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Abstract 

Online social networking has become a popular activity in recent years. Participants are willing to 

share various content not only to private groups but also to public communities. Meanwhile, the 

increasing smart mobile device users bring the online social networking to mobile terminals. Mobile 

users' roles have been switched from content consumers to content providers. Various mobile devices 
generated content such as video records, pictures, and local events were shared to online communities. 

However, in the current stage, content sharing is still relying on centralised control or tightly-coupled 

technologies. In this paper, we applied standard-based mobile Web service approach to realise a 

loosely-coupled service-oriented proximal mobile social network, which allows users to use 

heterogeneous devices to share content to public societies in proximity. 
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1. Introduction 
 

Online social networking has been a common daily activity for worldwide Internet users. Social 

network services such as Facebook
1
, Twitter

2
, YouTube

3
, Flickr

4
, and many other similar services 

enable participants to communicate and share content to each other. The social content sharing is not 

only limited to a group of participants who knew each other in their real-life but also includes sharing 

to public societies. For example, various Twitter and YouTube users intend to share their content 

publicly. 

Meanwhile, the increasing smart mobile device users bring online social networking to mobile 

terminals. Mobile devices such as smart phones, handheld media players, and portable gaming consoles 

have been employed as one of the major median for users to participate in social networking. The 

capabilities provided by mobile devices enable users to collect a variety of content such as photographs, 

recorded videos, his/her current location from Global Positioning System and map services, that can be 

shared to their social networking groups. With pervasive wireless network connectivity, mobile users 
can form a mobile social network in proximity (MSNP) to share their content on-the-fly to proximal 

participants within the wireless network range.  

Numerous researchers [1], [2], [3], [4] have proposed mobile social network approaches in recent 

years. The fundamental goal of MSNP is to share content with surroundings in an unstructured 

decentralised wireless network environment. Such a topology is also known as a mobile peer-to-peer 

network. There is a conceptual MSNP example such as the StreetPass5 mechanism of Nintendo 3DS6  

which allows devices to share the avatar information to each other automatically when they pass by. 

However, since MSNP is still in its early stage, existing approaches are tightly-coupled to individual 

platforms. In our perspective, an ideal MSNP is platform independent in which participants can share 

their content freely without considering which platform they are using on their devices. Moreover, an 

ideal MSNP is highly dynamic in which mobile devices are capable of discovering the interested 
content for the users on-the-fly without prior knowledge about the content providers.  

A loosely-coupled service-oriented MSNP system throws a number of questions such as how to 

discover most relevant content from participants for a content requester? How a content provider 
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disseminates his/her content to proper participants without becoming unwanted spam? Moreover, 

mobile devices are resource constraint. In particular, heavyweight processing can consume too much of 

resources of a mobile device and also cause high latency. Such an issue can cause users to dislike to 

participant in the MSNP. 

This paper aims to resolve above questions/problems by applying context-aware semantic mobile 

Web service approach for a service-oriented mobile social network in proximity. In order to identify 

the most relevant content for a mobile user, we propose context-aware user query prediction scheme. 

We applied Semantic Annotation for Web Service Description Language and XML Schema 

(SAWSDL)
7
 to mobile Web service (MWS) framework for semantic service discovery. Moreover, we 

studied a number of service discovery approaches for MSNP with mathematical models and analysed 

their performance. 
The remainder of this paper is structured as follows:  

Section 2 describes the background of mobile Web service provisioning and context-aware 

proactive service discovery. Section 3 explains the proposed context-aware user-preferred-query 

prediction scheme. Section 4 describes proposed service discovery approaches for MSNP. Section 5 

describes the components required for each mobile Web participant in our proposed MSNP 

environment. Section 6 presents our experimental evaluation. Finally, Section 7 provides the 

conclusion remarks of this work, and the future research direction. 

 

2. Background 
 

2.1. Mobile Peer-to-Peer Web Service Discovery 
 

Various mobile Web service (MWS) solutions [5], [6], [7] have been introduced in past few 

years. Hosting a Web server on mobile device to provide content to other participants is no 

longer a challenge. However, the essential challenge still remains when the communication 

needs to be established in an unstructured decentralised manner. MWS discovery in peer-to-peer 

manner involves two parts, physical service discovery and logical service discovery. 

