
Optimal Resource Provisioning for Scaling Enterprise Applications on the Cloud

Satish Narayana Srirama, Alireza Ostovar
Institute of Computer Science, University of Tartu

J. Liivi 2, Tartu, Estonia
{srirama, alireza}@ut.ee

Abstract—Over the past years organizations have been
moving their enterprise applications to the cloud to take
advantage of cloud’s utility computing and elasticity. However,
in enterprise applications or workflows, generally, different
components/tasks will have different scaling requirements and
finding an ideal deployment configuration and having the
application to scale up and down based on the incoming
requests is a difficult task. This paper presents a novel resource
provisioning policy that can find the most cost optimal setup of
variety of instances of cloud that can fulfill incoming workload.
All major factors involved in resource amount estimation such
as processing power, periodic cost and configuration cost of
each instance type and capacity of clouds are considered in the
model. Additionally, the model takes lifetime of each running
instance into account while trying to find the optimal setup.
Benchmark experiments were conducted on Amazon cloud,
using a real load trace and through two main control flow
components of enterprise applications, AND and XOR. In these
experiments, our model could find the most cost-optimal setup
for each component/task of the application within reasonable
time, making it plausible for auto-scaling any web/services
based enterprise workflow/application on the cloud.

Keywords-Cloud computing; auto-scaling; enterprise appli-
cations; resource provisioning; optimization; control flows;

I. INTRODUCTION

Cloud computing [1] has gained significant popularity
over past few years. Employing service-oriented architecture
and resource virtualization technology, cloud provides the
highest level of scalability for enterprise applications with
variant load. While cloud with its intrinsic features like
elasticity and utility computing is interesting, for migrating
enterprise applications to the cloud, one should worry about
the ideal deployment configuration of the applications. In N-
tier enterprise applications or workflows, generally, different
components will have different scaling requirements and
finding an ideal configuration and having it to scale up and
down based on the incoming requests is a difficult task.

To be precise, since each deployment component or web
service of an enterprise application, or task of a workflow
requires different processing power to perform its opera-
tion, at time of load variation it must scale in a manner
fulfilling its specific requirements the most. Scaling can be
done manually, provided that the load change periods are
deterministic, or automatically, when there are unpredicted
spikes and slopes in the workload. A number of auto-scaling
policies have been proposed so far. Some of these methods

try to predict next incoming loads, while others tend to
react to the incoming load at its arrival time and change
the resource setup based on the real load rate rather than
predicted one [2], [3]. However, in both methods there
is need for an optimal resource provisioning policy that
determines how many servers must be added to or removed
from the system in order to fulfill the load while minimizing
the cost.

Current methods in this field take into account several of
related parameters such as incoming workload, CPU usage
of servers, network bandwidth, response time, processing
power and cost of the servers [4], [5]. Nevertheless, none
of them incorporates the life duration of a running server
and current deployment configuration, the metrics that can
contribute to finding the most optimal policy. These param-
eters find importance when the scaling algorithm tries to
optimize the cost with employing a spectrum of instance
types featuring different processing powers and costs, which
is very common in cloud computing environment.

In this paper, we propose a generic LP (linear pro-
gramming) model that takes into account all major factors
involved in scaling including periodic cost, configuration
cost and processing power of each instance type, instance
count limit of clouds, and life duration of each instance
with customizable level of precision, and outputs an optimal
combination of possible instance types suiting each com-
ponent of an enterprise application the most. We created
a simulation tool based on the proposed model and used
24-hour workload of ClarkNet Internet service provider
(ISP) [6] to conduct real-time benchmark experiments on
Amazon cloud infrastructure. The cost and efficiency of the
model are also compared with Amazon AutoScale [4]. The
results of the experiments suggest that our optimal policy is
plausible for auto-scaling any web/services based enterprise
workflow/application on the cloud. The paper is organized
as follows:

Section II discusses scaling enterprise applications on the
cloud. Section III describes the LP model along with the
intuition and implementation details. Section IV discusses
how the model can be applied and section V produces a
detailed analysis of the model applied to XOR control flow.
Section VI later discusses the related work while section VII
concludes the paper with future research directions.

II. SCALING ENTERPRISE APPLICATIONS ON THE CLOUD

Service Oriented Architecture (SOA) [7] is a trend in
information systems engineering and the software industry’s
response to the problem of managing large monolithic
applications. SOA is a component model that delivers ap-
plication functionality as services to end-user applications
and other services, bringing the benefits of loose coupling
and encapsulation to the enterprise application integration,
and thus helping in building complex enterprise applications
based on proper enterprise integration principles [8].

Similarly, a workflow is composed of a set of activities
utilizing computer systems to achieve a particular goal. Each
component/activity/task runs a piece of the main process
and the result will be the input to next one and this chain
of components complete the initial large job [9]. Nowadays,
creating web services hosted on the cloud is the most popular
approach of implementing SOA and workflows.

Cloud computing is a style of computing in which,
typically, resources scalable on demand are provided ”as
a service (aaS)” over the Internet to the users who need
not have knowledge of, expertise in, or control over the
cloud infrastructure that supports them. The provisioning
of cloud services occurs at the Infrastructural level (IaaS)
or Platform level (PaaS) or at the Software level (SaaS).
With cloud, resources can be allocated to the applications
on demand, meaning that you pay more just when you need
to. The numerous and wide variety of servers (with different
hardware power such as memory and processing capabilities,
made feasible by the virtualization technology) supplied by
clouds provide a great environment for deployment of any
enterprise application including workflows.

