
Smartphone-based Real-time Sensing and Actuation with the Cumulocity Internet
of Things Platform

Satish Narayana Srirama∗†, Jakob Mass∗, Madis-Karli Koppel∗, Andreas Sepp∗ and Shalva Avanashvili∗
∗Mobile & Cloud Lab,

Institute of Computer Science, University of Tartu
Ülikooli 17, r324, Tartu, Estonia

† Email: srirama@ut.ee

Abstract—The successful adoption of IoT and scenarios in
different domains have led to the development of several
software platforms for managing IoT devices and data. These
platforms are based either on cloud-centric or decentralized
models. Cumulocity is a proprietary cloud-centric platform
which is being used in several industrial IoT scenarios. While
Cumulocity supports different types of sensors and devices,
integrating mobiles is not yet so straight-forward. To support
mobile developers in quickly and utilizing the Cumulocity plat-
form, a generic API is developed. The API supports streaming
mobile sensor data to the cloud platform in real time and
in return sending commands from the cloud to the mobile
applications to trigger actions. The API is demonstrated with
a reference Android application implementation where several
internal mobile sensors such as accelerometer, gyroscope, and
magnetic sensor are integrated. Further, a web application was
implemented to visualize the results in real-time.

Index Terms—Internet of Things, Cumulocity, Android, Mobile
Sensing

1. Introduction

Internet of Things (IoT) represents a comprehensive
network where physical objects, also known as things,
with sensing and actuating capabilities are connected and
communicate over the Internet, along with the participating
individuals. There are billions of such devices which are
already connected and are being used in scenarios from
different domains such as logistics, ambient assisted living
(AAL), healthcare etc. In the traditional model of IoT, i.e.
cloud-centric IoT (CIoT) [1], [2], the sensor data from the
things is extracted and collected over the gateways and
Internet, then stored and processed at the centralized cloud
instances. Later, control signals are sent back to the devices
to achieve the desired functionality. For example, in an
IoT case study where buildings are managed to be energy-
efficient, sensor data such as temperature and CO2 levels
of different rooms can be extracted and processed over the
cloud, so that the heating and ventilation can be controlled,
thus saving the energy usage of the buildings.

While there are several sensors which are being used
in IoT scenarios, the mobile phone which is a ubiquitous

companion for people and has access to wide range of built-
in sensors such as accelerometer, magnetic sensor etc., can
also be used in different IoT scenarios. However, current
IoT software solutions mainly provide mobile phone support
in terms of just using the mobile as a user interface (UI)
client to the IoT cloud-hosted application, overlooking the
mobile’s potential as a sensing-actuating device. Recogniz-
ing this potential of using the mobile as an IoT device
broadens the scope of possible mobile and IoT applications.
For example, one opportunity is to employ CIoT and the
mobile for use in mobile crowdsensing [3] or sensing as
a service [4], alternatively the mobile could be involved as
part of intelligent decision-making to determine user context
or interact with the user.

There are several platforms which support the CIoT
model, one such is, Cumulocity [5] which is a popular
proprietary platform that is being used mainly in industrial
IoT scenarios1. Cumulocity is a software framework for
managing IoT devices, data and integration, including real-
time processing, while exposing its functions through Ap-
plication Programming Interfaces (APIs). Cumulocity also
provides means to package user-oriented web applications
so that they can be hosted on the cloud.

While Cumulocity supports different types of sensors
and devices, integrating mobiles is not yet so straight-
forward. Although demo applications of such solutions exist,
an open reference implementation of using smartphones as
sensor-actuator devices is missing. Moreover, the Cumuloc-
ity API is not trivial and involves a learning curve for the
developers. To deal with these issues and to support mobile
application developers in the task of integrating mobiles with
Cumulocity based CIoT, we developed an API. The main
goal of the study is to provide a developer tool for using
the Cumulocity platform to stream mobile sensor data to a
web application in real time and in return send commands
from the cloud to the mobile applications to trigger actions.

The main contributions of the paper are:

• Support for integration of different Android based
sensors and actuators through a generic API, thereby
simplifying streaming the sensor data to the Cumu-
locity platform

1http://cumulocity.com/reference-cases/

• Web interfaces to display the live data stream from
different mobiles

The rest of the paper is organized a follows: Section 2
discusses the related background regarding cloud IoT plat-
forms and smartphone sensing therein. Section 3 provides
the proposed system architecture and discusses how the
API fits into it. Finally, section 4 concludes the work and
provides pointers for future work.

