
Fog Computing out of the Box with FogDEFT
Framework: A Case Study

Satish Narayana Srirama and Suvam Basak
School of Computer and Information Sciences,

University of Hyderabad, India.
satish.srirama@uohyd.ac.in

Abstract—Fog computing is the key technology to overcome the
limitation of cloud computing in the domain of IoT applications.
The service placement in the nearest fog devices drastically
reduces the network delay, connectivity, and reliability issues
and delivers real-time capabilities as an extension, reduces energy
consumption and network overhead in the case of large sensor
networks. However, the adoption rate of fog computing is not in
proportion with the performance it proposes because, resource
constraints, heterogeneity, and lack of standardization, require
application-specific proprietary solutions. Therefore, we propose
a framework that extends OASIS - Topology and Orchestration
Specification for Cloud Applications (TOSCA) standard for
modeling IoT applications and uses containerization technology
to handle platform independence and interoperability, creating
seamless coordination and cooperation across fog devices. The
framework abstracts all the heterogeneity and complexities and
offers a user-friendly paradigm to model and dynamically deploy
fog services, on-demand, on the fly, from a remote system. The
framework is demonstrated with a case study of the dynamic
deployment of climate control service on the fog prototype.

Index Terms—Fog computing, Internet of Things, Dynamic
deployment, TOSCA, Docker.

I. INTRODUCTION

The beginning of the era of IoT applications was cloud-
centric. All the diverse data collected through the sensors from
the different fields are stored in the cloud. The cloud has
virtually infinite computational power for processing that data,
generating an actuation signal to send back to the actuators.
This architecture has some drawbacks. First, the cloud is phys-
ically placed thousands of kilometers away from the sensors
and actuators in most cases, which adds a significant network
delay between sensing and actuation. That is undesirable for
some real-time applications. Second, this architecture needs
stable connectivity to the cloud for continuously streaming the
data. However, the IoT devices may have to handle unstable
connectivity in the real world, leading to the reliability issues
of the IoT applications. Third, with the exponential increase of
IoT devices data generation rate has also increased rapidly. It
is becoming an overhead for the network to move vast volumes
of data to the cloud. Therefore, the concept of Edge and Fog
computing comes into the picture to address these problems
[1]. In fog computing, the utilization of gateway devices acts
as an alternative or supportive computational equipment of the
cloud. Therefore, service placement closer to the IoT devices
reduces delays, network overhead, and reliability issues [2][3].

With the adoption of Fog computing, deployment of the
services of an IoT application on fog nodes opens a nontrivial
area of research. Several automation tools have been developed
with the rise of Infrastructure as Code (IaC) to manage,
configure, and provision servers and data centers. None of
them primarily targets the deployment of fog services. Unlike
conventional computing systems, fog devices are heteroge-
neous and have a completely different hardware architecture
that may run on different software and be optimized to
perform specific tasks. However, the main requirement of a fog
federation is to have seamless cooperation and interoperability
across all the fog devices inside the network. Therefore, the
dynamic deployment of a service on fog devices imposes a
challenge of handling platform independence, interoperability,
and portability with resource constraints.

This problem is similar to the vendor lock-in and portability
of a composite cloud application across different cloud service
providers [4]. The issue of the cloud community has been ad-
dressed by OASIS - Topology and Orchestration Specification
for Cloud Applications (TOSCA) [5]. In a nutshell, TOSCA is
a modeling language. Application developers can describe the
platform-agnostic blueprint of a composite cloud application in
a YAML1 file. That makes the application portable across the
different cloud service providers with minimal effort [6]. The
fog federation framework: FogDEFT Framework implements
similar ideas for fog computing2. The FogDEFT Framework
extends the TOSCA standards for portable fog services and
hides the heterogeneity of the fog hardware. The framework
provides user-friendly development paradigms and enables on-
the-fly service deployment capabilities.

This paper demonstrates our earlier developed TOSCA
standard-based FogDEFT Framework’s potential in realizing
the dynamic deployment of on-demand fog services. We have
taken a use case scenario of dynamic deployment of fog
services and demonstrated the application’s system design and
modeling, followed by deployment of fog services on the fly.

The main contribution of this paper is:
1) Design and modeling of a domain-specific IoT applica-

tion with TOSCA.
2) Deployment of the fog service on-demand, on the fly,

on resource-constrained fog devices.

1https://yaml.org
2https://github.com/cloud-and-smart-labs/fog-service-orchestration

https://yaml.org
https://github.com/cloud-and-smart-labs/fog-service-orchestration


The rest of the paper is organized as follows. Section II
gives an overview of all related work in the domain. Section
III gives an overview of the FogDEFT Framework. Section
IV shows the Case study on climate control application with
the FogDEFT Framework. Section V discusses the resource
utilization of the orchestration process on the system running
orchestrator and fog devices. Finally, section VI concludes
with future potential applications of TOSCA in IoT.