Physical peer-to-peer service discovery in an unstructured decentralised MWS environment 

can be realised by open-source platform independent technologies such as Devices Profile for 

Web Services (DPWS)8, JXTA9 or IETF Zero configuration networking (Zeroconf)10. Zeroconf 

has three primary features: (1) dynamically assigns numeric network addresses for devices when 

they join the local network without a Dynamic Host Configuration Protocol (DHCP) server; (2) 

applies multicast domain name system (mDNS) to automatically translate the network addresses 

and hostnames of devices without a Domain Name System (DNS) server; (3) supports DNS 

service discovery to enable automatically locating network services without a directory server. 

There are numerous implementations and libraries to enable Zeroconf network in various 

platforms, such as UPnP11, Bonjour
12
, Avahi

13
, Mono.Zeroconf

14
, and so on. These technologies 

are feasible to enable the physical MWS discovery in a P2P manner. The challenge of service 

discovery in an unstructured decentralised MWS environment is usually related to the logical 

service discovery part. 

A classic MWS provider supports standard WSDL15 to describe its operations. However, if a 

peer only searches services by matching the keywords to the vocabularies used in WSDL, the 

searching can be extremely difficult and can come out an empty searching result, as most often 

providers use their own vocabulary in describing the services and operations within WSDL. 

Alternatively, when we assume MWS providers stick to common names for their services, the 
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results of this keyword-based search will be quite huge, and still being a problem [8]. Therefore, 

semantic Web service (SWS) has been introduced to support a more scalable and flexible 

service description mechanism. There have been a number of specifications to support SWS, 

such as WSDL-S16, OWL-S17, and a more recent W3C18 approved standard: SAWSDL. The role 

of SAWSDL is to bridge the types/classes described in ontologies (e.g., OWL19 documents) with 

the actual operation of the Web service endpoint. SAWSDL adds semantic annotation in WSDL 

or XML schema documents to map the Web service operation types or the data types of the 

schema documents to their corresponding meaning in ontologies. Ontologies describe the 

meaning of operation or data. In a semantic Web, it is usually expected that the participants of a 

network will share a fair number of common ontologies to express the resources they provide 

and use [9]. Benefiting from the knowledge of common ontologies, MWS requesters are capable 
of automatically identifying the functions and content provided by MWS providers without 

users' interference. 

 

2.2. Proactive Service Discovery and Context-Awareness 
 

One of the major mechanisms of our work is to enable autonomous service discovery and to 

filter unwanted services in advance without human interference. Such a mechanism is known as 

service recommendation or proactive service discovery (PSD). PSD represents an autonomous 

mechanism that is capable of discovering suitable services for the user based on numerous rules 
or dynamic factors. Such factors are known as context information, which can be retrieved from 

various software or hardware sensor components. For example, recent smart devices (e.g., iOS 

devices
20
, Android OS

21
 devices) are capable of retrieving a user's current location, moving 

direction, weather and temperature in the user's current environment and etc. By defining 

corresponding rules, raw context information can be interpreted to high-level context 

information to illustrate a meaningful situation. There are a fair number of context interpreting 

or reasoning solutions existing in the pervasive computing research area for many years. 

Representatives include Context Toolkit [10], and Context Spaces [11]. 

A typical PSD approach is to adapt pre-defined rules that describe which service is suitable 

for the user based on user's preference in current situation or related context factors. However, 

in reality, a user's preference can dynamically change at runtime due to different context factors. 

The pre-defined static user preference profiles and rules are difficult to fulfil unseen situations 

[12], unless the user is willing to adequately define many different preferences manually for all 

the possible situations. Furthermore, in most cases, a user is unable to define his/her 

probabilities for events accurately [13]. Consequently, researchers [14], [15] have applied 

machine-learning mechanism to minimise the need of user's manual setting. These works 

adapted Bayes' theorem [13] to predict the user preferred query based on historical user query 

records and associated context factor records. Once the user preferred query is computed, 

system can match the query to corresponding semantic service type to identify the most suitable 

service for the user automatically. 

 

3. Context-Aware User Query Prediction 
 

The primary goal of our system is to perform an effective service discovery mechanism for user to 

discover his/her interested content in MSNP. In order to realise such a need, the user's mobile device 

needs to be able to identify the user's interested service in current situation. Prediction is a technique 
that has been applied in various searching mechanisms including classic file systems and Web 

searching systems [16], [17]. The context-aware prediction scheme in our system takes user’s current 

contexts as the basis, and then compares the current contexts to historical records to compute which 
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query requested by the user has the highest probability. In this section, we describe our proposed 

context-aware prediction scheme. Firstly, we explain each element involved in the scheme. 

