
TCP Hole Punching Approach to Address Devices in
Mobile Networks

Satish Narayana Srirama
Mobile & Cloud Lab, Institute of Computer Science

University of Tartu
J. Liivi 2, Tartu, Estonia

Email: srirama@ut.ee

Mohan Liyanage
Mobile & Cloud Lab, Institute of Computer Science

University of Tartu
J. Liivi 2, Tartu, Estonia
Email: liyanage@ut.ee

Abstract—The emergence of mobile terminals with enhanced
features like high processing power, more memory, inbuilt sen-
sors, low power consumption, etc. have lead to their extensive
usage in different domains like mobile social networking, mobile
cloud and Internet of Things (IoT). However, to successfully
utilize these devices as information providing/processing entities,
we need proper means of identification and addressing, so that
the devices and their offered data/services are accessible also
from outside the mobile network. Addressing devices in mobile
networks has been studied extensively over the years and there
are several solutions one can consider. However, the most popular
and widely used addressing mechanism for internet, IP address,
is also being extensively used in mobile data networks (3G/4G).
Typically, the IP address assigned to mobile devices ends up with
barriers like their temporarily availability, known only within the
mobile operator’s network, Network Address Translation (NAT)
etc., which makes it difficult to use the addresses in IoT scenarios.
To address these problems we propose to use UDP sessions with a
Rendezvous server to send and receive peer information and TCP
sessions established in a hole punching process over NAT, so that
information can be exchanged over these devices. The approach
is explained in detail along with its prototype implementation
and conceptual limitations.

Keywords—Hole Punching, NAT, 3G Mobile Network, Address-
ing devices.

I. INTRODUCTION

In recent years, smart phones have entered the market
with enhanced features like high processing power, more
memory, HD video, inbuilt sensors, touchscreen, low power
consumption, etc. There are many new applications and ser-
vices developed for mobile users and the mobile phone can
even be used to provide services to other mobile users [1],
[2]. Similarly, now there are several mobile Peer to Peer (P2P)
and mobile social networking applications such as playing
online games, sharing photos and videos with friends, teacher
sharing blackboard with a group of students etc. While the
applications are interesting, for successful adoption of these
mobile P2P and social applications, the mobile terminal, that
is registered and connected to the mobile operator network,
requires some means of identification and addressing. The
problem is also relevant in the Internet of Things (IoT) domain
where every device is connected and can act as an information
providing/processing entity.

Addressing devices in mobile networks has been studied
extensively over the years and there are several solutions

one can consider. Technologies such as OpenID [3], Ses-
sion Initiation Protocol (SIP) [4], Extensible Messaging and
Presence Protocol (XMPP) [5], Zero-configuration networking
(zeroconf) [6] and Universal Plug and Play (UPnP) [7]
have offered solutions for addressing devices in different P2P
setups. Although there are different addressing mechanisms
proposed, the most popular and widely used addressing mech-
anism for internet is Internet Protocol Address (IP address).
IP addressing provides a globally unique 32 bit address for
each and every device connected to the internetwork. Network
operators always have provided different means to address the
devices with IP addresses, so that they could be accessed from
the Internet [8]. However, IP address space is limited and
have mostly exhausted due to drastically growing number of
devices attached to the internet. Internet Protocol version 6
(IPv6) [9] is the latest revision of the IP, developed by the
Internet Engineering Task Force (IETF), to deal with the long-
anticipated problem of IPv4 address exhaustion. However its
adaption is still in its infancy.

As a temporary solution for the insufficient number of us-
able public IP addresses, the IETF introduced a new private IP
address space [10] for the internal usage of any organization.
Normally many organizations use this private IP address space
to assign IP addresses for their intranet devices. However,
when these devices need to communicate with a device outside
the network, private IP address should be translated to the
public IP address. This process is called Network Address
Translation (NAT). Although private IP address space is a
good solution for the problem under consideration, NAT causes
several difficulties for mobile P2P communication. NAT boxes
mostly drop the unsolicited inbound traffic and only allow if
the traffic is a reply for the session initiated by the device
within the network.