II. RELATED WORK

Fog computing resolves many problems of cloud-centric
IoT applications. However, fog computing comes with its
challenges that significantly slow down the adoption rate of fog
computing. On-demand deployment of the service on the fog
node is one of these challenges. Therefore, application/service
deployment for fog computing has been studied extensively.

A. Dynamic deployment of applications

In [7], N Ferry et al. carried out a case study of GeneSIS
in smart buildings. They showed that GeneSIS could support
security by design from the development (via deployment)
to the operation of IoT systems and keep up security and
adapt to evolving conditions and threats while maintaining
their trustworthiness.

In [8], HA Hassan and RP Qasha propose a new approach
to generate a deployable model for the distributed IoT systems
based on a simplified, user-friendly declarative description of
the smart devices’ communication, configuration, installation,
and computation with the IoT system parts with Ansible-
based YAML description. The work minimizes the efforts for
the deployment of the distributed IoT applications on various
infrastructures, including the cloud.

In [9], O Tomarchio et al. proposed a TOSCA-based frame-
work, ‘TORCH,’ for deploying and orchestrating classical and
containerized cloud applications on multiple cloud providers.
The main benefit of the framework is the possibility to add
support to any cloud platform at a very low implementation
cost, and it allows deployment management through a simple
web tool.

In [10], R Dautov et al. propose a hierarchical architecture
for provisioning software updates from the cloud to terminal
devices via edge gateways in a targeted manner through a
last-mile deployment agent, placed on edge gateways via the
centralized cloud in the form of containerized microservices,
that receive firmware updates from the cloud and install them
on connected IoT devices at the edge.

In [11], H Song et al. describe joint research on an industrial
use case with a Smart Healthcare application provider on a
model-based approach for automatically assigning multiple
software deployments to hundreds of Edge gateways (fleet)
and uses a set of hard and soft constraints to achieve correct,
even distribution of software variants.

B. Deployment of fog applications

B Donassolo et al. in [12] proposed another orchestration
framework called ‘FITOR,’ an automated deployment and

microservice migration solution for IoT applications. The
framework uses Optimized Fog Service Provisioning (O-FSP)
based on a greedy approach that outperforms other relevant
strategies in terms of i) acceptance rate, ii) provisioning cost,
and iii) CPU usage.

In [13], N Ferry et al. developed a framework for continuous
deployment for decentralized processing across heterogeneous
IoT, edge, and cloud infrastructures called Generation and
Deployment of Smart IoT Systems (GeneSIS). GeneSIS pro-
vides (i) a domain-specific modeling language to model the
orchestration and deployment of Smart IoT Systems and (ii)
an execution engine to support automatic deployment across
IoT, edge, and cloud infrastructure resources.

In [14], S Venticinque and A Amato proposed a new fog
service placement methodology. The methodology’s effective-
ness is demonstrated in the energy domain with smart grid.

In [15], G Davoli et al. developed a modular orchestration
system called ‘FORCH.’ The orchestrator is aware of different
service models (SaaS/PaaS/IaaS) and dynamically deploys
services and manages resources on the fog nodes.

In [16], H Sami and A Mourad proposed a new frame-
work for deploying fog service on-demand on the fly based
on Kubeadm and Docker with the presence of volunteering
devices. Moreover, the framework optimizes the container
placement problem with an Evolutionary Memetic Algorithm
(MA) that uses heuristics to make decisions.

In [17], H Sami et al. proposed an efficient resource and
context-aware approach for deploying containerized microser-
vices on-demand called Vehicular-OBUs-As-On-Demand-
Fogs. The scheme embeds adaptable networking architecture
combining cellular technologies and the vehicular ad-hoc
wireless network (802.11p) and a Kubeadm-based approach
for clustering with docker container-based microservices de-
ployment. The solution provides an on-demand fog and service
placement solution on vehicles based on an Evolutionary
Memetic Algorithm.

C. Dynamic deployment of Fog applications

In [18], S Hoque et al. have carried out a technical evalua-
tion of docker container and container orchestration tools, their
capability, limitations, and how containerization can impact
application performance. The result shows that significant ad-
justments are required to meet the fog environment needs, and
they have proposed a framework based on the docker swarm
to address issues with the help of ‘OpenloTFog’ toolkits.

In 2013 F Li et al. put the first effort to use TOSCA, the
new cloud standard, for IoT applications and demonstrated the
feasibility of modeling IoT components gateways and drivers
for building Air Handling Unit (AHU) with the first edition
of TOSCA [19].

ACF da Silva et al. in [20] automatically deployed an IoT
application with OpenTOSCA based on Mosquitto Message
Broker running on the cloud, and the publishers and sub-
scribers were running in two different raspberry pis. Later,
in [21], they automatically deployed an IoT application out
of the box where a python script on raspberry pi pushes the



data to the message broker on a cloud, and another virtual
machine is hosting a web-based dashboard to present the
sensor data. They validated this deployment with three case
studies of emerging middleware (i) Eclipse Mosquitto, (ii)
FIWARE Orion Context Broker, and (iii) OpenMTC.