Raw Context Data (rc) — is the data retrieved from context providers such as Global Positioning 

System, Compass application, image sensor, video sensor, voice sensor, and so on. An rc will be used 

as the basic input parameter to describe an interpreted context. 

Context (c) — is an output from a rule-based context interpreting process. Based on [19], an 

interpreting rule consists of context type, the scope of raw context data value, which includes minimum 

value and maximum value, and the output represents the interpreted value from this definition. For 

example, an interpreting rule describes inputMin=“x12y14”, inputMax=“x37y22”, type = “location”, 

output=“meeting_room”. When a retrieved location rc contains a value: x15y17, which is within the 

scope of inputMin, and inputMax, the system will consider a context: location=“meeting_room” as one 
of the current contexts. 

Query Records (R) — Each device should maintain a set of query records R, in which R={ri : 

1 i n}. R representing the device user’s previous queries associated with contexts. Each r in R 

consists of a query and a set of context (C). Each record in ri
 
consists of a query

 
qri, and a collection of 

context information Cri occurred when qri
 
was submitted by the user. 

Candidate Query (qx) — represents the query, which is sent by the user based on current contexts. 

When the Predictor component receives a set of context, it can predict the user’s query based on the 

comparison result between the current contexts and the contexts of each query record. User may also 

define a preferred query manually by setting a set of context and the corresponding query in a file, 

which will be loaded in the beginning of the process. If user’s definition exists, it will be used as the 

priority option. Otherwise, the system will perform the prediction automatically. In order to retrieve a 
list of candidate queries from past query records (R), we can use Equation (1) to retrieve the raw 

candidate queries Q. 

     (1) 

 

Context Importance (e) — is a user-defined value in the context importance rules (CIR) for 

clarifying the importance of a context type to a query. By default setting, each context type has equal 

importance (set to 0) to all the queries. For example, a user may consider the location context to be 

more important to a query for searching the train arrival time. Hence, the user can increase the 

importance of the location context (e.g., set it to a number greater than zero) to the query to improve 

the prediction accuracy. Such a setting can also be applied globally. For example, user may prefer the 

location context should always be the primary consideration. Hence, whenever the prediction is 

performed, the location context will always be allocated a higher importance value than the other 

contexts. 

 

3.1. Predicting the Weight of Query 
 

The prediction scheme applies Bayes' theorem [13] and the context weight model [18] to 

compute the weight of qx found in R. The three main elements of the prediction scheme include 

the probability of a query, the weight (influence) of a context to a query, and the user’s ranking 

for a context to a query.  The following illustrates the formula to compute the weight of qx 

based on current contexts (C) and query records (R). 

 

w(qx C,R)
P(ci qx ) P(qx )

P(ci )

1 e(ci,qx )

C e
i 1

C

                  (2) 

 

Where w(qx|C,R) denotes the weight of qx
 
computed from summing the influence value of 

each current context.  The influence value of a current context (ci) to qx is computed based on 

matching the current context ci to the contexts in each ri in R, plus the context importance (e). 

P(ci|qx) denotes the probability of qx requested by the user when context ci occurs, in which 

P(ci|qx) = |{r R : qr=qx c Cr, c=ci}| / |{r R : qr=qx}|. P(qx) denotes the probability of qx 

based on its occurrence in R, in which P(qx) = |{r R : qr=qx}| / |R|. P(ci) is the probability of a 

randomly selected query that contains ci as one of its attributes, in which P(ci) = 



P(ci|qx)P(qx)+P(ci|qx’)P(qx’). P(qx’) denotes the probability of other queries in R excluding the 
consideration of records that have qr=qx, in which P(qx’) = |{r R : qr qx}| / |R|. P(ci|qx’) 
denotes the probability of other queries requested by the user excluding qx when ci occurrs, in 

which P(ci|qx’) = |{r R : qr qx c Cr, c=ci}| / |{r R : qr qx}|. In order to retrieve the 

rate of a single ci to qx, we compute the value using Equation (3): 

 

rate(ci qx )
P(ci qx ) P(qx )

P(ci )

1 e(ci,qx )

C e
    (3) 

 

Where e  is the sum of a set of context importance (e) in the context importance rules (E), 
in which the defined value of e is not 0. e(ci,qx) denotes one of the defined rule, where:  

e(ci,qx) e E, ce=ci qe=qx. 