To tackle the problem we propose to use UDP (User
Datagram Protocol) sessions with a Rendezvous server to send
and receive peer information and TCP (Transmission Control
Protocol) sessions established in a hole punching process over
NAT. There are several NAT traversal techniques that have
been proposed to establish a connection when hosts are behind
the NAT Box. Most of these solutions were designed for the
hosts in Wi-Fi or on Fixed LAN environment. But the solution
proposed here is mainly targeted at addressing Android devices
in the mobile 3G network. The paper is organized as follows:

Section 2 introduces the background details needed for
TCP hole punching. Section 3 describes our proposed solution



for addressing devices in mobile networks. Section 4 later
provides the observed results and section 5 discusses the results
along with the limitations of the approach. Section 6 provides
the related work while section 7 concludes the paper with some
future research directions.

II. ADDRESSING DEVICES IN MOBILE NETWORKS:
TAXONOMY AND CURRENT TECHNOLOGIES

A. Mobile 3G network

The Third Generation (3G) of the mobile networks is
becoming very popular because of the ability to access the
internet over mobile network. 3G networks operate under the
standards provided by the International Telecommunications
Union’s (ITU) - International Mobile Telecommunications-
2000 (IMT-2000) [11]. The Universal Mobile Telecommu-
nications System (UMTS) is one of the common 3G mobile
communication systems widely being using in many countries.
According to this standard minimum data rate for the stationary
or walking users is 2Mbit/s and for a moving vehicle is 348
Kbit/s. Mobile 3G also has high data rate up to 10Mbps with
the HSDPA technology (High Speed Downlink Packet Access)
[12]. With these high rates, the 3G network enables voice and
video calling, file transmission, internet surfing, online TV,
viewing high definition videos, playing games and much more
for their users.

B. IP Address Assignment in the Mobile Networks

Hierarchical architecture is used to design the core network
of the mobile communication systems. In UMTS the data
traffic generated by each mobile traverses through the UMTS
Terrestrial Radio Access Network (UTRAN) and moves to the
packet-switched domain. From the packet-switched domain the
data moves to the internet or other mobile networks. In such a
scenario, each mobile device gets IP address from the Gateway
GPRS Support Node (GGSN) located at the edge of the packet
switched domain. GGSN works as an interface for the mobile
network and the internet. It is impossible to provide a public
IP address for each and every mobile device because there are
thousands of subscribers registered under one mobile network
operator. As a solution for this, GGSN assigns private un-
routable IP address for the mobiles and translates this private
IP address to the public IP address when the user needs to
access the internet.

C. Network Address Translation

Network Address Translation (NAT) is being used by
many service providers and organizations as a solution for the
insufficient number of usable public IP addresses. Originally
NAT was introduced as a short-term solution for the IP address
shortage, but is prone to some problems in networking. There
are few IP address blocks were defined as Private IP addresses.
These IP addresses are also called non routable as data packets
with these addresses can’t travel over internet. Since the
scope is private many organizations can use same private IP
addresses within their networks. But when the device needs to
communicate with the devices on public network this private
IP address should be converted to the public IP address. At
this point NAT process is involved and maps internal private
addresses to the external public addresses. An internal IP

Fig. 1. NAT process

Fig. 2. Full Cone NAT

address and the port (Internal Socket) is mapped to an external
IP:port pair (External Socket). Whenever the NAT receives a
packet with the external IP:port, it uses the map to reroute
the packet back to the internal device which is using matched
internal socket (illustrated in figure 1). Using this method
several private IP addresses can be mapped to one public IP
address. Depending on the method of the translation it is called
Network Address Translation (NAT) or Network Address Port
Translation (NAPT) [13] .

D. Commonly used NAT Translation Techniques

Although there is no particular standard defined for the
NAT process there are four commonly used translation tech-
niques [14] in the industry.

1) Full Cone NAT: In full cone NAT, the internal IP address
and port are mapped to an external IP and port. In this method,
whenever inbound traffic comes to external port it is just
forwarded to the matching internal device without doing any
filtering. This is prone to some security risks as anybody from
outside can send data to the internal device if he knows the
external port of the mapping (illustrated in figure 2).