As already mentioned, enterprise/workflow applications
are composed of tasks, some of which are highly resource-
intensive and some just perform light computations. The
popular mechanism for running each service/task is binding
them a cluster of instances managed by a load balancer (LB)
which distributes the requests among them [10]. Servers can
be added to or removed from the cluster based on varying
load. This necessitates use of dynamic resources allocation
of cloud computing, so that applications can employ more
resources at time of load increase and return them when
there is no need. This dual capability of cloud is called
elasticity and plays the primary role in migrating enterprise
applications to the cloud.

Load variation of applications follow different models,
depending on the services they provide. If load changes
are known in advance, the resource allocation can be per-
formed manually, with adding or removing static number
of instances. But, all applications incur some unpredicted
load fluctuation, necessitating an automatic mechanism for
supplying servers. Auto-scaling is a feature of cloud com-
puting, e.g. Amazon AutoScale [4], which helps to add and
remove instances on demand and transparent to the user. The

user only has to configure an auto-scaling plan matching the
workload of their application. Auto-scaling is highly suitable
for applications that experience hourly, weekly or monthly
variation in their workload.

The efficiency of an auto-scaling mechanism mainly de-
pends on its resource allocation policy, evaluated by request
loss rate and total resource cost. So the big challenge here
is trying to maximize throughput while minimizing the cost.
Some methods address this problem through forecasting
future loads and supplying resources beforehand, and some
choose to react to the incoming load after their arrival,
being cautious in resource provisioning. Predictive methods’
request loss rate is usually lower, but cost will be higher.
There are also approaches that tackle this challenge using a
combination of predictive and reactive models [2], [3].

However, designing an auto-scaling model for entire en-
terprise application/workflow is a complex task. In these
applications, generally, each component will have its own
specific requirements to scale. Moreover, in every public
cloud there are a range of instance types, each one having a
different power/price rate. Whereas a large instance might be
more beneficial for one task, a medium might have a better
performance for another one, so we shall allocate different
instance types to different tasks in order to reduce the cost.
Sometimes the optimal allocation for a task can be a com-
position of multiple types of instances. In addition, due to
SLA (service-level agreement) of applications, some of the
tasks may even have to run on completely different clouds,
to support customers from different regions. Furthermore,
the hourly pricing model popular among prominent cloud
vendors such as Amazon also offers several challenges.
Based on this ’pay as you go’ model policy, cloud provider
charges the cost of the whole hour once the instance enters
another hour of its life, disregarding if it will fill that hour
or it will live just for a fraction of it.

We studied the problem in detail and came up with a
LP model based solution. In this model, each service can be
located in a separate cloud, possessing different policies and
infrastructure. Major inputs to our model include incoming
workload of each task, processing power, periodic cost and
configuration time of instance types, maximum instance
count limit of the cloud, and age of each running instance.
The model provides the optimal number of instances from
each type that must be added to or removed from cluster of
each task, resulting in handling the workload and minimizing
the cost. Based on this model we have created a RESTful
web service which is accessible through a HTTP request
and provides the ideal deployment configuration for the
applications based on the varying loads.

III. THE OPTIMIZATION MODEL

Before elaborating the model we will try to clarify the
intuition behind the model and make a few definitions clear
that will be used for explaining it.

A. Intuition behind the model

Let us assume that an enterprise application (with one
scalable component) is provided which is to be migrated to
the cloud. Let us also assume that we have two instance
types of small and medium available for our application,
with costs $0.25 and $0.4 per hour respectively. After per-
formance testing the application with each of the instances
we found out that the small type can handle 6 requests per
second (r/s) and the medium one 12 r/s. We assume that
current workload is 6 r/s and therefore we have one small
instance running. Suppose that after 50 minutes the workload
increases to 12 r/s. If we do not consider age of instances the
best solution is to add another small instance, however, this
is not the optimal solution. If we add another small instance,
assuming that 12 r/s workload persists, after ten minutes we
must pay for the first instance as well. As a result we will
have spent $0.5 for the two small instances after ten minutes.

Now let us add a medium instance instead of the small one
at time of load change (after 50 minutes). In this case, when
the first instance fills its paid hour it will be shut down, since
our medium instance can handle 12 r/s and we do not need
the initial small one anymore. As a result we have paid less
($0.4) and we still satisfy the workload. The only issue left
is that 10-minute time that first small instance can still live,
which must be involved in the calculations. In first scenario,
since we take advantage of this instance for 10 minutes,
we must subtract this profit from the calculated cost, and in
the second scenario this amount of money is an additional
cost, because we can already handle the incoming load using
the added medium instance and these last ten minutes the
application is overprovisioned with servers. The 10-minute
cost of a small instance is $0.04 (0.25 * 10 / 60). A summary
of all stated calculations is listed here:

Cost of scenario 1 = (cost of two small instances) −
(10−min profit of small instance) = 0.5− 0.04 = 0.46
Cost of scenario 2 = (cost of a medium instance) +
(10−min cost of small instance) = 0.4 + 0.04 = 0.44

(1)
So we will save $0.02 by adding a medium instance instead
of a small one. Hence, we need a model which takes account
of life duration of current instances and outputs the most
optimal setup of instances.