In [22], A Tsagkaropoulos et al. presented TOSCA exten-
sions for modeling applications relying on any combination of
technologies and discussed semantic enhancements, optimiza-
tion aspects, and methodology that should be followed for edge
and fog deployment support. Furthermore, added a comparison
with other cloud application deployment approaches.

In [23], HE Solayman and RP Qasha, used TOSCA for
deploying IoT applications for Intensive Care Unit (ICU)
based on Docker Containers. The demonstration shows au-
tomation of IoT application provisioning in heterogeneous
environments consisting of hardware components and cloud
instance message broker for network communication between
components containerized with docker containers.

Table I summarizes the work already done in the domain
of service deployment of fog computing.

However, in this paper, the proposed framework FogDEFT
extends the de-facto standard for portable cloud applications
for fog applications and widely used most popular container
orchestration technologies Docker and Docker swarm for
the deployment of fog services on demand. Moreover, the
framework minimizes cloud involvement and uses on-premises
infrastructure primarily, as J Delsing et al. argued in [24] about
open internet automation limitations and discussed the idea
of local cloud in IoT automation. Since this automation is
physically and geographically local, hence local cloud meets
system requirements of (1) interoperability of a wide range of
IoT and legacy devices, (2) real-time capabilities as latency
guarantee required for automation system, (3) scalability of
enormous scale, (4) security fence from the external network
of automation system and (5) ease of application engineering
with integrity, and agility. The concept is verified in climate
control applications.

In recent years, significant work has been published regard-
ing smart IoT-based solutions for greenhouse production and
farming [25][26][27][28]. And some work in Cold Storage as
well [29]. The proposed framework FogDEFT can realize such
use cases to achieve the highest level of convenience and can
change the climate of greenhouse or cold storage for specific
crops and products, respectively.

III. FOGDEFT FRAMEWORK

The FogDEFT (Fog computing out of the box: Dynamic
dEployment of Fog service containers with TOSCA) Frame-
work is a fog federation framework built on the extension
of the TOSCA standard, which is the de-facto standard for
modeling cloud applications. The framework enables seam-
less cooperation and coordination between fog devices in
the network, hides the heterogeneity, offers a development
paradigm for the custom or user-developed fog application,
and realizes dynamic deployment of the fog services on the

Fig. 1. Interoperability with Docker swarm

fly on demand. The framework maintains three layers of
abstraction as follows:

A. Platform independence

All fog devices are mostly network equipment and gateway
devices (routers, network switches, drones) or conventional
computational devices (sometimes). These devices consist
of different hardware architectures and operating systems.
Therefore, the first layer of the abstraction of the fog feder-
ation framework is to handle platform independence through
virtualization. However, hardware virtualization is costly and
resource-intensive. Therefore, it is not a feasible solution
for resource-constrained fog devices. However, all these fog
devices are network devices, and all network devices run on
some form of Linux system. Therefore, these fog devices
are running Linux kernels, making containerization or OS-
level virtualization a feasible solution since containers take
kernel support from the host machine and run in isolation
without interfering with the host system or other containers.
Therefore, multi-architecture builds3 of docker images should
be available on the Docker registry. The docker image of
a specific processor architecture will be pulled on-demand
during fog service orchestration.

B. Interoperability

The second essential requirement of fog computing is
interoperability which ensures seamless cooperation and co-
ordination between services running across fog nodes. Docker
provides the native container orchestration tool called Docker
Swarm4. Since the fog services are running in docker con-
tainers, anything that runs well in standalone containers runs
equally well in swarm mode.

Docker Swarm creates clusters of fog devices with an
Overlay Network5 called Ingress Network6 (10.0.0.1/24),
illustrated in Figure 1. This Ingress Network has an inbuilt load
balancer and routing mesh. The load balancer distributes the
traffic across multiple containers when more than one replica
(10.0.0.6:80 and 10.0.0.7:80) of a service is running.

3CLI tool Buildx by docker to build docker image of different CPU
architecture using the QEMU emulation support from Linux Kernel.

4https://docs.docker.com/engine/swarm/
5https://docs.docker.com/network/overlay/
6https://docs.docker.com/engine/swarm/ingress/

https://docs.docker.com/buildx/working-with-buildx/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/network/overlay/
https://docs.docker.com/engine/swarm/ingress/


TABLE I
A SUMMARY OF RELATED WORK AND THEIR FOCUS

Work Architecture
Framework Performance Virtualization Agent Deployment/Placement

/Cost Algorithm Service Placement TOSCA

N Ferry et al.[7]
HA Hassan and RP Qasha [8]

O Tomarchio et al. [9]
R Dautov et al. [10]
H Song et al. [11]

B Donassolo et al. [12]
N Ferry et al. [13]

S Venticinque and A Amato [14]
G Davoli et al. [15]

H Sami and A Mourad. [16]
H Sami et al. [17]
S Hoque et al. [18]

F Li et al.[19]
ACF da Silva et al. [20]
ACF da Silva et al. [21]

A Tsagkaropoulos et al. [22]
HE Solayman and RP Qasha [23]

FogDEFT

The routing mesh redirects the traffic from any docker host
in the swarm to a specific docker host where the service
container is running. Therefore, any fog service running in
only one replica (either 10.0.0.6:80 or 10.0.0.7:80)
also becomes available through all the IP addresses of fog
devices in the swarm through the same port number because
of the routing mesh. Therefore, any fog service running
in swarm mode or standalone mode can communicate with
other services running in swarm mode without knowing the
container’s placement in the fog federation.