2) Address Restricted Cone NAT: In Address Restricted
Cone NAT, internal IP and port are mapped to the external
IP and port. But for inbound traffic NAT box checks the
source IP address of the packet. It allows the traffic coming
from the source only if it is already addressed by the internal
host. Any unsolicited packets from outside to external port are
blocked. This provides additional security but causes difficulty
in connecting P2P applications (illustrated in figure 3).

3) Port Restricted Cone NAT: This case is almost similar
to Address Restricted Cone NAT. In addition; it also checks



Fig. 3. Address Restricted Cone NAT

Fig. 4. Port Restricted Cone NAT

the port number of the inbound traffic. It allows the packet
only if the source IP and port of the packet match with the
mapped public socket (illustrated in figure 4).

4) Symmetric NAT: This is the most restricted mapping
method in comparison with other three methods. In all the
above cases the internal socket’s port number is directly
mapped to the public socket’s same port number. But in
symmetric NAT the internal socket is mapped to a completely
different new external socket. If the internal device uses same
socket to send data to a different external host, the NAT device
maps it with another new external socket. This prevents any
type of unsolicited inbound traffic. But it is very hard to predict
the port mappings in this NAT process even though we know
the internal socket details. In Symmetric NAT only the external
device that receives a packet from internal device can send a
packet back to the internal host. The scenario is illustrated in
figure 5.

Fig. 5. Symmetric NAT

Fig. 6. Hole punching with Rendezvous server

5) TCP Hole Punching: When hosts are behind the NAT
boxes it is impossible to establish connection from the outside
network because NAT boxes drop the incoming requests.
Hole Punching is a technique that allows a host located
behind a firewall/NAT to send traffic to another host without
collaboration of the NAT itself [15], [16]. With the help of
the well-known Rendezvous server (RS), clients can establish
these direct sessions. First hosts establish initial UDP session
with the RS and the server later exchanges the connection
details with both the hosts. Since each device knows the other
peer’s details they can establish a connection by sending an
initial request. Figure 6 illustrates the hole punching process.

Transmission Control Protocol (TCP) is connection ori-
ented and reliable protocol mainly used to transport data in a
reliable manner. The size of the TCP header is 20 Bytes. Some
important fields of the TCP header which are interesting for
the hole punching and the rest of the discussion of the paper
are described below.

Source port: The source port is the number that is assigned
by the local host when it transmits data to the remote host.
This is a random number which is normally higher than 1023
according to the Internet Assigned Numbers Authority (IANA)
port numbering procedure. Source device can distinguish the
sessions by referring the source port.

Destination port: The destination port is normally a well-
known port number which is used by the remote device to
identify the service requested by the source device.

Sequence number: It is a 32 bit number, which indicates the
reference number of the transmission data byte. This number
helps to maintain the ordered delivery of data byres.

Acknowledgment number: This is a 32 bit number which is
used to maintain the reliability of the data transmission. The
receiver should acknowledge the transmitter about the received
data.

TCP is a connection oriented protocol. That means, first
the transmitter and the receiver should establish the logical
connection before the data transmission. Then data can be sent
through this connection and the connection should properly
terminate at the end. The connection establishment process of



Fig. 7. TCP 3-way handshaking

the TCP is called as the Three-Way Handshaking and is shown
in figure 7.

III. PROPOSED SOLUTION

There are several solutions [16], [17], [18] already imple-
mented for the TCP hole punching. But most of these solutions
target establishing sessions between peers connected to the
fixed networks. When considering a fixed network, most of the
times the NAT device is also owned by the same organization
and it can be configured (probably by admin) based on need
so that some inconvenient NAT configurations can be avoided.
But when using a mobile network, the user is unable to modify
any NAT policy and must use whatever the NAT configurations
are deployed by the mobile operator. In addition, when con-
sidering fixed network, number of the connected devices are
generally limited. But in mobile networks every day there are
thousands of devices at any particular time that are connected
and using it. After an extensive search we could not find any
workable solution which can be used for the Android devices
in mobile networks.

To address these problems we propose to use UDP ses-
sions with the Rendezvous server to send and receive peer
information and TCP sessions in the hole punching process.