B. Key definitions

Region: Based on the operation that each component/task
in an enterprise application/workflow performs it might have
different performances in different clouds or regions of a
specific cloud. So the best practice is to host each task in
the cloud suiting it the most. Hence, the model considers
a region with its own independent characteristics for each
task, this region can be in a different cloud or the same
cloud as other tasks. Each region will scale independently
based on its own incoming load entering its load balancer.

Each region can also have its own capacity of instances as
a parameter which will be shown by CC. The set of regions
is shown with R, where each region hosts a component of
the enterprise application. We will use r as region notation.

Instance Type: Since each cloud provides a wide spec-
trum of instance types with different resources and prices,
it is more beneficial for the application to take advantage
of multiple instance types. Therefore, each region in our
model can include multiple instance types, each having its
own processing power (P), price per period (C), capacity
constraint (CCT), and configuration time (CT). Configura-
tion time specifies the duration needed for an instance to
initialize and switch to running status. During this time the
instance is not usable, causing a further cost which must be
considered in addition to the periodic cost of the instance.
This additional cost is named as configuration cost. The set
of instance types of region r is shown with Tr notation.
Instance type will be marked with t letter.

Time Bag: Instances are typically charged on a periodic
basis, such that when an instance enters a new period of
its life it will be charged for the whole period. Depending
on how we divide this period, during the period the instance
resides in several time intervals, till it totally fills the period.
In our model, each of the time intervals is called time bag.
The length of this period can be set as a parameter, and based
on desired level of granularity, number of time bags can
be different, however, by default we consider one hour for
period length, which is the common denomination of pay-as-
you-go model of popular clouds like Amazon EC2, and 60
number of time bags (one per each minute) for each instance
type. Time bags will help us to position each instance at
any given point of time. Each time bag can contain several
instances running at this point of time, and over the time
these instances travel through all time bags till end of their
hourly life. Time bags of each instance type have the same
fixed price calculated by dividing price per period of an
instance type by total number of time bags. The set of
time bags of instance type t in region r is shown with TBr,t

notation. We will show time bags with tb notation.
Killing Cost: The money we lose when we kill an instance

before it fills its paid period is called killing cost. It is
calculated by first subtracting number of the time bag
containing the instance from the total number of time bags
and then multiplying the result by price of a time bag of
containing instance type. Killing cost will be noted as KC.

Retaining Cost: Retaining cost stands the opposite of
killing cost. It is calculated by multiplying number of the
time bag containing the instance by price of each time bag.
Basically this is the cost of the lived duration of the paid
period of an instance. Retaining cost will be noted as RC.

C. Method Description

Linear programming is a mathematical model targeting
problems that must find the optimal solution among several

possible solutions. Each LP model consists of a linear
objective function that must be optimized, subject to a
set of equality or inequality constraints. These constraints
make a feasible region for the problem, while the algorithm
must try to find a point in this region that maximizes
or minimizes the objective function. There are a set of
parameters that are adjusted before running the model and
there are variables that are assigned different values by the
model in order to optimize the objective function.

Parameters of our model are listed below:

-Cr,t: Cost of a time period of instance type t running
in region r.

-CTBr,t: Cost of a time bag from instance type t running in
region r. This cost is calculated by dividing the cost of a
period of instance type t by total number of time bags.

-CTr,t: Configuration time of instance type t running
in region r. This value must be specified by time bag
metric. For example in our experiments in next section, we
consider first 3 time bags as configuration time, a number
approximated by the time taken by instances from Amazon
EC2 to start up and customize the configuration.

-KCr,t,tb: Killing Cost of time bag tb from instance
type t running in region r.

-RCr,t,tb: Retaining Cost of time bag tb from instance
type t running in region r.

-Xr,t,tb: The number of instances in time bag tb from
instance type t running in region r.

-Pr,t: Processing power of instance type t running in region r.

-CCTr,t: Capacity constraint (or instance count limit)
of instance type t running in region r.

-Wr: Workload of region r. This is the current incoming
workload to the system and must be provided by the same
metric as Pr,t. meaning that if Pr,t is calculated by request
per second, Wr,t must be provided as request per second too.

-CCr: Capacity constraint (or instance count limit) of
region r. The number varies per cloud, e.g. a private cloud
with limited capacity. Even in Amazon, by default customer
can launch up to 20 instances. If more servers are needed,
customer must make an application for it.

The model has 2 variables:

-Nr,t: The number of new instances from instance type t

running in region r that must be added to the system.

-Sr,t,tb: The number of instances of time bag tb from
instance type t in region r that must be shut down.

The model will try to find out how many new instances
of each type must be added and how many instances of
each time bag from each instance type must be removed
to minimize the resource provisioning cost in each of the
regions. Therefore the objective function is as follows:

Min (
n∑

i=1

m∑
j=1

(Nri,tj ∗ Cri,tj +Nri,tj ∗ (CTri,tj ∗ CTBri,tj))

+
n∑

i=1

m∑
j=1

q∑
k=1

Sri,tj ,tbk ∗KCri,tj ,tbk +

n∑
i=1

m∑
j=1

q∑
k=1

(Xri,tj ,tbk − Sri,tj ,tbk) ∗RCri,tj ,tbk)

(2)

Following constraints are to be fulfilled by the model.