A prediction scheme that relies on the users historical record usually has a limitation in which the 

accuracy of the prediction can be low when there is not enough records. One solution is to apply social 

context. Social context represents the factors that can potentially influence a user's decision. For 

example, a friend f of a MSNP user u, might have similar interest to u, and f might have been to the 

same place as where u is currently arriving. Since f and u are similar, they may prefer to interact with 

the same type of services in that place. The detail of the prediction model that applies social context 

will be explained in our future work. 

 

4. Service Discovery in MSNP 
 

4.1. Overview of the Architecture 

 

 
 

   (a) 

 
 

         (b) (c) 

 

 
 
 

(d) 
 

(e) (f) 

Figure 1. Service Discovery Approaches 

 
Figure 1(a) illustrates the basic knowledge sharing in our system. In order to enable the interaction 

in such an environment, a common knowledge need to be disseminated in the network. We applied 

Bonjour to realise the physical service discovery, and applied SAWSDL for logical service discovery 

using semantic service expression.   

In this system, each peer is a Web service requester and can also be a RESTful Web service [19] 

provider if the participant is sharing content to the others. We expect each peer is SAWSDL-compliant. 

Moreover, each MWS should have pre-downloaded a fair number of public common ontologies that 

have been published on cloud resources (e.g., Swoogle22, or FUSION
23
). A public common ontology 

describes numerous common service types and data types semantically. Each SAWSDL-compliant 

MWS provider describes its services using semantic annotations that map to the corresponding 
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ontology types. Benefiting from the public common ontologies and semantic annotation, a MWS 

requester can identify whether a service matches to the functionality it needs or not from the service 

provider's WSDL and related documents (e.g., XML Schema). In following subsections, we discuss 

four applicable service discovery approaches in MSNP. We also analyse the performance of each 

approach by using mathematical models. 

 

4.2. Pull-based Service Discovery 
 

Figure 1(b) illustrates a pure pull-based service discovery approach. In this approach when a peer 

joins the network, it asynchronously retrieves service description metadata (i.e. WSDL with semantic 

annotations) from each existing service provider peer in the network. By processing the WSDLs, the 

newly joined peer (NJ) is capable of identifying the semantic service types provided by each service 

provider. A common problem of this simple model is the latency issue. Because WSDLs are described 

in XML format, resource-constraint mobile devices are usually unable to process a high amount of 

XML documents effectively. We can model the performance of this approach as follows: 

 

Tdisco
NJ maxi 1

P
(TgSDpi ) TpsSDpii 1

P

    (4) 

 

Where, the total time for NJ to identify which service provider can fulfil its needs is the maximum 

time to retrieve the WSDL files from all the service provider peers asynchronously, plus the total time 

for processing each WSDL. 

TgSDpi  = time spent for NJ  to retrieve a p's WSDL. 

TpsSDpi  = time spent for NJ to parse one of the WSDL files to identify the services provided by the 

service provider. 

 

4.3. Push-based Service Discovery 
 

Figure 1(c) illustrates a push-based service discovery approach in which every existing peer 

is actively interacting with NJ when NJ joins the network. In this model, every participative 

peer is required to have embedded Web service provisioning mechanism in order to let other 

peers to advertise service description to it. As Figure 1(c) shows, when NJ joins the network, 

other existing peers will actively retrieve NJ's WSDL in order to interact with NJ. Existing peers 

will then retrieve NJ’s preference profile, which describes what type of service NJ is interested. 

The preferred service type was identified from the context-aware user query prediction 

mechanism, which was described in previous section. After existing peers retrieve NJ’s 

preferred service type, the peers who can provide the preferred service type (we call them 

matched service providers, or MPs for short), will actively invoke NJ’s operation to advertise 

their WSDLs to NJ. We can model the performance of this approach as follows: 

 

Tdisco
NJ maxi 1

P
(TgSD

pi TpsSD
pi TgPref

pi TpsPref
p ) max j 1

MP
(TpSD

mpj )            (5) 

 

Where: 

P = all the service providers in the network as described in previous subsection. 

TgSD
pi
 = time spent for a pi to retrieve NJ’s WSDL. 

TpsSD
pi

 = time spent for a pi to process NJ’s WSDL. This process happens concurrently. 

TgPref
pi

 = time spent for pi to retrieve NJ’s preference profile. 

TpsPref
p

= 
time spent for a pi to process NJ’s preference profile in order to identify NJ’s 

preferred service type. 

TpSD
mpj

 = time spent for a matched service provider to push its WSDL to NJ. 