A. The Rendezvous Server

To demonstrate the proof of concept, the Rendezvous server
is developed and deployed on an Ubuntu server installed on
Amazon public cloud as an Elastic Compute Cloud (EC2)
micro instance. Micro instances are minimum capacity servers
offered by Amazon EC2 with 615 MB memory. However,
when the services become popular, the rendezvous server
can be deployed on a much powerful machine, exploiting
the different types of servers offered by public clouds and
their vertical scalability. The server is also assigned a public
IP address (e.g. 107.20.232.29). Since the server is assigned
with a public IP address, any host can easily access the
server even though they are located behind the NAT. For the
registration process we used UDP datagrams. Since UDP is
a connectionless, we can reduce the overhead of maintaining

Fig. 8. Details of the datagram in registration

too many sessions for registration requests. When the server
is running there is a UDP socket listening on local port 2020
to accept client’s registration requests.

The first step in the hole punching procedure is that the
client devices need to register with the server. We have de-
veloped an Android application to help the user in performing
the procedure. The client should first send the UDP packet
to the server with the client’s registration details. As per the
proposed solution, clients should register with the server by
providing their mobile number in the IDD format in order
to maintain a unique identification for the clients. The server
stores clients’ details (Mobile no, Public IP Address assigned
at NAT, Public Port, Local IP Address and Local Port) in its
internal data structure for future matching. When the client
device is registered for the first time, the server program creates
a client object and adds it into the client list. If the same client
registers next time with the same number, the existing client
object’s details are updated with the current details.

B. Establishing peer connections

The proposed solution is capable to address mobile devices
in different situations. As an example sometimes both peer
devices can be located in the same cell under one mobile
operator or sometimes the peers are in two different locations
under two mobile operators. The server will identify clients’
configurations and handles them accordingly. The possible
scenarios and solutions are explained here in detail.

1) Both peers are located in the same 3G cell - same Mobile
Operator: In this situation most of the times both host devices
are getting their IP configurations from the local interface of
the same GGSN. So this GGSN device is working as the
NAT interface for both hosts. In other words both clients are
behind the common NAT device and belong to the same private
network. In this case, the connection will be established as
follows.

When the host A needs to establish a connection with
the host B to send some information, the first step is that
both devices should register with the rendezvous server. For
this they should start the installed client application and
send the UDP request as ”register” to the server endpoint
107.20.232.29:2020, as already explained, and shown in figure
8.

If the registration is successful, the server creates an object
with A’s registration details and adds it to the clients’ list
for later matching. If the recipient (host B) is not registered,
host A can send the message to the host B by using existing
communication methods (SMS, SIP message) for asking to
register with the server. Extensions can also be introduced
to the current approach, when it is widely adopted, such
as the mobile networks themselves can register the devices



Fig. 9. Establishing connection through hole punching when peers are behind
the same NAT

to the public rendezvous servers once they show interest in
exchanging packet data.

Registration details of the host A are as shown in table
I. Once host B gets the invitation from the host A, it also
registers with the server by sending UDP ”register” request.
B’s registrations details are also mentioned in table I.

Host A Host B
Mobile No 37211223344 37211223355
Local IP 10.10.181.2 10.10.181.10
Local Port 50611 60011
Public IP(at NAT box) 212.53.101.9 212.53.101.9
Public Port(at NAT box) 44121 80011

TABLE I. REGISTRATION DETAILS OF HOSTS A AND B

Now host A can send the request as ”connect” with the
host B’s mobile number as the destination. At this point
server processes this request and stores the information in a
temporary object. Then the server gets the destination number
of this temporary client object (37211223344) and looks for
a matching client in the client list. Since host B is already
registered in the client list the server can find the connection
details of the B. Steps 1 and 2 in figure 9 represent the
registration process.

To identify the scenario whether both hosts are behind the
same NAT, the server does further matching with public IP
addresses of both hosts A and B. If the both public IP addresses
of A and B are the same then they should be behind the same
NAT box. In this situation hosts A and B only need to know
their local endpoint details to initiate a connection.