Therefore, this second layer of abstraction handles inter-
operability with the Docker Swarm and enables seamless
coordination and cooperation in the fog federation. However,
not all services can run in swarm mode. Any service that needs
to deal with a specific hardware component (sensors/actuators)
has to be placed into that gateway device connected to that
component. Any service that handles processing or com-
munication (message broker or server) between sensors and
actuators should be placed in swarm mode.

C. Standardization

To enable the portability of a fog application from one
fog federation to another requires some standardization. It is
a similar type of problem faced by the cloud communities
while porting a composite cloud application from one cloud
service provider to another one. OASIS addressed the prob-
lem with Topology and Orchestration Specification for Cloud
Applications (TOSCA), which standardizes a composite cloud
application description. This description is the conceptual
structure of an application with two basic building blocks:
nodes and relationships. These nodes are the infrastructure
and software components (server, virtual machine, runtime

environments), and relationships define relationships between
nodes (hosted on, depends on, connected to). Nodes consist
of attributes, properties, capabilities, and requirements. Node’s
requirements and capabilities are counterparts to each other.
If a node has a requirement for something, there should be
another node with that capability to fulfill the requirement.
Each node and relationship has node types and relationship
types where attributes, properties, capabilities, and require-
ments are declared. TOSCA comes with normative nodes and
relationship types. Any custom nodes and relationship types
can be created to construct a TOSCA Service Template for
a composite application by extending these normative nodes
and relationship types. TOSCA Service Template contains a
topology template. Inside the topology template conceptual
topology of a composite application is designed with a set
of node and relationship templates. This TOSCA Service
Template is a standard description of an application in a
YAML file that makes it portable across different platforms.

Interestingly, TOSCA is platform agnostic and provides
language extension mechanisms. Therefore, TOSCA has been
extended to standardize (i) serverless computing or Function
as a Services (FaaS) in EU H2020 RADON project7 and
(ii) TOSCAData for cloud data pipeline [30]. Similarly, this
FogDEFT Framework enables the portability of fog applica-
tions by extending TOSCA to describe the blueprint of fog
application as a third layer of abstraction.

Previous extensions of the TOSCA in the RADON project
and TOSCAData created new node types for the Service Tem-
plate that describes FaaS and data pipeline applications. These
node types are open source and available in online reposito-

7https://radon-h2020.eu

https://radon-h2020.eu


TABLE II
LIST OF NODE TYPES FOR FOG APPLICATIONS

Nodes Types Description

docker_containers Pull a docker-compose.yaml file from
the given URL and deploy/undeploy on the
host fog node

docker_services Pull a docker-compose.yaml file from
the given URL and deploy/undeploy on the
Docker Swarm from Docker Leader node

swarm_leader Initiates Docker Swarm on the host node
and the node becomes Swarm Manager

swarm_worker Host node joins the Docker Swarm as
Worker node

TABLE III
LIST OF RELATIONSHIP TYPES FOR FOG APPLICATIONS

Relationship Types Description

token_transfer Relationship (dependency) between Swarm
Leader and Swarm Worker

ries8. However, the extension of TOSCA for describing fog
applications necessitates significant modifications to available
node types. Table II and III gives details of newly created
node9 and relationship10 types in FogDEFT Framework for
creating TOSCA Service Templates of a fog application.

D. Dynamic deployment

The idea of the dynamic deployment of a fog application
is to be able to deploy/undeploy services on these fog nodes
on-demand with the help of a single command. The FogDEFT
Framework will cover all the complexity and heterogeneity of
fog devices without any human intervention. That necessitates
the adoption of an orchestration tool.

The deployment of the services requires the adoption of a
TOSCA complaint orchestrator. It is important to note that
TOSCA is just a standard. It gives a string then it is up to
the orchestrator to make sense of it. A TOSCA-compliant
orchestrator consists of a TOSCA processor that can parse
and interpret TOSCA templates and instantiate the service.
All TOSCA node and relationship types include interface
operations. Each operation is associated with implementation
scripts (the type of the scripts depends on the orchestrators).
These scripts get executed to instantiate the services during
deployment.