4.4. Hybrid-based Assistive Service Discovery 
 

In a hybrid-based assistive service discovery approach, we expect that there are numerous 

peers regularly participating in the network. These active peers intend to interact with others 

and share information they've collected in the areas. We call such peers as Super Peers (SPs). 

SPs are active participants. Whenever a SP is in the network, it continuously tracks other peers.  

Figure 1(d) illustrates an example about how SPs obtain and disseminate information in the 

network. As Figure 1(d)(1) shows, when a NJ who provides “TypeB” service, joins the network, 

SPs will concurrently retrieve the NJ’s WSDL in order to identify what service NJ provides. 

Afterwards, the TypeB SP, a SP who mainly maintains TypeB service provider list, will push 

Super Peer Index (SPIndex) to NJ. A SPIndex is a simple metadata that describes what type of 

services are currently available on the network, and which SP is maintaining the ServIndex (a 

list of service providers' URIs) of each particular service type. 

If a newly joined peer is a pure Web service client (CP) that is only capable of performing 

pull-based service discovery, it can seek assistance from the other peers as Figure 1(e) shows. 

When CP joins the network, it can randomly select one of the existing service provider peers 

to retrieve SPIndex from it. After CP retrieves SPIndex, it can find the SP who provides the 
ServIndex it needs. With the ServIndex, CP will be able to obtain a complete list of service 

provider URIs (Uniform Resource Identifiers) who can fulfil CP’s preferred service type. We 

can model the performance of this service discovery approach as follows: 

 

Tdisco
NJ TgSDrp TpsSDrp TgSPIrp TpsSPI TgSDsp TpsSDsp TgSvIsp TpsSvI max j 1

MS
(TgSDmsi )   (6) 

 

Where: 

TgSDrp  
= time spent for NJ to request WSDL 

from a randomly selected service 

provider peer (denoted by rp). 

TpsSDsp
= time spent for NJ to process 

sp’s WSDL. 

TpsSDrp  
= time spent for NJ to parse rp’s 

WSDL. 
TgSvIsp  

= time spent for NJ to request 

ServIndex from sp. 

TgSPIrp  
= time spent for NJ to request 

SPIndex from rp. 
TpsSvI  = time spent for NJ to process 

ServIndex. 

TpsSPI  = time spent for NJ to process 

SPIndex. 
TgSDmsi

= time spent for NJ to retrieve 

WSDL from each matched 

service provider (msi) 

described in ServIndex. 
TgSDsp  

= time spent for NJ to retrieve sp’s 

WSDL. 

 

 

Above, we have discussed the service discovery approach for a pure client. On the other hand, 

if the newly joined peer (NJ) contains embedded mobile Web service provider, the push-based 

service discovery can be performed. Note that the push-based approach is useful for active 

MWS providers to perform autonomously advertisment. Figure 1(f) illustrates such a scenario in 
which SPs will actively interact with NJ and retrieve NJ’s preferred service type. In this 

scenario, NJ prefers Type B service. Hence, Type B SP will push Type B ServIndex to NJ. 

Afterwards, NJ can retrieve WSDLs of Type B service providers for further invocation needs. 

We can model the performance of this approach as follows: 

 

Tdisco
NJ maxi 1

SP
(TgSD

spi TpsSD
spi TgPref

spi TpsPref
spi )

max j 1
MSP

(TpSvI
mspj ) TpsSvI

NJ

j 1

MSP

maxk 1

MP
(TgSDmpk

NJ )
          (7) 

Where: 

TgSD
spi

 = time spent for a sp to retrieve 

NJ’s WSDL. 
TpSvI
mspj

 = time spent for a sp who matched 

to NJ’s preferred service type to 

push ServIndex to NJ. 



TpsSD
spi

 = time spent for a sp to process 

NJ’s WSDL. 
TpsSvI
NJ

 = time spent for NJ to process 

ServIndex. 

TgPref
spi

 = time spent for a sp to retrieve 

NJ’s preference profile. 
TgSDmpk
NJ = time spent for NJ to retrieve 

WSDL from each service 

provider described in ServIndex. 

TpsPref
spi

 = time spent for a sp to process NJ’s preference profile  

in order to identify NJ’s preferred service type. 

 

5. Components of a Mobile Peer in MSNP 
 

As explained in earlier section, mobile peer have to provide several abilities in the discovery 

procedure. Figure 2 illustrates the components of the mobile peer in our system. It consists of 

two groups of components: service invocation related components and service provision related 

components. 
 