Then the server crafts a Datagram and inserts host A’s local
endpoint details (10.10.181.2: 50611) and sends it to the host
B. Also server crafts another Datagram and inserts host B’s
local socket details (10.10.181.10: 60011) and sends it to the

Fig. 10. Sequence diagram showing the timeline of activities performed
during the connection establishment between the devices

host A. The procedure is illustrated in figure 9, steps 3, 4 and
5.

Once the datagrams are received, both host A and B should
create a TCP listening socket according to their local port
number which was sent to the other host. As an example
host A and B should create listening TCP sockets with the
ports 50611 and 60011, respectively. Host A then sends TCP
SYN message to initiates the session. At the host B there is
a TCP listening socket running on port 60011 to accept TCP
SYN message from the host A. Then host B sends a SYN-
ACK to Host A. Host A finishes the establishment of TCP
connection by confirming with ACK. The complete scenario
is shown in sequence diagram figure 10. Notice that, since the
TCP listening sockets are running at the both host devices
any device can initiate the connection procedure, after the
registration.

2) Peers are located behind different NAT boxes: When
the peers are in different mobile operators they are located
behind different NAT boxes and hence are in different private
networks. In order to initiate a connection, both clients should
learn the public socket details about each other.

The registration phase is almost the same as the previous
scenario and table II shows the registration details of hosts A
and B.

Host A Host B
Mobile No 37211223344 37211223355
Local IP 10.10.181.2 10.100.100.2
Local Port 50611 60011
Public IP(at NAT box) 212.53.101.9 89.18.102.10
Public Port(at NAT box) 44121 80011

TABLE II. REGISTRATION DETAILS OF HOSTS A AND B

The server uses the same algorithm to match the destination
device as described earlier. But in this case peers public IP
addresses are not same because they are coming from different
NAT boxes. Because of this reason, the server should exchange
hosts’ public socket as well as private socket details between
peers to initiate the sessions. At this point, server crafts a
datagram and inserts host B’s public and private socket details
and sends it to the host A. Similarly, server sends host A’s
public and private socket details to host B by using another
datagram (figure 11, steps 3, 4 and 5).



Fig. 11. Establishing connection through hole punching when peers are
behind different NATs

Once the datagrams are received, the next step is starting
a TCP session between the peers. Here both peers initiate
sessions simultaneously. Host A starts the TCP listening socket
on port 50611 and sends the TCP-SYN message to the host B.
At the NAT-A it creates a map for this session and forwards it
to the host B’s public end point, here it is 89.18.102.10:80011.
But at the NAT-B this packet is dropped because it is unknown
inbound packet for the NAT-B. But still NAT-A is waiting for
the reply from B (hole is punched).

Same time host B also starts a TCP listen socket on the port
60011 and sends the TCP-SYN packet to the host A’s public
socket, here it is 212.53.101.9:44121. NAT-B creates a map
and forwards this packet to the A. Now this packet can reach
the host A because NAT-A is waiting for a reply from the B. In
other words, this packet can travel through the punched hole
in NAT-A and reaches the host A. Host A accepts this TCP-
SYN message as there is a TCP listen socket on port 50611 to
accept SYN messages. Then host A sends SYN-ACK message
to the B and NAT-B allows this packet because there is a hole
punched during initial step. Now B accepts SYN-ACK and
confirms to A using ACK message. Once the ACK received
by the host A then both devices have established TCP session
which can be used to exchange data between them (2 way
communication).

It is interesting to note that, in the above scenario, host A
wanted to initiate the session, however if one thinks from a
pure TCP perspective, the scenario ended up as though host B
initiated the TCP session

IV. TEST SCENARIOS AND THE RESULTS

The proposed solution is implemented and tested with
few Estonian mobile networks, TELE 2 [19], Elisa [20],
EMT [21]. The considered test scenarios and the results are
described below.

Fig. 12. Android application with the messages

A. Test Scenario 1 - Both hosts are located in same mobile
network

The scenario is demonstrated without any troubles in
TELE2 network. Here both mobile devices use TELE2 3G
internet connection. Host A is a Samsung Galaxy SIII phone
with the mobile number 37258299716. Host B is a Nexus-5
phone with the number 37258226048.