-The workload constraint ∀ regions r ∈ R:

m∑
j=1

(Nr,tj + (
q∑

k=1

Xr,tj ,tbk − Sr,tj ,tbk)) ∗ Pr,tj ≥Wr

(3)
-The cloud capacity constraint ∀ regions r ∈ R:

m∑
j=1

(Nr,tj + (
q∑

k=1

Xr,tj ,tbk − Sr,tj ,tbk)) ≤ CCr (4)

-Instance type capacity constraint ∀ instance types t ∈ Tr:

Ntr + (
q∑

k=1

Xtr,tbk − Str,tbk) ≤ CCTtr (5)

-Shutdown constraint ∀ time bags tb ∈ TBr,t:

Stbr,t ≤ Xtbr,t (6)

-And:

Nr,t ≥ 0
Sr,t ≥ 0

(7)

The objective function comprises sum of all costs attached
to changing the arrangement of resources at any point of
time. The cost function, sums cost of new instances and their
configuration, killing cost of each instance that must be shut
down and retaining cost of each instance that will continue
living. For each region the model outputs the number of
new instances of each instance type that must be added and
number of instances of each time bag from each instance

type that must be terminated so that the cost becomes
minimal and all constraints are fulfilled.

Killing cost and retaining cost are the most valuable
parameters of the model. The concept of time bags allows us
to calculate these costs for each instance at any point of time.
These two new parameters actually specify how valuable a
running instance is still for us. The more the instance lives
in its current time period, the retaining cost becomes higher
and the killing cost become lower, and thus the instance
becomes less valuable. This guarantees that during scale-
down the instances from the last time bags will have higher
chance to be terminated. However, adding a new instance is
bound to a new configuration process that triggers redundant
cost which might make the addition of the new instance
unprofitable. This is avoided by adding configuration cost
to objective function.

The constraint (3) is defined to ensure that the new
setup will fulfill the incoming workload in each region.
Furthermore, the total number of instances in each region
must not exceed its capacity; this is fulfilled using the
constraint (4). The constraint (5) checks that the number
of instances of each instance type in each region does not
surpass its limit. And finally using constraint (6) we make
sure that from each time bag the model does not shut down
more instances than it contains.

D. Method Implementation

The model is implemented in OptimJ [11] and using
one of its free solvers, GLPK (GNU Linear Programming
Kit) [12]. OptimJ is a Java-based modeling language for
solving optimization problems including linear program-
ming, mixed integer programming and nonlinear program-
ming. This utility is an extension of Java programming
language and is supported by the popular IDE, Eclipse. Due
to Java-based nature of OptimJ, developers can have access
to the whole Java library inside OptimJ modules. OptimJ has
an easy interface to define decision variables, linear objective
function and constraints, using straightforward keywords and
structures. The engine of OptimJ translates the code, written
by developer using the provided interface, to pure Java code
at compile time, calling all required optimization functions.
This tool has several LP solvers such as GLPK, lpsolve,
CPLEX and MOSEC that can be used for solving LP
problems, of them first two are free and open source. We also
created a RESTful interface for the model implementation,
so that it can be offered as a service.

IV. APPLICATION OF THE MODEL FOR AUTOSCALING
ENTERPRISE APPLICATIONS

Once an enterprise application is provided, which is to be
migrated to the cloud, we first have to identify the compo-
nents which are scalable in the application. For example, a
simple web/SOA application generally will have an applica-
tion server handling business logic and a backend database

(DB) server. When the load of the application raises, we can
employ a load balancer (LB) and can add/remove servers
(horizontal scaling) to/from the LB, dynamically. However,
DB server can’t be scaled horizontally, easily. Parallel
databases are quite tricky and the recent developments in the
domain include NoSQL, which are mainly non-relational,
distributed data stores that often do not attempt to provide
ACID guarantees, all the time. However, for simplicity the
DB node can be considered as non-scalable component.

The scalable components are then to be load tested on the
planned cloud, to extract the application specific parameters,
discussed in the model. We later can provide the in-coming
load information from different regions to the LP model
and the model can produce the ideal deployment config-
uration for the complete enterprise application. Once the
configuration is identified, it can be enforced with standard
deployment scripts of starting the type of the instances and
taking care of the application configuration to scale the
system to the load. The process can be repeated at regular
intervals, e.g. once per minute, and thus the application can
be auto-scaled dynamically.

However, when we consider long running applications, the
method would be a bit disruptive to the deployment config-
uration. The model suggests the most ideal configuration
for the system for the coming load, at that particular time.
But, this means some nodes will be removed/added from
the setup, with each interval. To counter the problem, once
the new deployment configuration is suggested, we do not
have to terminate the instances immediately. They will be
put in flagged state so that they can be terminated when they
move to the bag where it has exactly enough time, so that it
can be killed without having to pay for the next period. The
flagged instances will be considered as the current setup for
the next interval calculation and sometimes they may move
back to the ideal deployment configuration. The scenario
will be demonstrated further in the next section.

V. ANALYSIS OF THE APPROACH

In order to evaluate the model, we have designed a
few test case scenarios. We have chosen two of the basic
workflow control structures that are essence of many other
complex structures and are used in any typical enterprise
application/workflow, namely Parallel (AND) and Exclusive
(XOR). The experiments are designed to measure cost-
effectiveness, CPU utilization and time consumption of the
model, and average response time and request loss rate
of the load. Due to page limitations, only the results of
the XOR control flow are discussed here in detail and are
observed along with Amazon AutoScale mechanism to show
the efficiency of our model.