2. Background and Related Work

Thanks to the current hype around the IoT phenomena,
a large number of software platforms for managing IoT
devices and their data exist, with varying characteristics:
free-to-use, commercial [6], open-source and closed-source
[7].

The core features for an IoT platform can be summarized
as:

• Device Integration, i.e. providing the means to in-
tegrate devices. There must exist some standardized
interface, using which, devices can communicate
with the platform so that the device functionalities
such as sensor reading or actuating can be invoked.
Device integration may additionally involve device
discovery, device management (e.g. software up-
dates), fault-tolerance.

• Data Management. As most IoT-solutions are heav-
ily data-driven, the platform should take care of
data storage, structuring and organization. The data
management may involve historic data, real-time
values or both.

• Automation, ”smart rules”. Integrating devices,
their capabilities and data into one platform creates
the opportunity of setting up automated decisions
(or sequences of decisions, workflows). The platform
should provide means of setting up these rules. This
may be through some programming or scripting
interface, through a user interface, or both.

• Integration with external (web) services Often-
times, the automation rules involve invoking exter-
nal web services. For example, sending a tweet on
Twitter or creating an event in some external system.
To this end, many platforms have built-in support for
certain web services such as IFTTT.com [8].

In the following, we provide an quick overview of existing
Cloud-based IoT platforms. While there is also a significant
amount of research and existing solutions in terms of non-
cloud-based (decentralized) IoT frameworks, such as Open-
HAB [9], due to the scope of this paper we are focusing
only at the CIoT solutions.

2.1. Cloud-based (centralized) IoT platforms

2.1.1. Thingspeak. Thingspeak2 is a open-source, free-to-
use IoT platform with MATLAB analytics support. Things-
peak organizes device data into channels, and limits data

2https://thingspeak.com/

fields to 8 per channel. Devices can be integrated using
HTTP or MQTT [10]. It provides a web interface for assem-
bling data visualizations. Thingspeak allows users to create
analysis and decision-making based on MATLAB scripts.
Combining MATLAB analytics with other webservice in-
tegration supported by the platform, such as Twitter, users
can create mashup applications.

2.1.2. Cumulocity. Cumulocity3, established by Cumuloc-
ity GmbH is a commercial, free-to-try IoT platform. It
provides API-s for integrating devices and web services via
technologies such as RESTful HTTP, MQTT, ZigBee, LoRa
and others. Cumulocity takes a device-oriented approach in
device integration, meaning that all connections between the
device and cloud platform are initiated and handled by the
device. As a result, there is no need for the device to expose
any ports in order to listen for connections, for instance.

Cumulocity also features an ecosystem for building end-
to-end UI applications, a high-level real-time processing
language for data transformation and decision-making. The
real-time processing can be used via a custom language (Cu-
mulocity Event Language). The platform does not provide
a visual analytics tool, but individual data streams can still
be visualized and custom visualizations of the data can be
assembled using web widgets.

Cumulocity also supports connecting to other web ser-
vices through extension plugins.

2.1.3. Thingworx. Thingworx [11] by PTC is a commercial
IoT platform oriented at the industrial domain. Thingworx
employs a model-based application development approach.

Like Cumulocity, Thingworx devices initiate the con-
nection to the Thingworx cloud. To this end, Thingworx
provides tools such as the AlwaysOnTM protocol, which is
based on the WebSocket, HTTP and TLS technologies [12].

Thingworx additionally provides a visual mashup tool
for combining the data services available within ThingWorx
to create applications. Further, it features an analytics toolset
which allows creating machine-learning based analytics ap-
plications with a UI based tool for describing data and
creating prediction models, anomaly detection and so forth.
Most of the analytics features can be used via the visual
interface or via the REST API.

2.2. Mobile Phones as Sensors

Cumulocity provides a demo application called the An-
droid Cloud Sensor app [13]. However, the solution is
not open-source and is meant as a demonstration of the
platforms capabilities. The application supports the follow-
ing sensor data: acceleration, (GPS) location, luxometer,
gyroscope, RSSI, magnetic field, rotation and the following
actuator functions: display message, vibrate.

If a mobile developer wishes to create their own
Cumulocity-based mobile sensing application, the Cloud
Sensor App however does not provide anything in terms

3https://www.cumulocity.com

Figure 1. System Overview

of extensible developer tools or APIs, as the developer has
to implement their own sensing and actuating integration
using the Cumulocity API.