Both hosts A and B are registered with the server. After
that host A again sends ”connection” request to the server
to establish a connection with host B. The server checks the
hosts’ registration number to locate the destination. The details
are later exchanged, as already explained. After this step,
both devices were able to send and receive messages from
each other. Figure 12 displays the output captured from two
hosts when the host A sent the message and the host received
the message on our developed client application. As already
explained once the connection is established, host B can also
send a message.

B. Test Scenario 2 - Hosts are located in the different mobile
operators

In this scenario the mobiles are connected to deferent
mobile networks and tried to exchange messages. The results
of this analysis are mixed and the reasons are discussed in
detail in the coming sections. Consider the case where host
A was in the TELE2 3G/4G mobile network and the host
B was in the EMT 3G/4G mobile network. As the first step
both devices register with the server. Now host A sends a
message to the host B. Server locates the host B (3725855496)
and exchanges connection details. Then the devices tried to
exchange messages.

Here we observed interesting results. When sending mes-
sages from host A (A initiates connection) to host B our pro-
posed solution failed. However, when sending messages from
host B (B initiates connection) to host A it was successful.
Similar results we observed when host A is in TELE2 and
host B in Elisa.

Table III summarizes the results of different test scenarios
with the three common Estonian mobile networks. So we
observed, when one of the devices is in the TELE2 mobile
network, connection can be established form any other mobile
network, by making the second device to initiate connection.



It should be remembered that once connection is established,
both the devices can send the messages to each other as long
as the connection persists (TCP connection is bidirectional).

Connection initiator Receiving mobile Result
TELE2 EMT Fail

Elisa Fail
EMT TELE2 Success

Elisa Fail
Elisa TELE2 Success

EMT Fail

TABLE III. TEST RESULTS OF THE HOLEPUNCHING APPROACH
ACROSS DIFFERENT MOBILE NETWORKS

V. DISCUSSION OF THE RESULTS AND LIMITATIONS OF
THE APPROACH

According to the test results we observed that some hosts
cannot establish connections properly. There are few internal
and external factors that will limit the functionality of our
implementation. Main external factor is the differences in
behavior of the NAT techniques used by the mobile operators.
To get a better idea about the behavior of the NAT box
applied, we implemented a simple application which can
retrieve devices’ own public socket details. This application
sends two messages using same local socket to two different
servers. These servers replied to the host with the public socket
details assigned by the respective NAT for that communication.
Table IV summarizes the result of the NAT translation of three
common mobile operators in Estonia.

Mobile network Local socket Public socket
(from server1)

Public socket
(from server2)

TELE2
(subscription
1)

83.176.3.195
:35049

83.176.3.195
:35049

83.176.3.195
:35049

TELE2
(subscription
2)

83.176.2.178
:40756

83.176.2.178
:40756

83.176.2.178
:40756

EMT (subscrip-
tion 1)

10.145.20.13
:52142

217.71.46.13
:52142

217.71.46.13
:52142

EMT (subscrip-
tion 2)

10.128.194.59
:58296

217.71.44.59
:58296

217.71.44.59
:58296

Elisa (subscrip-
tion 1)

10.27.201.251
:51605

194.150.65.155
:55251

194.150.65.155
:55252

Elisa (subscrip-
tion 2)

10.26.164.121
:33045

194.150.65.24
:32322

194.150.65.24
:32323

TABLE IV. NAT ACROSS DIFFERENT MOBILE NETWORKS IN ESTONIA

Our approach is basically working properly on the TELE2
mobile network. When we analyze the IP address assignment
here we can see that TELE2 always assigns a public IP address
(observed actually a huge pool of them) to a mobile device.
Since, probably there is no NAT translation applied in TELE2,
devices from any mobile network (even when having NAT
applied within) can directly initiate a session with a device
that is attached to the TELE2 mobile network.

When considering EMT mobile, it assigns a private IP
address to the clients and translates it into a public IP address
when needed. During NAT it keeps the local port number as the
same and only translates the private IP address into the public
IP address. Our implementation currently supports only full-
cone type NAT and EMT might be using a technique other
than full-cone NAT and connection can’t be initiated to the
EMT network.