Experiments were performed on Amazon EC2 USEast
region. Amazon provides a wide variety of instances in
multiple regions, fulfilling a broad range of customers
with different requirements. In addition to various hardware

platforms, customer can choose among several operating
systems such as Microsoft Windows, Red Hat Linux, SuSE
Linux and Ubuntu, each in both 32 and 64 bit versions. In
our experiments we used different instance types, m1.small,
m1.medium, m1.large, c3.large, c3.xlarge and r3.large [13].
The first three were used as available instances for resource
provisioning of the workflow, and the C3 types were chosen
as the nodes assisting in experimental process, respectively,
node with model implementation and LBs. The R3 instance
type was used to generate load on the system.

ClarkNet was an Internet Service Provider (ISP) in United
States between 1993 till 2003. The workload of this ISP
between August 28, 1995 and September 4, 1995 is publicly
available [6]. We cut a 24-hour load from 00:00:00 till
23:59:59 of August 29th for our experiments. We cut the load
by minute, normalized and scaled it up, to reach a workload
of 700 requests per second at peak time. Tsung [14] was
used to generate the respective load for the system. Tsung
has been widely used for stress testing of applications, and
is capable of sending thousands of requests per second and
is able to change the request rate according to the defined
sessions by user. We changed the load according to the
scaled load of ClarkNet on a minute basis.

We used Linux 64-bit as operating system of back-
end instances running each task of the workflow and also
instances running workflow control system. Ubuntu 64-bit
was used on the instance running tsung (r3.large), and
Microsoft Windows 64-bit was employed for running the
simulation program, implementing our LP model.

A. Simulation Tool

We created a simulation tool that acts as a resource pro-
visioning system, meaning that it fetches the load entering
each task of the workflow, and feeds it to the model to
calculate the amount of resources needed to handle the load.
Based on the decision made by the resource provisioning
policy, the application adds new instances to or removes the
running ones from the system. At launch time, the instance
receives the local time of the server as a timestamp with
millisecond precision. This timestamp can be used at any
moment for finding the number of periods an instance has
lived and its time bag in current time period. Having the
time bag number, we can easily calculate the killing and
retaining cost of the instance.

Each task of the workflow has an Nginx load balancer
which receives the load from the workflow management
system (WMS) and passes it to its back-end servers. For
fetching the load from the load balancers, the HttpStubSta-
tusModule of Nginx is used, such that an HTTP request is
sent to the address of each load balancer and the status of
the load balancer, including total number of served requests
is received. Subtracting previous registered requests number
from this new number will give us the load change during
the last interval.

We considered 60 time bags for each instance type, one
per minute, and updated the instance setup of the workflow
once per minute, each time based on the request rate of
last minute. Configuration time for all instances are set to
3 minutes and each instance needs 3 minutes to finish the
termination process, meaning that if an instance is set to be
killed, it must be killed at 57th minute of its last life period.
But, if an instance passes this minute in its current period, it
will not be killed anymore and is considered as an extended
instance which will live another time period, adding the cost
of the new period to the total cost. We let each instance live
till this minute even if it is set to be terminated before.
At each setup update epoch, we set the status of all the
instances such that they can have another chance to continue
living, and then we run the resource provisioning policy.
If based on the output of running the policy an instance
must be terminated, we set its status accordingly, and if it
is in its 57th minute, we will shut down the instance. In
addition, according to configuration time, an instance is not
considered as running until it passes 3 minutes of its current
life period first time it is launched. So when calculating
the current load capacity of each region, we just count the
instances with running status. However, when running the
policy in next updates we considered all launched instances
even though they are not still in running status.

All tasks of the workflow can have three instance types
of m1.small, m1.medium and m1.large. Based on the incom-
ing load and processing power/price rate of these instance
types, the resource provisioning policy searches for the
most optimal combination of them which minimizes the
cost and handles the workload. Each task of a workflow
performs a specific operation, consuming specific amount of
resources and taking specific amount of time. We considered
a workflow with three tasks for our experiments, each of
which does a different job. First task runs the Huffman
coding, second one performs a Selection sort and task 3
conducts a Merge sort on each incoming request to the task.
The codes are written in PHP language and are run on the
respective servers. We stress tested m1.small, m1.medium
and m1.large instances of Amazon using Tsung and mea-
sured their average power with the metric of requests per
second (RPS). The results are shown in table I. Note that
these numbers are specific to the application, and are to be
calculated for each deployment component before migrating
any enterprise application to the cloud, using our model.

In order to remove the effect of cloud capacity limit on
results of our experiments, we set the capacity of cloud
and each instance type to 100 instances, so that models can
launch as many instances as needed for handling the load.

B. Test Case Scenario, Exclusive Structure

In this test case scenario, we considered a workflow
management system consisting of an Exclusive OR gate
(XOR). In an Exclusive gate, each time just one of the

Instance
Type

Huffman
Coding
(RPS)

Selection
Sort
(RPS)

Merge
Sort
(RPS)

Price of
instance
($)

m1.small 6 7 7 0.044
m1.medium 12 15 16 0.087
m1.large 19 25 25 0.175

Table I
PROCESSING POWER (RPS) AND COST OF INSTANCE TYPES

tasks connected to output of the gate is triggered. Each
output branch of an Exclusive gate can have a weight
which specifies how often each branch is activated, such
that the branch with higher weight receives more load. In
our experiments the branch connected to task 1 (in region
1) has the weight of 60 and the branch connected to task 2
(in region 2) has the weight of 40, meaning that 60% of the
load is passed to the region 1 and 40% of it to the region
2. After receiving the successful response from the selected
region, the request is redirected to the task 3 (in region 3).
The structure of the experiment is shown in Figure 1.

