Host in the
mobile web enterprise, we need to provide better discovery
mechanisms for the offered services. MWS discovery is highly
dependent on the size of the network and the mobility of
the nodes. A P2P based solution is proposed for the MWS
discovery, to avoid the troubles with centralized registries. The
approach is discussed thoroughly along with the extensions
in semantic discovery support and overlay support discov-
ery mechanism for small networks with low mobility using
ZeroConf. The detailed performance analysis of the Mobile
Host and the MWS discovery show that the mechanisms can
be adapted with reasonable performance latencies on mobile
devices, paving the way for the mobile web enterprise.

ACKNOWLEDGMENT

This work is supported by European Regional Develop-
ment Fund through EXCS, Estonian Science Foundation grant
ETF9287 and Target Funding theme SF0180008s12.

REFERENCES

[1] S. N. Srirama, M. Jarke, and W. Prinz, “Mobile web service provi-
sioning,” in Int. Conf. on Internet and Web Applications and Services
(ICIW’06). IEEE, 2006, pp. 120–125.

[2] R. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, 2000.

[3] C. Paniagua, “Discovery and push notification mechanisms for mobile
cloud services,” Master’s thesis, University of Tartu, 2012.

[4] S. Srirama, M. Jarke, H. Zhu, and W. Prinz, “Scalable mobile web
service discovery in peer to peer networks,” in Int. Conf. on Internet
and Web Applications and Services. IEEE, 2008, pp. 668–674.

[5] S. Srirama, “Concept, implementation and performance testing of a
mobile web service provider for smart phones,” Master’s thesis, RWTH
Aachen, Germany, 2004.

[6] G. Gehlen and L. Pham, “Mobile web services for peer-to-peer applica-
tions,” in Consumer Communications and Networking Conference, 2005.
CCNC. 2005 Second IEEE. IEEE, 2005, pp. 427–433.

[7] S. N. Srirama, “Mobile hosts in enterprise service integration,” Ph.D.
dissertation, RWTH Aachen University, 2008.

[8] X. Yang, A. Bouguettaya, B. Medjahed, H. Long, and W. He, “Organiz-
ing and accessing web services on air,” IEEE transactions on systems,
man, and cybernetics - part a: systems and humans, vol. 33, no. 6, pp.
742–757, November 2003.

[9] D. Pratistha, N. Nicoloudis, and S. Cuce, “A micro-services framework
on mobile devices,” in International Conference on Web Services,
Nevada, USA, 2003.

[10] S. N. Srirama, M. Jarke, and W. Prinz, “Mobile host: A feasibility
analysis of mobile web service provisioning,” in 4th International
Workshop on Ubiquitous Mobile Information and Collaboration Systems,
UMICS. Citeseer, 2006, pp. 942–953.

[11] A. van Halteren and P. Pawar, “Mobile Service Platform: A Middleware
for Nomadic Mobile Service Provisioning,” in Int.l Conf. On Wireless
and Mobile Computing, Networking and Communications (WiMob).
IEEE, 2006.

[12] S. Srirama, “Publishing and discovery of mobile web services in peer
to peer networks,” in Proceedings of First International Workshop on
Mobile Services and Personalized Environments (MSPE’06), vol. P-102.
Lecture Notes in Informatics, GI, November 2006, pp. 15–28.

[13] S. N. Srirama, M. Jarke, and W. Prinz, “A mediation framework
for mobile web service provisioning,” in 2006 Middleware for Web
Services (MWS 2006) Workshop @ 10th IEEE International Enterprise
Distributed Object Computing Conference. IEEE, 2006, p. 14.

[14] ——, “Mobile web services mediation framework,” in Middleware
for Service Oriented Computing (MW4SOC) Workshop @ 8th Int.
Middleware Conf. 2007. ACM Press, 2007.

[15] S. Dustdar and M. Treiber, “Integration of transient web services into
a virtual peer to peer web service registry,” Distributed and Parallel
Databases, vol. 20, pp. 91–115, 2006.

[16] S. Srirama, M. Jarke, and W. Prinz, “Security analysis of mobile web
service provisioning,” International Journal of Internet Technology and
Secured Transactions (IJITST), vol. 1(1/2), pp. 151–171, 2007.

[17] M. Asif, S. Majumdar, and R. Dragnea, “Hosting web services on
resource constrained devices,” Web Services, IEEE International Con-
ference on, vol. 0, pp. 583–590, 2007.

[18] F. Aijaz, B. Hameed, and B. Walke, “Towards peer-to-peer long-lived
mobile web services,” in Innovations in Information Technology, 2007.
IIT’07. 4th International Conference on. IEEE, 2007, pp. 571–575.

[19] C. Doulkeridis, V. Zafeiris, K. Norvåg et al., “Context-based caching
and routing for P2P web service discovery,” Distributed and Parallel
Databases, vol. 21, no. 1, pp. 59–84, 2007.

[20] Y. Kim and K. Lee, “A lightweight framework for mobile web services,”
Computer Science-Research and Development, vol. 24, no. 4, pp. 199–
209, 2009.

[21] L. A. Steller, S. Krishnaswamy, and M. M. Gaber, “Cost efficient,
adaptive reasoning strategies for pervasive service discovery,” in Int.
conf. on Pervasive services (ICPS ’09). ACM, 2009, pp. 11–20.

[22] F. AlShahwan and K. Moessner, “Providing soap web services and
restful web services from mobile hosts,” in Int. Conf. on Internet and
Web Applications and Services. IEEE, 2010, pp. 174–179.

[23] H. Flores, S. Srirama, and C. Paniagua, “A Generic Middleware
Framework for Handling Process Intensive Hybrid Cloud Services from
Mobiles,” in The 9th International Conference on Advances in Mobile
Computing & Multimedia (MoMM-2011). ACM, 2011, pp. 87–95.

[24] M. Asif and S. Majumdar, “Partitioning frameworks for mobile web
services provisioning,” International Journal of Parallel, Emergent and
Distributed Systems, vol. 26, no. 6, pp. 519–544, 2011.

[25] C. Chang, S. Ling, and S. Krishnaswamy, “Promws: Proactive mobile
web service provision using context-awarenes,” in 8th IEEE Int. Wrksp.
on Managing Ubiquitous Communications and Services, 2011.

[26] C. Chang, S. N. Srirama, and S. Ling, “An adaptive mediation framework
for mobile p2p social content sharing,” Service-Oriented Computing, pp.
374–388, 2012.

[27] foursquare Inc., https://foursquare.com/.
[28] S. N. Srirama, C. Paniagua, and H. Flores, “Social group formation with

mobile cloud services,” Service Oriented Computing and Applications,
vol. 6, no. 4, pp. 351–362, 2012.

[29] Samsung Electronics, “Samsung Galaxy SII,”
http://www.samsung.com/global/ microsite/galaxys2/html/feature.html.

[30] A. Mian, R. Baldoni, and R. Beraldi, “A survey of service discovery
protocols in multihop mobile ad hoc networks,” Pervasive Computing,
IEEE, vol. 8, no. 1, pp. 66–74, 2009.

[31] A. Gulbrandsen, “A dns rr for specifying the location of services (dns
srv),” 2000.

[32] Apache, “Apache solr,” http://lucene.apache.org/solr/.
[33] ——, “Apache lucene,” http://lucene.apache.org/core/.
[34] B. McBride, “Jena: A semantic web toolkit,” Internet Computing, IEEE,

vol. 6, no. 6, pp. 55–59, 2002.
[35] D. Martin, M. Burstein, J. Hobbs et al., “Owl-s: Semantic markup for

web services,” W3C Member submission, vol. 22, 2004.