Address translation of the ELISA mobile network is more
likely similar to the symmetric NAT translation. We found that
ELISA translates a local socket into a completely new public
socket. Even the request coming from same local socket to
the different destination, NAT assigns a new socket for that
session. It is very difficult to implement hole-punching because
of the port prediction which will be involved in this case.

When implementing our solution we only considered about
how the NAT maps local socket and the public socket. But in
TCP session, sequence numbers also play a major role. Some
NAT boxes are also checking the sequence numbers of the
incoming TCP packets. If this sequence number is invalid,
NAT just closes the public socket. To overcome this problem
we should also learn the sequence numbers of end points TCP
process. But to capture the sequence numbers we need the help
of the raw sockets. Creating a raw socket is not difficult for a
PC but is very difficult for android devices, which most often
needs rooting the device. We have a solution developed based
on this approach, but we think this approach is too invasive
for the mobile device or IoT [22]. However, one can consider
the case as one of the limitations of our implemented solution
rather than the proposed solution.

VI. RELATED WORK

Establishing a TCP session through NAT has been studied
extensively. There are few prominent techniques which are
summarized here.

NUTSS is an approach which proposed using an external
STUNT server and simultaneous NAT traversal technique that
is applicable to devices connected to the fixed network [23].
According to this approach both end points send an initial
SYN with a little TTL value that is just enough to cross
their own NATs. This SYN is dropped in the middle of the
network before reaching to its destination. End points can learn
their initial sequence number by listening to their outbound
SYN using PCAP or a RAW socket. Then both endpoints
inform this sequence number to the STUN server hosted on the
public network. The STUN server spoofs a SYNACK to each
host with the properly settled sequence numbers. After that
both hosts send ACK to complete the handshaking process.
There are some potential problems which can be seen when
implementing this approach. We need to set the lower TTL
value in the SYN packet that should be more enough to cross
the own NAT but less enough to cross the destination NAT.
But it is impossible to set that kind of the TTL value if both
devices are located behind the same NAT. To set the TTL value
we need to access the OS TCP process using a raw socket. But
when considering android devices creating a raw socket is still
complicated and needs a rooted device.

Similarly, in NATBLASTER approach both devices use
SYN packet with lower TTL value to initiate the session [18].
This SYN packet is dropped in the middle of the network
before reaching its destination. Then hosts learn the initial
sequence numbers of the SYN packet and send it to the
publicly accessible third party server. This server exchanges
initial sequence number with the hosts. Instead of using server
to forge SYNACK packets here each host forges SYNACK to
the other host. After this step each host can establish the TCP
session by sending ACK to the peer. Again, The approach ends



up with the problem of setting a TTL value and making raw
socket which needs root privileges.

Nattrav is a software approach to solve the NAT problems
for P2P applications [16]. First peers should register with
a connection broker which provides current network address
for the recipients and facilitate the NAT traversal if peers are
behind the NAT. In the registration, peers register with the
connection broker by providing the peer’s URI. Connection
broker uses this URI to send subsequent connection requests
from other peers. When a peer device needs to connect with
other peer device it should send the lookup message to the
connection broker. The connection broker eventually replies
back with the IP address and the port number of the destination
peer. Since peers know the other side endpoint details they
can establish a connection by sending a SYN packet. If the
peers are behind the NAT connection, broker helps the traversal
by providing a public endpoint details of the destination
peer. In the implementation they used a Java package called
”nattrav” which provides classes for setting up TCP sockets.
This solution is conceptually the most similar approach to the
one proposed by us. However, our approach is specifically
targeted for mobile devices, which makes it different from any
proposed solutions.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed addressing a mobile device in the
mobile 3G network (also applicable for 4G) using TCP hole
punching approach. We introduced the approach and developed
a prototype solution as an android application that helps in
making the TCP hole punching. The testing results showed that
the connections can be established following the approach in
different networks. However, there are some situations where
the approach is unusable, in some networks. The main reason
is that there is no standard for the NAT process. Different
mobile operators use different NAT process and it is difficult
to implement all in one solution. In this context, the limitations
of the approach are discussed in detail.