The FogDEFT Framework adopted the xOpera orchestrator
to deploy the services on the fog nodes. xOpera11 is an
open-source lightweight orchestrator currently compliant with
the TOSCA Simple Profile in YAML Version 1.312. It uses

8https://github.com/radon-h2020
9https://github.com/cloud-and-smart-labs/climate-control/tree/main/

tosca/nodetypes
10https://github.com/cloud-and-smart-labs/climate-control/tree/main/

tosca/relationshiptypes/token transfer
11https://xlab-si.github.io/xopera-docs/02-cli.html
12https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/

TOSCA-Simple-Profile-YAML-v1.3.html

1 interfaces:
2 Standard:
3 type: tosca.interfaces.node.lifecycle.Standard
4

5 inputs:
6 name:
7 value: { get_property: [SELF, name] }
8 type: string
9 url:

10 value: { get_property: [SELF, url] }
11 type: string
12

13 operations:
14 create: playbooks/create.yaml
15 delete: playbooks/delete.yaml

Listing 1: TOSCA node’s interface operations

ansible13 automation tools for the implementation of TOSCA
standards. Therefore, all the nodes and relationship types listed
in Tables II and III have associated ansible-playbook scripts
(create.yaml, delete.yaml) for interface operations, as
shown in Listing 1.

At the time of deployment, the xOpera orchestrator ex-
ecutes ansible-playbook scripts in a specific order to make
this deployment happen. This specific order is one of the
topological sorts of the application topology defined in the
topology template inside TOSCA service templates. For the
deployment, the order follows the transpose graph of the
application topology.

IV. CASE STUDY

This paper demonstrates the dynamic deployment, by re-
alizing a case study of the climate control system of the
convention center. A convention center inside a city usually
hosts diverse events like conferences, exhibitions, and cultural
events. Probably a storage area for off times or a hospital
isolation ward in times of pandemic, and the past two years
made it clear. Therefore, all these events in different seasons
require different climate conditions inside a convention center.
For example, a cultural event needs different lighting require-
ments and intensity than an international conference. Even
those requirements will differ from daytime to nighttime as
well. The weather and season will play a significant role in
climate control. A summer event requires lower temperature, a
winter event higher temperature, and a monsoon needs lower
humidity and temperature. The number of guests is also a
factor in controlling temperature and humidity. Altogether, the
automation of these climate control systems is one of the ideal
scenarios for the dynamic deployment of fog services.

For the development of this system, the main challenges
are (i) Designing a generic system (mostly hardware platform)
equipped with sensors and actuators that can host some fog
services. (ii) Develop a set of fog services based on the
FogDEFT framework that will dynamically deploy on the
fly based on what event has been organized. These services
will be running on on-premises infrastructure with minimal

13https://www.ansible.com/

https://github.com/radon-h2020
https://github.com/cloud-and-smart-labs/climate-control/tree/main/tosca/nodetypes
https://github.com/cloud-and-smart-labs/climate-control/tree/main/tosca/nodetypes
https://github.com/cloud-and-smart-labs/climate-control/tree/main/tosca/relationshiptypes/token_transfer
https://github.com/cloud-and-smart-labs/climate-control/tree/main/tosca/relationshiptypes/token_transfer
https://xlab-si.github.io/xopera-docs/02-cli.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://www.ansible.com/


TABLE IV
DEVICE LIST

Device Name Processor
Architecture

Memory
Size

Operating
System

Arduino Uno Microcontroller
ATmega328P 32 KB -

Arduino Nano 33
BLE Sense ARM® Cortex®-M4 1 MB -

Raspberry Pi 4 ARMv7l 32-Bit 4 GB Raspberry Pi
OS 10

Raspberry Pi 4 ARMv8 64-Bit 4GB Raspberry Pi
OS 11

Workstation Intel Xeon 16 Core 32 GB Ubuntu 20.04

Fig. 2. Hardware design

internet usage and cloud involvement. One centralized system
can control the deployment/undeployment of the services.

A. System design

The design of an IoT-driven system consists of two parts:
hardware and software. The section described the requirement
of a generic hardware platform with sensors and actuators
capable of hosting some fog services. The following subsec-
tions illustrate the hardware prototype followed by the soft-
ware architecture with FogDEFT Framework on the hardware
prototype, creating a fog federation for deploying the case
study services.

1) Hardware design: The prototype for the demonstration
of dynamic deployment of fog services uses a handful of IoT
devices listed in Table IV.

Figure 2 shows the illustration of the hardware design of the
prototype. Two Arduino Nano 33 BLE Sense boards are placed
outside the convention center and connected to a Raspberry Pi
4 through serial ports. These two Arduino boards have inbuilt
sensors (temperature, humidity, light, barometric pressure,
proximity, and microphone) to sense the outside environment.
Another Arduino Uno is connected to four actuators (servo
motors) through Pulse Width Modulation (PWM) pins and one
Raspberry Pi 4 through a serial port. All the Raspberry Pis and
the Workstation inside the control room are connected to the
network and have internet connectivity.

Fig. 3. Service design blueprint

2) Software design: After designing the generic hardware
platform, it is up to the job of the software to create the
platform for fog federation with these on-premises gateway
devices (Raspberry Pis). The devices listed in Table IV come
under two different categories.