Figure 1. Workflow management system consisting of XOR gate

Table II shows the results of the experiments for regions
1, 2 and 3, after running for 24 hours in Amazon cloud. For
observing the cost and efficiency of our optimization model,
we ran the same experiments using Amazon AutoScale and
Elastic Load Balancing. The results are also produced in
Table II. For Amazon AutoScale mechanism, we considered
only m1.medium instance, which is the most optimal one
of the considered instances (Table I). In the launch config-
uration of AutoScale, we considered 45% and 65% as the
average CPU utilization across the cluster for scaling down
and scaling up 10% of the system configuration, respectively.

Figures 2, 3 and 4 represent the incoming load curve (a -
red), scaling curve (a - blue), the instance type usage curves
for the optimization model (b) and the scaling curve with
Amazon AutoScale mechanism (c), of regions 1, 2 and 3,
respectively.

From these figures we can see that, in all three regions,
our optimization model followed the incoming load very

Region 1 Region 2 Region 3 Total system
Optimal policy
Total requests 19,771,558 13,180,299 32,897,804 32,951,857
Average response
time (sec)

0.151 0.135 0.071 0.258

Request loss 22,657 31,396 396 54,449
Successful
requests

99.885% 99.762% 99.998% 99.834%

Total cost of in-
stances

50.846$ 28.086$ 64.278$ 143.211$

Amazon
Autoscale
Total requests 19,725,901 13,152,246 32,873,371 32,878,147
Average response
time (sec)

0.110 0.109 0.086 0.415

Request loss 2,221 2,555 3,288 8,064
Successful
requests

99.988% 99.98% 99.99% 99.975%

Total cost of in-
stances

49.068$ 26.274$ 61.509$ 136.851$

Optimal policy -
Normalized
Total requests 20,029,944 13,342,840 33,355,671 33,372,784
Average response
time (sec)

0.096 0.083 0.050 0.180

Request loss 16,080 1,033 30,594 47,707
Successful
requests

99.919% 99.992% 99.908% 99.857%

Total cost of in-
stances

46.938$ 26.111$ 59.519$ 132.568$

Table II
RESOURCE PROVISIONING EXPERIMENTS’ RESULTS IN DIFFERENT

REGIONS FOR XOR CASE

precisely. The registered incoming load curves and scaling
curves display how well the model sticks to the load. The
number of instances from each instance type launched in
each region can also be observed in figures. The results sug-
gest that, in all regions, optimal policy used more medium
instances and less small instances on most of the occasions.
However, small instances are still being added to the system
to support slight variations in load, whenever it is cost
efficient, thus trying to find the most optimal combination of
different-types of instances at each setup update. The model
did not launch large instances in any regions, which were
not cost efficient in executing the designed codes.

From the results shown in Table II and the figures, we
could observe that our optimization model performs at least
as good as Amazon AutoScale, sometimes outperforming
it in efficiency and mostly in total response times. Cost of
Amazon AutoScale was slightly lower. However, one should
not draw a direct comparison between the approaches. The
results are produced to show that the model adjusts properly
with the real-world load.

To be precise, the optimization model is generic and can
be used with any number of instance types (even hundreds
across different clouds), and the model can still find the
ideal deployment configuration. With AutoScale one has
to mention the instance type explicitly. In the experiments

(a) Incoming load curve and scaling curve

(b) Instance type usage curves for the optimization model

(c) Scaling curve with Amazon AutoScale

Figure 2. Results of region 1 for XOR case

(a) Incoming load curve and scaling curve

(b) Instance type usage curves for the optimization model

(c) Scaling curve with Amazon AutoScale

Figure 3. Results of region 2 for XOR case

presented here the m1.medium instance turned out to be a
clear winner and we deliberately considered that instance for
Amazon AutoScale mechanism. This made AutoScale save
cost, however, this knowledge is not always obvious.

Moreover, the system to be migrated and auto-scaled, can
span across multiple clouds. For example, one of the major
challenges with cloud migration is the availability [1]. If

(a) Incoming load curve and scaling curve

(b) Instance type usage curves for the optimization model

(c) Scaling curve with Amazon AutoScale

Figure 4. Results of region 3 for XOR case

due to some reasons (maintenance issues, security attacks or
bankruptcy of the cloud provider) the cloud is not available
anymore the application also ceases to exist. In these cases,
the best practice is to span the application across multiple
cloud providers. The optimization model is applicable even
under such circumstances.

Alternatively, further enhancements can be added to the
simulation tool, to make the model more efficient. For
example, instead of taking the load of the last minute, if
we take the mean load from last five minutes, the costs
were observed to be much lower, when compared to Amazon
AutoScale (Table II - Optimal policy - Normalized).

We also have studied the effect of individual parameters
on the optimal policy. For this, we developed a mini-optimal
policy, where we could exclude certain parameters (such as
KC and RC) and run the simulation on local infrastructure.
Here we observed that KC and RC had maximum effect
on optimal policy when the smaller/cheaper instances had
relatively better performance than the medium instances.