3. System Design & Implementation

Our envisioned mobile sensing system (see Fig. 1) con-
sists of 3 main components: the Cumulocity cloud plat-
form; a mobile application for sending data and receiving
commands; and a web application for data visualization
(analysis).

The mobile application has been implemented with ex-
tensibility in mind, to this end it includes an API for
defining new sensors and actuators. The API consists of
generic interfaces which enable developers to focus on
implementing the mobile-specific aspects of creating sensor
readings and actuator behaviour, while minimizing the effort
of integrating with the cloud platform.

In the following subsections, we describe each of the
3 components in depth. Note, that while we present an
Android implementation of the mobile API in this work,
we have also implemented a corresponding iOS version,
available on Bitbucket4.

3.1. Android Application

The Android application is native, all action takes place
inside a single Activity. It is meant as a guideline or
reference implementation on how to use the APIs Cumu-
locitySensor and CumulocityControllerListener classes. For
that, an example CumulocityController and CumulocitySen-
sorImpl have been created. Two helper classes, that are
platform specific, are also included: RegistrationHelper, that
helps with registering and requesting credentials, and Net-
workUtil, that deals with requests for sending and receiving
data from the cloud platform.

3.1.1. Modular Design, API. As shown in Fig. 1, ”Mobile
Device” , Java interfaces are provided to the developer
to simplify communication with the Cumulocity API. It
reduces the learning curve by generalizing and reducing the
number of steps required for basic flows.

Adding new sensors is as generic and easy as possible.
In this case, a sensor can be anything the user wants, as
long as it is implements the CumulocitySensor interface.
The interface is very simple - all it requires from the user is
to first register it with a sensor name, names of values as an
array (e.g. ”x”, ”y”, ”z”) and the minimal update frequency.
After doing this, whenever the user has new data available
for their abstract sensor, they can call a function on the
interface which will send the data to Cumulocity if at least
the minimal update time period has passed.

Implementations of interfaces are also provided. Cu-
mulocitySensorImpl provides an example of the interface
implementation, specifically targeting easy to add internal
targets. If the user wants to create their own custom Cu-
mulocitySensor which does not use the internal sensors,
they’ll have to create their own class which implements the
interface.

The CumulocityController is a utility class that handles
connecting to the cloud, device registration and respective
callbacks. For initiating a connection to the cloud platform,
the user merely needs to provide the URL of Cumulocity
instance, everything else is automated.

Once the device has been successfully registered, the
user can call a method in the controller to register a new Cu-
mulocitySensor. Once all sensors are added, another method
of the controller starts updating the sensors if they have
any new data available. The controller is implemented as
a generic class so that it can be integrated into common
Android components such as Activity or a Service without
having to change anything internal to it.

4https://bitbucket.org/mobilecloudlab/madp fall2017
cumulocitystreaming

3.1.2. Device bootstrapping. Life cycle of the Android
application is divided into two main parts. First, credentials
from Cumulocity are fetched to register the device. This is
only required once, as the device stores the credentials in its
preferences and they are later used for additional requests.

This step is integrated inside CumulocityController,
RegistrationHelper and NetworkUtil classes. The developer
must only create an instance of CumulocityController and
add a listener to it that implements CumulocityControllerLis-
tener and listens to onDeviceRegistered() event. All interme-
diate steps - credential fetching, device creation, registration
- are performed in the background and are hidden from the
developer.

3.1.3. Sending and receiving data. The second part of
the life cycle is sending sensor data (measurements) and
receiving operations from Cumulocity. After the device is
registered, the application will try to register a SmartREST
template for each sensor.

SmartREST is a Cumulocity tool for compressing pay-
load sizes, thus making the application more lightweight,
further details on SmartREST are described in the next
section.

After template registration, the application starts sending
sensor data using the templates.

In addition to sending sensor data, the application also
queries for operations from Cumulocity. To do this, the
application subscribes to operations with the given device
ID and starts waiting by long polling. Demo application is
waiting for c8y Restart and c8y Vibrate operations. Once
again, this is coupled away into internal classes. The de-
veloper only has to decide which operations to listen for
using CumulocityController’s initOperationListener(). Once
an operation is received, the application Activity is notified
via onOperation().

3.2. Cumulocity API

In the previous section we demonstrated how our API
can be used. In this subsection we describe the standard
Cumulocity components which our API internally uses,
highlighting the work involved in implementing a similar
solution without our API.

3.2.1. SmartREST. SmartREST is an extension of the
standard HTTP REST protocol developed by Cumulocity.
It is designed to reduce used bandwidth by introducing a
template system for sending only minimal requests.