First, Arduinos come under the category of microcon-
trollers. These are programmable chips. Whenever these de-
vices are connected to power, they execute the same program,
whatever is loaded into it. We have three Arduinos here of two
different categories: Nano 33 BLE Sense and Uno. The first
one is for sensing the outside environments. Therefore, these
two Arduino were programmed to collect the sensor dataset
and send it through the serial port of that connected Raspberry
Pi 4. The second one is for actuation to control the climate
inside the convention center. Therefore, this is programmed
to perform actuation on connected actuators. These actuation
parameters are retrieved from the serial port connected to the
Raspberry Pi 4.

Second, Raspberry Pis and the system inside the control
room come under the microprocessor category. Unlike Ar-
duinos, these are typical computers with operating systems
that can load programs and execute processes and services.
Therefore, these devices will be treated as fog nodes. Here,
the FogDEFT Framework comes into the picture to ease the
development and deployment of fog services on the fog nodes.

The design of the prototype in Figure 2 consists of two
fog nodes (Raspberry Pi 4). The fog services to maintain
the climate will be deployed on these two fog nodes. Here,
Figure 3 illustrates the topology design of fog services to be
deployed on the fog nodes inside convention centers to IoT-
driven climate control systems. In this illustration, boxes are
nodes, and directed edges are relationships between nodes, as
discussed in section III-C.

The bottom two gray nodes represent the fog nodes. The
green node in the middle represents Docker Services (Message
broker and web server to show the sensor data and state)
running in the swarm mode (interservice dependencies are



Fig. 4. One of the valid orders for deployment/undeployment

mentioned in the docker-compose file). This Docker Service
node is hosted and depends on two blue nodes, Swarm Leader
and Swarm Worker, respectively. The edge between two blue
nodes is their relationship, and both are hosted on one fog
node, respectively. The remaining two yellow and purple
nodes are Publisher and Subscriber services, respectively. The
Publisher node pushes the sensor data to the message broker.
Therefore this node is a standalone container hosted on the
fog node connected to the Arduino outside. Similarly, the
Subscriber node receives the broadcast of each update from the
message broker and makes adjustments to actuators. Therefore,
this node is also a standalone container hosted on the fog node
connected to the Arduino wired with actuators.

This service blueprint of the design indicates that at least
four different microservices (Message broker, web viewer,
sensor data publisher, and Subscriber with climate controller)
are required. Interestingly, this design illustrated in Figure
3 requires only one URI change inside the purple node
named Subscriber. That could dynamically change to utterly
different climate conditions, probably requiring one from a
specific event. Hence, this fog federation framework provides
a versatile platform to deploy services on demand on the fly.

With these node and relationship types provided by the
FogDEFT Framework the TOSCA Service Template14 of the
blueprint given in Figure 3 is shown in Listing 2.

V. RESULTS AND DISCUSSION

We deployed the Service Template given in Listing 2 on
the prototype Figure 2 from a remote system (corresponds to
the control room) with the xOpera orchestrator. As discussed
in section III-D, the deployment and undeployment order of
the nodes follows topological sort of application topology
shown in Figure 3. Therefore, one of the valid deployment
and undeployment orders is given in Figure 4.

The resource utilization of each node (Indoor, Outdoor,
and Workstation) is given in Table V. This resource usage
only includes the resource consumption of these processes
responsible for the orchestrations of the fog services. Resource
consumption of fog services is out of the framework’s scope.
In our experiment, the deployment and undeployment took
around 121.05s and 96.90s, respectively, from the workstation
with a single thread. However, the xOpera orchestrator offers
a multithreaded approach to deploy node templates parallelly
based on the dependency defined on the topology template.
However, the first-time service deployment may take longer

14https://github.com/cloud-and-smart-labs/climate-control/blob/main/
tosca/service.yaml

1 topology_template:
2 node_templates:
3 outdoor-node:
4 type: tosca.nodes.Compute
5 attributes:
6 private_address: 192.168.0.103
7 public_address: 192.168.0.103
8

9 indoor-node:
10 type: tosca.nodes.Compute
11 attributes:
12 private_address: 192.168.0.105
13 public_address: 192.168.0.105
14

15 docker-swarm-leader:
16 type: fog.docker.SwarmLeader
17 requirements:
18 - host: indoor-node
19

20 docker-swarm-worker:
21 type: fog.docker.SwarmWorker
22 requirements:
23 - host: outdoor-node
24 - leader: docker-swarm-leader
25

26 broker-service:
27 type: fog.docker.Services
28 properties:
29 name: broker
30 url: https://repo/brokr/docker-compose.yaml
31 requirements:
32 - host: docker-swarm-leader
33 - dependency: docker-swarm-worker
34

35 sensor-data-publisher:
36 type: fog.docker.Containers
37 properties:
38 name: publisher
39 url: https://repo/pub/docker-compose.yaml
40 requirements:
41 - host: outdoor-node
42 - dependency: broker-service
43

44 actuator-data-subscriber:
45 type: fog.docker.Containers
46 properties:
47 name: subscriber
48 url: https://repo/subs/docker-compose.yaml
49 requirements:
50 - host: indoor-node
51 - dependency: broker-service

Listing 2: TOSCA Service Template

for other factors like available bandwidth (puling, extraction
of images).