Apart from the cost and efficiency, we are also interested
in the performance of the execution of the model. Gener-
ally LP models are extremely resource-intensive. We used
SIGAR [15] to measure CPU utilization of model execution.
CPU utilization and durations are summarized in Table III.
From these results, we can observe that the model could
find the most cost-optimal setup, well within a second, with
reasonable load on the node (C3.large).

VI. RELATED WORK

Over the past years, organizations have been moving
their enterprise applications to the cloud with the aim of

CPU Utilization Execution
Latency
(milliseconds)

Min. 0.000% 0
1st Qu. 0.000% 0
Median 0.010% 18
Mean 5.475% 501.9
3rd Qu. 0.070% 648.5
Max. 54.820% 24,072

Table III
CPU UTILIZATION AND EXECUTION LATENCY OF THE MODEL

reducing infrastructure ownership and maintenance costs and
to take advantage of the elasticity offered by the cloud.
There are also several EU FP7 projects (REMICS [16],
MODAClouds [17] and PaaSage [18]), which are actually
targeted at migrating SOA based applications to the cloud.
We were part of REMICS where we developed frameworks
for monitoring and testing web/SOA application scalability
on the cloud [3], and were involved in developing and stan-
dardizing automatic deployment strategies for cloud based
applications [19].

Regarding Auto-scaling strategies, having been used by
many auto-scaling services such as Amazon Auto-Scale [4],
Scalr [20] or RightScale [5], threshold-based policies are
very popular among users due to their simplicity. These
policies generally observe performance metrics such as
CPU usage, request rate, response time, network traffic and
etc., which can be specified by user. At runtime when the
conditions fulfill the defined requirements auto-scaling ser-
vice alarm is triggered and automatic scaling is performed.
However, proper setting of these parameters vary among
applications according to their workload, and there is a need
for expert knowledge of load and cloud computing to set
up an optimal service. In addition, these methods generally
do not consider parameters like costs other than the limits,
current deployment configuration or addition of multiple
types of instances to support load efficiently.

Regarding optimal resource provisioning policies, apart
from LP several other technologies can also be used.
Dutreilh et al. [21] used Reinforcement Learning (RL) [22],
a machine learning algorithm, where current virtual in-
stances can be defined as state, changing request rate as
environment and the action is finding optimal number of
instances fulfilling the load within a decent response time.
However, RL has some disadvantages: since it is dependent
on the experience and learning, it does not have good initial
performance, and the time it takes to converge to an optimal
policy can be quite long. Moreover, performance of this
approach is suitable if the load incurs smooth changes, while
if there are sudden bursts in load, it cannot react well.
Dutreilh et al. tried to improve the approach with better
initialization and faster convergence to optimal policy.

Similarly, Urgaonkar et al. [23] using Queuing theory,

experimented a network of queues in a multi-tier application.
He derived future workload from a load predictor and based
on that found the adequate number of servers that can
handle the load within the desired response time. Harold et
al. [24] using Control Theory, propose a simple controller
that produces the output based on average CPU usage. Ali-
Eldin et al. [25] suggest to consolidate an adaptive and
proactive controller for scaling-down process and a reactive
model for scaling-up. Fuzzy controllers are also well-used,
in which workload as input is mapped to the optimal amount
of resources as output. Xu et al. [26] utilized a fuzzy model
to estimate CPU capacity needed for handling the incoming
workload. We also have tried other models and in [3], we
combined heuristics and queuing models with a reactive
model for auto-scaling of simulated MediaWiki application.

However, to our knowledge the model presented in this
paper is the most comprehensive one considering all major
factors involved in scaling including periodic cost, config-
uration cost and processing power of each instance type,
instance count limit of clouds, and life duration of each
instance with customizable level of precision. Additionally,
the model takes lifetime of each running instance into
account while trying to find the optimal setup.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced a novel resource provisioning pol-
icy that can find the most optimal setup of instances that
fulfills incoming workload and minimizes the resource cost
through taking full advantage of various available instance
types of cloud. The presented LP model finds the optimal
setup of each task/component in a workflow/SOA applica-
tion at each run. Thus the model allows each component
of the enterprise application to be hosted in a different
cloud with different policies and instance types, suiting
the task the most. All major factors involved in resource
amount estimation such as processing power, periodic cost
and configuration cost of each instance type and capacity
of clouds are considered in the model. Additionally, the
model takes lifetime of each running instance into account
while trying to find the optimal setup, contributing to value
determination of each instance at any time and discovering
the optimal number of instances from each instance type
in each region that must be added to or removed from the
current setup. Using new concept of time bags and calculat-
ing two new costs bound to each running instance, namely
killing and retaining cost, this method searches among all
cost-effective configuration transformations, resulted from
switching between various instance types having different
processing power/price rates.

Benchmark experiments were conducted on the model
using a real load trace and through two main control flow
components of enterprise applications, AND and XOR. In
these experiments our generic LP model could find the most
cost-optimal setup for each task of the workflow at any point

of time within a decent amount of time. With the feasibility
of the approach in basic models, we can conclude that the
model is applicable for auto-scaling any web/SOA based
enterprise workflow/application on the cloud.

Regarding future work, even though the presented model
considers most major parameters related to the scaling of
a system in the cloud, there are still some parameters such
as network bandwidth that can be added to the model. In
data-centric applications, network bandwidth of the system
plays the main role in scaling decision rather than processing
power of the servers. So in contrast to the service-based ap-
plications, in which we could mostly benefit from changing
the number of instances, in data-centric applications we can
optimize the system by changing the network usage.