5.1. Service Invocation Related Components 
 

 Context Middleware — continuously operates individually to retrieve up-to-date raw context 

data from context providers, and interprets the collected raw context data as compound 

contexts based on the predefined matching rules. For example, a rule may define a 

compound context — “noise level” is “loud” when the value of environmental context raw 

data — “noise” is between 30 and 50.  

 Context Provider — can be an external sensor device, or an embedded application within a 

mobile device. Examples can be a compass application, a map application (e.g., Google 

map24), a sound detection application, etc.  

 Knowledge Manager (denotes by KM)—is responsible to manage the annotation of semantic 

service type and data types used in semantic metadata such as OWL, RDF and SAWSDL. A 

mobile host uses KM to synchronise its semantic knowledge with public ontology services. 

The detail of selecting appropriate ontology is out of the score of this paper. At this stage, 

we assume such a mechanism has been implemented, and a number of common ontologies 

have been shared within the mobile social network. Hence, each mobile peer is capable of 
identifying the services provided by each other based on semantic service matchmaking.  

 Service Matchmaker — performs semantic service matchmaking based on the input 

parameters including a user query, and a list of available services described in URIs and 

corresponding semantic types. In our system, we expect that all the semantic types used by 

participants can be found in the common ontologies.  

 Service Discoverer — is capable of performing physical service discovery within Zeroconf 

network. It retrieves and maintains a list of service provider domains published in the 

network. When an external service provider needs to be invoked, the Service Invoker will 

firstly request Service Discoverer for the target service provider’s current address. It is an 

important prerequisite process because the mobile P2P network is a dynamic environment, 

each peer can sudden disconnect and may be reconnected again. Their IP address can change 

frequently. Moreover, some peers may not be able to reconnect to the network again.  

 Service Invoker—supports dynamic Web service invocation mechanism by dynamically 

generating a corresponding Web service client based on the descriptions of the service (e.g., 

WSDL, XML Schema, RDF, etc.). In our system, we expect that each service provider will 

reply its basic WSDL when it receives a simple HTTP GET (without extra path). Hence, 

each mobile peer is capable of performing further service invocation to such a service 

provider.  

 Recommender — is an always-on local service on the mobile device. It collaborates with the 

Context Middleware to continuously observe user’s contextual information. It applies a 

number of predefined event rules to decide when to trigger the proactive service discovery 

operation. It also consists of a mechanism to predict user’s preferred query based on context 

information and the historical records of user’s queries. The prediction method has been 

described in previous section. When user performs searching, the recommended services are 



shown on the first few number of user’s query results, and the rest services, which have been 

briefly described in the ServIndex, will also be selectable, but distinguish to the 

recommended services, the service description and related data of these services have not yet 

been fetched. Invoking these services will take longer time than invoking the recommended 

services. In order to continuously improve the accuracy of prediction, Recommender records 

user’s queries and the context information when user invokes a service. 

 

 
Figure 2. Components of a mobile Web service peer 

 

 

5.2. Service Provision Related Components 
 

 Service Description Manager — is responsible to edit the WSDL of the service at runtime 

before it is sent to the requester. This mechanism is important because a participant in 

Bonjour network doesn’t have a static IP address, and its selected domain name may change 

when another participant has used a redundant name. Hence, a mobile host needs to ensure 

the information described in its WSDL is correct before the document is sent.  

 Request Handler — is responsible for handling incoming request query and outgoing 
responses. It forwards the request to corresponding Functional Component for the process.  

 Functional Components — represent the operations provided by the mobile host.  

 State Manager — controls the state of mobile host to ensure the server will not be 

overloaded. For example, if there are over 100 concurrent requests for the HTTPServer, 

State Manager may inform the HTTPServer to stop receiving more incoming requests until a 
fair number of processes have been completed. Furthermore, if an incoming query requests 

the state of the mobile host, the Request Handler will retrieve such information from State 

Manager.  

 HTTPServer — is a typical Web server embedded on the mobile host that handles message 

transmission using HTTP protocol. It also publishes itself in Zeroconf network.  

 

6. Evaluation of the Prototype 
 

We have implemented a prototype of our proposed system. In this section, we describe the 

evaluation results in two parts. The first part contains the accuracy evaluation of our context-
aware user query prediction scheme. The second part describes the performance testing of our 

prototype in real mobile devices. 
 