VI. CONCLUSION AND FUTURE WORK

This paper demonstrated the dynamic deployment of
fog service on-demand with a fog federation framework:
FogDEFT. The framework abstracts the heterogeneity of fog
devices and provides a standardized platform for deploying
custom or user-developed applications on the fly. The xOpera
orchestrator and ansible automation tool uses Secure Shell
(SSH) infrastructure to push ansible modules for the deploy-
ment of the service. Therefore, this framework is secure,
agentless, and works with out-of-the-box fog devices.

https://github.com/cloud-and-smart-labs/climate-control/blob/main/tosca/service.yaml
https://github.com/cloud-and-smart-labs/climate-control/blob/main/tosca/service.yaml


TABLE V
RESOURCE UTILIZATION AND PERFORMANCE

Device CPU (%) Memory (MB)

Raspberry Pi 4
Indoor
Node

Raspberry Pi 4
Outdoor

Node

Workstation
Orchestrator

The development of TOSCA primarily targets the standard-
ization of cloud applications. However, this work demonstrates
the potential of TOSCA in standardizing fog services for IoT-
driven applications. The orchestrator used in this work was
developed for the cloud application deployment in virtual
machines. In IoT, non-IP-based networking is prevalent for
M2M communication. Therefore, creating a lightweight IoT-
focused orchestrator with non-IP-based networks support can
unlock huge possibilities like M2M or drone to drone on-
demand service deployment.

ACKNOWLEDGMENT

This research is supported by SERB, India, through grant
CRG/2021/003888. We also thank financial support to UoH-
IoE by MHRD, India (F11/9/2019-U3(A)).

REFERENCES

[1] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira,
M. Curado, L. Villas, L. DaSilva, C. Lee, and O. Rana, “The internet
of things, fog and cloud continuum: Integration and challenges,”
Internet of Things, vol. 3-4, pp. 134–155, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2542660518300635

[2] R. Buyya and S. N. Srirama, Fog and edge computing: principles and
paradigms. John Wiley & Sons, 2019.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12.
New York, NY, USA: Association for Computing Machinery, 2012, p.
13–16. [Online]. Available: https://doi.org/10.1145/2342509.2342513

[4] J. Opara-Martins, R. Sahandi, and F. Tian, “Critical analysis of vendor
lock-in and its impact on cloud computing migration: a business per-
spective,” Journal of Cloud Computing, vol. 5, no. 1, pp. 1–18, 2016.

[5] T. Binz, G. Breiter, F. Leyman, and T. Spatzier, “Portable cloud services
using tosca,” IEEE Internet Computing, vol. 16, no. 3, pp. 80–85, 2012.

https://www.sciencedirect.com/science/article/pii/S2542660518300635
https://doi.org/10.1145/2342509.2342513


[6] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “Tosca: portable
automated deployment and management of cloud applications,” in
Advanced Web Services. Springer, 2014, pp. 527–549.

[7] N. Ferry, P. H. Nguyen, H. Song, E. Rios, E. Iturbe, S. Martinez, A. Rego
et al., “Continuous deployment of trustworthy smart iot systems.” The
Journal of Object Technology, 2020.

[8] H. A. Hassan and R. P. Qasha, “Toward the generation of deployable
distributed IoT system on the cloud,” IOP Conference Series: Materials
Science and Engineering, vol. 1088, no. 1, p. 012078, feb 2021.
[Online]. Available: https://doi.org/10.1088/1757-899x/1088/1/012078

[9] O. Tomarchio, D. Calcaterra, G. Di Modica, and P. Mazzaglia, “Torch:
a tosca-based orchestrator of multi-cloud containerised applications,”
Journal of Grid Computing, vol. 19, no. 1, pp. 1–25, 2021.

[10] R. Dautov, H. Song, and N. Ferry, “Towards a sustainable iot with last-
mile software deployment,” in 2021 IEEE Symposium on Computers and
Communications (ISCC), 2021, pp. 1–6.

[11] H. Song, R. Dautov, N. Ferry, A. Solberg, and F. Fleurey, “Model-
based fleet deployment in the iot–edge–cloud continuum,” Software and
Systems Modeling, pp. 1–26, 2022.

[12] B. Donassolo, I. Fajjari, A. Legrand, and P. Mertikopoulos, “Fog based
framework for iot service provisioning,” in 2019 16th IEEE Annual
Consumer Communications Networking Conference (CCNC), 2019, pp.
1–6.

[13] N. Ferry, P. Nguyen, H. Song, P.-E. Novac, S. Lavirotte, J.-Y. Tigli,
and A. Solberg, “Genesis: Continuous orchestration and deployment of
smart iot systems,” in 2019 IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC), vol. 1, 2019, pp. 870–875.

[14] S. Venticinque and A. Amato, “A methodology for deployment of iot
application in fog,” Journal of Ambient Intelligence and Humanized
Computing, vol. 10, no. 5, pp. 1955–1976, 2019.