To overcome these limitations we propose to implement
a TCP server that can relay the messages in between hosts.
Then the host should first establish a connection with the
server. When the host needs to send a message to another host
that message is forwarded to the relay server and the server
forwards it to the destination host. However, this approach is
applicable only when we consider sending one off messages.
In scenarios explained by the paper like mobiles providing
services and establishing the mobile Internet of things the
solution may not be suitable.

ACKNOWLEDGMENT

This work is supported by European Regional Develop-
ment Fund through EXCS, Estonian Science Foundation grant
PUT360 and Target Funding theme SF0180008s12.

REFERENCES

[1] S. N. Srirama, M. Jarke, and W. Prinz, “Mobile web service provi-
sioning,” in Int. Conf. on Internet and Web Applications and Services
(ICIW’06). IEEE, 2006, pp. 120–125.

[2] S. N. Srirama and C. Paniagua, “Mobile web service provisioning and
discovery in android days,” in Proceedings of the 2013 IEEE Second
International Conference on Mobile Services. IEEE Computer Society,
2013, pp. 15–22.

[3] D. Recordon and D. Reed, “Openid 2.0: a platform for user-centric
identity management,” in Proceedings of the second ACM workshop on
Digital identity management. ACM, 2006, pp. 11–16.

[4] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, E. Schooler et al., “Sip: session initiation
protocol,” RFC 3261, Internet Engineering Task Force, Tech. Rep.,
2002.

[5] P. Saint-Andre, “Extensible messaging and presence protocol (xmpp):
Core,” 2011.

[6] D. Braun, S. Mukherjee, and C. Akinlar, “Zero configuration network-
ing,” Feb. 21 2006, uS Patent 7,002,924.

[7] U. Plug and P. Forum, “Universal plug and play forum.” [Online].
Available: http://www.upnp.org/forum/default.htm

[8] S. N. Srirama, M. Jarke, and W. Prinz, “Mobile host: A feasibility anal-
ysis of mobile web service provisioning,” in 4th International Workshop
on Ubiquitous Mobile Information and Collaboration Systems, UMICS.
Citeseer, 2006, pp. 942–953.

[9] S. E. Deering, “Internet protocol, version 6 (ipv6) specification,” 1998.
[10] G. J. d. Groot, Y. Rekhter, D. Karrenberg, and E. Lear, “Address

allocation for private internets,” 1996.
[11] I. global standard for international mobile telecommunications.

[Online]. Available: www.imt-2000.org
[12] K. Richardson, “Umts overview,” Electronics & Communication Engi-

neering Journal, vol. 12, no. 3, pp. 93–100, 2000.
[13] P. Srisuresh and M. Holdrege, “Ip network address translator (nat)

terminology and considerations,” 1999.
[14] B. Sterman and D. Schwartz, “Nat traversal in sip,” IEC Annual Review

of Communications, vol. 56, 2002.
[15] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communication across

network address translators.” in USENIX Annual Technical Conference,
General Track, 2005, pp. 179–192.

[16] J. L. Eppinger, “Tcp connections for p2p apps: A software approach to
solving the nat problem,” Institute for Software Research, p. 16, 2005.

[17] S. Guha and P. Francis, “Characterization and measurement of tcp
traversal through nats and firewalls,” in Proceedings of the 5th ACM
SIGCOMM conference on Internet Measurement. USENIX Associa-
tion, 2005, pp. 18–18.

[18] A. Biggadike, D. Ferullo, G. Wilson, and A. Perrig, “Natblaster:
Establishing tcp connections between hosts behind nats,” in ACM
SIGCOMM Asia Workshop, vol. 5, 2005.

[19] Tele2. [Online]. Available: http://www.tele2.ee/index.html
[20] Elisa. [Online]. Available: https://www.elisa.ee/
[21] EMT. [Online]. Available: https://www.emt.ee/en/
[22] K. Reinloo, “Addressing smartphones located

behind firewalls,” 2013. [Online]. Available:
http://dspace.utlib.ee/dspace/handle/10062/32957?show=full

[23] S. Guha, Y. Takeda, and P. Francis, “Nutss: A sip-based approach to udp
and tcp network connectivity,” in Proceedings of the ACM SIGCOMM
workshop on Future directions in network architecture. ACM, 2004,
pp. 43–48.