Before being able to use SmartREST, one should create
a template for the request with a specific identifier (X-Id).
The template can be thought of as a shortened format of
the REST request body which will be sent to Cumuloc-
ity. It includes the number of parameters, their types, the
name of the template and so forth. An example template
registration request is shown in Fig. 2. The json body of the
request describes the template itself. Based on this template,
SmartREST requests will be translated (uncompressed) at

POST /s

{
"c8y_Acceleration":{

"x":{"value": "&&" },
"y":{"value": "&&" },
"z":{"value": "&&" }

},
"time": "&&",
"source":{"id":"&&"},
"type":"c8y_Acceleration"

}

Figure 2. Sample SmartREST template registration request

the cloud to the corresponding original JSON format which
the normal REST API expects.

The SmartREST proxy endpoint URL on Cumulocity
is also shortened to ”/s” instead of for example ”/mea-
surement/measurements” when using the standard REST
API, again decreasing request sizes. After registering the
templates, the provided X-Id from the template registration
response is stored.

Measurements request headers consists of the same X-
Id and Authorization header. A request example is shown in
Fig. 3, it corresponds to the template presented in Fig. 2.

POST /s
200,1,2,3,433765

Figure 3. Sample SmartREST sensor measurement request body

The first number is the template id, next three numbers
are the sensor values and the last one is the device id.

SmartREST is used for sending Sensor data in Android
and iOS demo applications. A network bandwidth Compari-
son of sending four sensors with and without SmartREST is
shown on Fig. 4. It is visible that the difference is about six
times when four sensors are used. Approximate data sent
per hour is 28 MB, compared to 120 MB without using
SmartREST.

3.2.2. Operations. Operations allow sending actions to
connected devices, such as restarting or taking a picture.
Our demo application implements the restart and vibrate

Figure 4. Comparison of bandwidth usage

Figure 5. Simplified operations structure

operations. More detailed information about operations can
be found from official documentation5,6.

The implementation of operations involves three distinct
steps, also shown in Fig. 5:

1) handshake
2) subscribe
3) poll

First step in operations procedure is the handshake. It is
a POST request ”80” (SmartREST shortcut) to /devicecon-
trol/notifications and the response is < clientID >.

Next, this clientID is then used to subscribe for op-
erations for the device. The subscription request format is
shown in Fig. 6. One clientID can be used to subscribe to
multiple channels.

POST /cep/realtime

[{
"channel": "/meta/subscribe",
"clientId": "<clientID>",
"subscription": "operations/<deviceID>"
}]

Figure 6. Operations subscribe request format

The third step is polling for new operations, as shown
in Fig. 7.

POST /devicecontrol/notifications
[{
"channel":"/meta/connect",
"connectionType":"long-polling",
"clientId":"< clientId>"

}]

Figure 7. Operations polling request format

The device should not close the connection and
start waiting for response, it only receives a response
once an operation is sent. When the device receives
a response it would be good to also push to /de-
vicecontrol/operations/<operationId> value {”status” :
”SUCCESSFUL”} to let Cumulocity know that operation
was completed. After the operation is received the device
should start long-polling again to wait for new operations.

Operations are invoked either by using the Cumulocity
web UI or by POST-ing to /devicecontrol/operations/. The

5https://www.cumulocity.com/guides/reference/device-control/
6https://www.cumulocity.com/guides/reference/real-time-notifications/

body should be a json, that contains the operation and
deviceID, for example:

{"deviceId": "433765", "c8y_Vibrate":{} }

At the moment only receiving keyword-based operations
is supported. However, adding support for parameters is easy
as it only requires changing the way json is parsed.

3.3. Web Application

The third component of the presented system is a web
application that fetches data from Cumulocity instance and
visualizes it to the end user.

The web application has two main views. The first one
is used for entering Cumulocity instance URL and user
credentials, which are used to fetch the list of available
devices. The compatible devices are denoted by the Cumu-
locity ”type” field being set to ”c8y SensorPhone”. Once a
compatible device is selected, the user is forwarded to the
visualization page.

The second view is the visualization page, shown in Fig.
9. The user is presented with a three.js [14] 3D canvas,
containing a phone model which visualizes the rotation of
the phone in physical space.