Apart from this, we are also interested in adapt-
ing/remodeling enterprise applications for cloud migration.
We propose remodeling and scheduling the applications, in
a way that increases the intra-instance communication while
reducing inter-instance communication, so that the applica-
tions will fit nicely to the cloud networks. The applications
can be monitored for performance and partitioned with graph
partitioning approaches [27]. Following the approach and
joining the optimal resource provisioning policy we would
like to achieve a framework to which any enterprise appli-
cation can be provided, which would be studied, remodeled,
migrated to, performance monitored and auto-scaled on the
cloud, seamlessly.

ACKNOWLEDGMENT

This work is supported by European Regional Develop-
ment Fund through EXCS, Estonian Science Foundation
grant PUT360 and Target Funding theme SF0180008s12.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica
et al., “A view of cloud computing,” Communications of the
ACM, vol. 53, no. 4, pp. 50–58, 2010.

[2] T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano, “Auto-
scaling techniques for elastic applications in cloud environ-
ments,” Department of Computer Architecture and Technol-
ogy, University of Basque Country, Tech. Rep. EHU-KAT-IK-
09-12, 2012.

[3] M. Vasar, S. N. Srirama, and M. Dumas, “Framework for
monitoring and testing web application scalability on the
cloud,” in Nordic Symp. on Cloud Computing & Internet
Technologies (NORDICLOUD). ACM, 2012, pp. 53–60.

[4] Amazon Auto Scaling. [Online]. Available: http://aws.amazon.
com/autoscaling/

[5] Rightscale. [Online]. Available: http://support.rightscale.com/
[6] ClarkNet-HTTP. [Online]. Available: ftp://ita.ee.lbl.gov/html/

contrib/ClarkNet-HTTP.html
[7] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krog-

dahl, M. Luo, and T. Newling, Patterns: Service-Oriented
Architecture and Web Services. IBM Redbooks, April 2004.

[8] S. N. Srirama, “Mobile hosts in enterprise service integra-
tion,” Ph.D. dissertation, RWTH Aachen University, Ger-
many, 2008.

[9] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski,
and A. P. Barros, “Workflow patterns,” Distributed and par-
allel databases, vol. 14, no. 1, pp. 5–51, 2003.

[10] V. Cardellini, M. Colajanni, and S. Y. Philip, “Dynamic load
balancing on web-server systems,” IEEE Internet computing,
vol. 3, no. 3, pp. 28–39, 1999.

[11] OptimJ. [Online]. Available: http://www.ateji.com/optimj/
index.html

[12] GLPK optimizer. [Online]. Available: http://www.gnu.org/
software/glpk/

[13] Amazon EC2 Instances. [Online]. Available: https://aws.
amazon.com/ec2/instance-types/

[14] Tsung. [Online]. Available: http://tsung.erlang-projects.org/
[15] Sigar. [Online]. Available: http://www.hyperic.com/products/

sigar
[16] REMICS, “Reuse and migration of legacy applications

to interoperable cloud services.” [Online]. Available: http:
//www.remics.eu/

[17] MODAClouds, “MOdel-Driven Approach for design and
execution of applications on multiple Clouds.” [Online].
Available: http://www.modaclouds.eu/

[18] PaaSage, “Paasage: Model-based cloud platform upperware.”
[Online]. Available: http://www.paasage.eu/

[19] A. Sadovykh, A. Abhervé, S. Srirama, P. Jakovits, M. Smi-
alek, W. Nowakowski, N. Ferry, and B. Morin, “Deliverable
D4. 5 REMICS Migrate Principles and Methods,” 2010.

[20] Scalr. [Online]. Available: https://scalr-wiki.atlassian.net/
wiki/display/docs/Home

[21] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Riv-
ierre, and I. Truck, “Using reinforcement learning for au-
tonomic resource allocation in clouds: towards a fully au-
tomated workflow,” in 7th Intl Conf. on Autonomic and
Autonomous Systems (ICAS 2011), 2011, pp. 67–74.

[22] Reinforcement Learning. [Online]. Available: http:
//en.wikipedia.org/wiki/Reinforcement Learning

[23] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi, “An analytical model for multi-tier internet
services and its applications,” in ACM SIGMETRICS Perfor-
mance Evaluation Review. ACM, 2005, pp. 291–302.

[24] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh, “Automated
control in cloud computing: challenges and opportunities,” in
Proceedings of the 1st workshop on Automated control for
datacenters and clouds. ACM, 2009, pp. 13–18.

[25] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive
hybrid elasticity controller for cloud infrastructures,” in Net-
work Operations and Management Symposium (NOMS 2012).
IEEE, 2012, pp. 204–212.

[26] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “On
the use of fuzzy modeling in virtualized data center man-
agement,” in Autonomic Computing, 2007. ICAC’07. Fourth
International Conference on. IEEE, 2007, pp. 25–25.

[27] S. N. Srirama and J. Viil, “Migrating Scientific Workflows to
the Cloud: Through Graph-partitioning, Scheduling and Peer-
to-Peer Data Sharing,” in Int. Conf. on High Performance and
Communications (HPCC 2014) Workshops. IEEE, 2014, pp.
1137–1144.