6.1. User Query Prediction Scheme Evaluation 
 

Our prediction scheme is generic, and is applicable to general context information. In order 

to test the accuracy of the scheme, we have programmed a user query record generator to 

simulate user’s query records and the associated context information. Table 1 illustrates the 

basic parameters used in the record generator. We defined five types of records. Each record 

type describes a particular query type and five types of associated context information values 

denoted by CL, CT, CA, CW, and CP. Record generator will randomly generate a given number 



of records (e.g., 100, 200, 300, etc.). Each record describes one query type, and five context 

values. For example, assume we use the setting in Table 1, the record generator will randomly 

select the record type from A to E. Assume the selected record type is A, then the query type 

will be Q1, and the associated context information will be CL=L1, CT=T1, CA = random value 

from A1 to A5, CW = random value from W1 to W5, CP = random value from P1 to P5. The 

two static values (L1, T1) represent the contexts that influenced the user’s decision to select Q1. 

 

Table 1. Parameters for Prediction Testing (1) 

Record Query CL CT CA CW CP 

TypeA Q1 L1 T1 A1-A5 W1-W5 P1-P5 

TypeB Q2 L1-L5 T2 A2 W1-W5 P1-P5 

TypeC Q3 L1-L5 T1-T5 A3 W3 P1-P5 

TypeD Q4 L1-L5 T1-T5 A1-A5 W4 P4 

TypeE Q5 L5 T1-T5 A1-A5 W1-W5 P5 

 

Figure 3 illustrates the results of our evaluation by using the parameter setting in Table 1. In 

axis-x, it shows how many percentage records we have used as training set to predict the rest of 

records. For example, the very first value on the left-bottom of the graph represents the 

accuracy result based on using total 100 query records, and 60% of the records were used as 

training set to predict the rest 40% of the records. 

 

Figure 3. Prediction Result (1) Figure 4. Prediction Result (2) 

 

We have also tested our prediction scheme using the subset of epSICAR-dataset [20]. We 

used 200 sequence records from the dataset. Each record consists of two context attributes: 

location and action. Each record also has a corresponding object (e.g., Hi-Fi Music system for 

listening music in living room), which can be considered as a service. The testing result is 

shown in Figure 4.  

 

6.2. Performance of Service Discovery in MSNP 

 
Performance is always a concern in mobile Web service environments because resource 

constraint mobile devices are unlikely to process XML-format metadata based Web service 

communication effectively. Moreover, high amount of network transmission can potentially 

consume too much battery-life of mobile devices. We have considered such an issue, and 

performed testing on battery-life of a MWS provider which embedded on a recent mobile device 

Apple iPod touch 4th generation, with 99% battery-level, and connected to IEEE802.11g WiFi 

network (54bps). We implemented Web service clients on a Macbook laptop computer to 

simulate 20,000 Web service clients. We let each Web service client to concurrently submit a 

6462 bytes data to the MWS (that is 20,000 requests sent to MWS at once) using HTTP POST 

method, and the MWS replies requests asynchronously. After all the clients received the 

responses from MWS, the battery-level of the iPod touch remains in 91%. Indeed, the battery 

power may be dependent on devices. Some devices may have poorer battery power, but we can 

measure that in the near future, battery-life is less an issue for MWS provisioning. In following 

subsections, we describe our testing result on performance and the comparison of four service 

discovery approaches described in Section 4. 



6.2.1. Environment Setting 

 

As already explained, our testing environment is in IEEE 802.11g WiFi network, and Apple 

iPod touch 4th generation (Apple A4 800MHz CPU power) is mainly used as a mobile Web 

service peer. We also used a Macbook laptop (Intel Core 2 Duo 2.4GHz CPU power) to 

simulate the rest peers. The parameters involved in our analysis have been described in Table 2. 

 

Table 2. Parameters for performance testing 

 

6.2.2. Testing Results 

 
Figure 5(a), (b), (c) illustrate the time-spent on service discovery for each approach 

described in Section IV that is influenced by the number of matched service providers (denoted 

by MP) and the total number of service providers (denoted by P) in the environment. Figure 
5(a) denotes an environment with 100 service providers, 5(b) denotes an environment with 150 

service providers, and 5(c) denotes an environment with 200 service providers. The number of 

MP doesn’t influence the pure-pull approach because in the pure-pull approach, the newly 

joined peer (denoted by NJ) always needs to process all the WSDL from environmental service 

providers in order to identify which service provider can fulfil its needs. On the other hand, The 

pure-push approach can improve the latency problem because the task to identify which service 

provider can fulfil NJ’s preferred service type, has been assigned to the other active peers who 

intend to advertise their services to NJ. However, a mobile device is resource constraint. With 

its limited process power, processing high amount of request from other peers can still increase 

the overall latency for NJ. The same issue occurred in the assistive push-based approach, in 

which a number of super peers are available to assist the service discovery process. Assistive 

approaches can highly improve the overall performance. However, due to the mobile device’s 

limited process power, the push-based assistive approach results a poorer performance than the 

pull-based assistive approach. By comparing Figures 5(a), (b), and (c), we can clearly see that 

the pure-pull approach was highly influenced by the total number of service providers in the 

environment. 