Figure 8. Adding new sensor in web application

Additionally, there are three default graphs available
which show real-time data fetched from Cumulocity. The
default graphs are for accelerometer, gyroscope and rotation
sensors. However, more sensors of any type can be easily
added either by code or by using the user interface, shown
in Fig. 8. To add a new sensor, the user has to know the
Cumulocity sensor name along with the names of its values,
e.g. ”c8y Gyroscope” and [”x”, ”y”, ”z”] respectively. Ad-
ditionally, the user can input the minimum and maximum
value for the axes so the graph only shows a specific region
of values on the y-axis. Lastly, the user can input the update

interval time, which controls how frequently Cumulocity is
queried for new data. The same data can also be embedded
in the source code with a single line, with several examples
available in the code repository.

Figure 9. Visualization page in web application

By default, all the charts fetch last 20 seconds of data
from Cumulocity, but the interval can be changed individu-
ally for each chart above it. In addition, the graphs can be
removed to reduce bandwidth usage and to focus on specific
measurements.

4. Conclusion & Future Work

Cloud-based platforms provide a solid foundation to-
wards creating innovative IoT solutions. However, the ubiq-
uitous smartphone sensors lack direct platform support in
the case of platforms such as Cumulocity. In this paper, we
presented a mobile API to enable rapid mobile sensor and
actuator integration with the Cumulocity cloud platform for
developers. The API minimizes the learning curve of the
Cumulocity API, allowing the developers to focus at the
mobile aspects.

We also provided a reference Android implementation
of the API, where it is part of a real-time streaming system
with a web application component for data visualization,
including 3D visualization of the phone’s orientation. The
implementation involves sensors such as gyroscope, accel-
eration and actuator capabilities such as vibrate.

While the current communication is based on the light
HTTP SmartREST protocol, the communication bandwidth
could further be reduced by using MQTT instead of HTTP
for sending and receiving data from the cloud, which we
have left as part of future work.

Acknowledgments

The authors would like to thank Telia Eesti AS for
helping us in establishing the Internet of Things and Smart
Solutions Laboratory (IoTSS Lab), where the research has
been conducted and for providing a Cumulocity license. This
work is also supported by IT Academy/ StudyITin.ee.

References

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
things (iot): A vision, architectural elements, and future directions,”
Future generation computer systems, vol. 29, no. 7, pp. 1645–1660,
2013.

[2] S. N. Srirama, “Mobile web and cloud services enabling internet of
things,” CSI transactions on ICT, vol. 5, no. 1, pp. 109–117, 2017.

[3] M. Talasila, R. Curtmola, and C. Borcea, “Mobile crowd sensing,”
Handbook of Sensor Networking: Advanced Technologies and Appli-
cations, 2014.

[4] X. Sheng, X. Xiao, J. Tang, and G. Xue, “Sensing as a service: A
cloud computing system for mobile phone sensing,” in Sensors, 2012
IEEE, pp. 1–4, IEEE, 2012.

[5] Cumulocity GmbH, “Cumulocity. about.” [Online] https://www.
cumulocity.com/about/.

[6] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller, “A survey of
commercial frameworks for the internet of things,” in Emerging Tech-
nologies & Factory Automation (ETFA), 2015 IEEE 20th Conference
on, pp. 1–8, IEEE, 2015.

[7] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis of
internet-of-things platforms,” Computer Communications, vol. 89-90,
no. Supplement C, pp. 5 – 16, 2016. Internet of Things: Research
challenges and Solutions.

[8] S. Ovadia, “Automate the internet with if this then that (ifttt),”
Behavioral & Social Sciences Librarian, vol. 33, no. 4, pp. 208–211,
2014.

[9] K. Kreuzer, “openhab 2.0 and eclipse smarthome,” 2015.

[10] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-sa pub-
lish/subscribe protocol for wireless sensor networks,” in Commu-
nication systems software and middleware and workshops, 2008.
comsware 2008. 3rd international conference on, pp. 791–798, IEEE,
2008.

[11] P. E. I. Solutions, “Platform technology: Thingworx. 2016,” URL:
https://www. thingworx. com/.

[12] PTC, “Thingworx edge sdks and websocket-based edge microserver
(ws ems) help center,” 11 2017. [Online] http://support.ptc.com/help/
thingworx hc/thingworx edge/#page/thingworx edge sdks ems%
2Fems wsems topics%2Fv5.4.0 c ems wsems features.html%23.

[13] Cumulocity GmbH, “Android Cloud Sensor App.” [Online] http:
//cumulocity.com/guides/users-guide/android-cloud-sensor-app/.

[14] R. Cabello et al., “Three. js,” URL: https://github. com/mrdoob/three.
js, 2010.