[15] G. Davoli, D. Borsatti, D. Tarchi, and W. Cerroni, “Forch: An orches-
trator for fog computing service deployment,” in 2020 IFIP Networking
Conference (Networking), 2020, pp. 677–678.

[16] H. Sami and A. Mourad, “Dynamic on-demand fog formation offering
on-the-fly iot service deployment,” IEEE Transactions on Network and
Service Management, vol. 17, no. 2, pp. 1026–1039, 2020.

[17] H. Sami, A. Mourad, and W. El-Hajj, “Vehicular-obus-as-on-demand-
fogs: Resource and context aware deployment of containerized micro-
services,” IEEE/ACM Transactions on Networking, vol. 28, no. 2, pp.
778–790, 2020.

[18] S. Hoque, M. S. De Brito, A. Willner, O. Keil, and T. Magedanz,
“Towards container orchestration in fog computing infrastructures,” in
2017 IEEE 41st Annual Computer Software and Applications Confer-
ence (COMPSAC), vol. 2, 2017, pp. 294–299.

[19] F. Li, M. Vögler, M. Claeßens, and S. Dustdar, “Towards automated iot
application deployment by a cloud-based approach,” in 2013 IEEE 6th
International Conference on Service-Oriented Computing and Applica-
tions, 2013, pp. 61–68.

[20] A. C. F. da Silva, U. Breitenbücher, K. Képes, O. Kopp, and
F. Leymann, “Opentosca for iot: Automating the deployment of iot
applications based on the mosquitto message broker,” in Proceedings of
the 6th International Conference on the Internet of Things, ser. IoT’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
181–182. [Online]. Available: https://doi.org/10.1145/2991561.2998464

[21] A. C. F. da Silva, U. Breitenbücher, P. Hirmer, K. Képes, O. Kopp,
F. Leymann, B. Mitschang, and R. Steinke, “Internet of things out of the
box: Using tosca for automating the deployment of iot environments.”
in CLOSER, 2017, pp. 330–339.

[22] A. Tsagkaropoulos, Y. Verginadis, M. Compastié, D. Apostolou,
and G. Mentzas, “Extending tosca for edge and fog deployment
support,” Electronics, vol. 10, no. 6, 2021. [Online]. Available:
https://www.mdpi.com/2079-9292/10/6/737

[23] H. E. Solayman and R. P. Qasha, “Portable modeling for icu iot-based
application using tosca on the edge and cloud,” in 2022 International
Conference on Computer Science and Software Engineering (CSASE),
2022, pp. 301–305.

[24] J. Delsing, J. Eliasson, J. van Deventer, H. Derhamy, and P. Varga,
“Enabling iot automation using local clouds,” in 2016 IEEE 3rd World
Forum on Internet of Things (WF-IoT), 2016, pp. 502–507.

[25] R. Rayhana, G. Xiao, and Z. Liu, “Internet of things empowered smart
greenhouse farming,” IEEE Journal of Radio Frequency Identification,
vol. 4, no. 3, pp. 195–211, 2020.

[26] A. F. Subahi and K. E. Bouazza, “An intelligent iot-based system design
for controlling and monitoring greenhouse temperature,” IEEE Access,
vol. 8, pp. 125 488–125 500, 2020.

[27] M. A. M. Ariffin, M. I. Ramli, M. N. M. Amin, M. Ismail, Z. Zainol,
N. D. Ahmad, and N. Jamil, “Automatic climate control for mushroom
cultivation using iot approach,” in 2020 IEEE 10th International Con-
ference on System Engineering and Technology (ICSET), 2020, pp. 123–
128.

[28] M. Muñoz, J. L. Guzmán, J. A. Sánchez-Molina, F. Rodrı́guez, M. Tor-
res, and M. Berenguel, “A new iot-based platform for greenhouse crop
production,” IEEE Internet of Things Journal, vol. 9, no. 9, pp. 6325–
6334, 2022.

[29] H. Afreen and I. S. Bajwa, “An iot-based real-time intelligent monitoring
and notification system of cold storage,” IEEE Access, vol. 9, pp. 38 236–
38 253, 2021.

[30] C. K. Dehury, P. Jakovits, S. N. Srirama, G. Giotis, and G. Garg,
“Toscadata: Modeling data pipeline applications in tosca,” Journal of
Systems and Software, vol. 186, p. 111164, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121221002508

https://doi.org/10.1088/1757-899x/1088/1/012078
https://doi.org/10.1145/2991561.2998464
https://www.mdpi.com/2079-9292/10/6/737
https://www.sciencedirect.com/science/article/pii/S0164121221002508

	Introduction
	Related work
	Dynamic deployment of applications
	Deployment of fog applications
	Dynamic deployment of Fog applications

	FogDEFT Framework
	Platform independence
	Interoperability
	Standardization
	Dynamic deployment

	Case study
	System design
	Hardware design
	Software design


	Results and discussion
	Conclusion and future work
	References