 

(a) (b) (c) 

(d) (e) (f) 

Figure 5. Performance testing result based on number of matched services and the 

total number of service providers 
 

Element Value Element Value 
WSDL 3482 bytes No. of Existing Service Provider Peers 50 to 200 
SPIndex 2788 bytes No. of Super Peers 20 
ServIndex 1055 bytes No. of NJ’s preferred service type 1 
Preferred Service Profile 177 bytes   



Figures 5(d), (e), (f) illustrate the latency influenced by the number of service providers in 

the environment. They clearly show that the pure-pull approach is highly influenced by the 

number of service providers. An interesting point shown on these graphs is that the pure-pull 

approach can have a better performance than the pure-push approach when there are only 50 

service providers in the environment. It is because processing the concurrent request/response in 

a resource constraint mobile device, in which the high frequency of data transmission can cause 

inevitable latency. On the other hand, when there are only 50 service providers in the 

environment, the pure-pull approach can handle the process well. The number of environmental 

service providers less affected the assistive-pull approach and the assistive-push approach 

because in these two approaches, NJ did not need to communicate with all the service providers. 

Figure 6 illustrates the latency caused by transmitting and processing WSDL files. In a pure-
pull approach, a NJ needs to retrieve the WSDL file from each service provider, and parse the 

WSDL in order to identify which service provider can fulfil its needs. Hence, the larger the 
WSDL size is, the higher is the latency it causes. On the other hand, the pure-push approach 

benefited by the distributed WSDL process in which each active service provider who intends to 

advertise its service to NJ will process NJ’s metadata to identify what service NJ needs. Hence, 

the WSDL size does not explicitly affect the overall latency. How- ever, as Figure 6 shows, 

when the WSDL size is small, the pure-pull approach can result a slightly better performance 

than the pure-push approach, it was caused as the resource constraint mobile device has limited 
power to handle high amount of request/response processes when all the existing service 

providers are con- currently sending requests to it. The figure also shows that the WSDL size 

doesn’t explicitly influence the latency of the assistive-pull approach and the assistive-push 

approach because in these two approaches, NJ didn’t need to process high amount of WSDL 

files to identify the service provider it needs. Due to the same reason as the pure-push approach 

in which the mobile device has limited power to handle request/response, the assistive-push 

approach has poorer performance than the assistive-pull approach. 

 

 
Figure 6. Latency caused by processing WSDL files 

 

7. Conclusions and Future Work 
 

In this paper, we propose a mobile Web service-based approach for mobile social network in 

proximity (MSNP). The goal of this work is to realise a loose-coupled service-oriented mobile 

social network for mobile user to share content to the others in proximity within an unstructured 

decentralised manner. The primary challenge of realising MSNP in a service-oriented manner is 

to enable dynamic service discovery proactively in order to filter unwanted searching results. 

Proactive dynamic service discovery involves two important tasks: (1) identifying which service 

provider can fulfil the user’s interests and (2) filtering unnecessary service information to 

reduce the searching results shown on the user’s mobile device. We have applied Web service 

standard-based semantic Web services to enable the task of identifying service providers. We 

also describe how the participants can communicate to realise such a semantic mobile Web 

service environment. For the task of filtering unnecessary service information, we proposed 

context-aware user query prediction scheme to identify what type of service user is interested in 

his/her current environment based on historical query records and associated context 

information records. 
For future work, we intend to investigate trust and policy issues. Trust and policy are 

important concerns for content sharing in a public MSNP. Since the environment is highly 

dynamic, participants usually have very limited knowledge about each other. A mobile content 



provider might provide content that is inconsistent to its service description, or the provided 

content is not fully suitable for the content requester. For example, an event picture sharing 

service provider might maliciously include some uncomfortable pictures in its service, some 

content requesters may not want to receive such content. However, with limited knowledge 

obtainable in MSNP, requesters can’t control the content they receive. We intend to apply cloud 

resources to support such a need in our future work. 
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