Math III ASSIGNMENT - 2 SUBMIT by 26th September 2016

- 1. The equation $x^2y'' + pxy' + qy = 0$, where p and q are constants, is called Euler's equi-dimensional equation. Show that the change of independent variable given by $x = e^z$ transforms it into an equation with constant coefficients. Apply this technique to find the general solution of each of the following equations:
 - (a) $x^2y'' + 3xy' + 10y = 0$
 - (b) $2x^2y'' + 10xy' + 8y = 0$
 - (c) $x^2y'' + 2xy' 12y = 0;$
- 2. Find the general solution of each of the following equations
 - (a) $y'' + 10y' + 25y = 14e^{-5x}$
 - (b) $y'' 2y' + 5y = 25x^2 + 12;$
- 3. If $y_1(x)$ and $y_2(x)$ are particular solutions of $y'' + P(x)y' + Q(x)y = R_1(x)$ and $y'' + P(x)y' + Q(x)y = R_2(x)$, show that $y(x) = y_1(x) + y_2(x)$ is a solution of $y'' + P(x)y' + Q(x)y = R_1(x) + R_2(x)$. Use this priciple to find the general solution of

$$y'' + 4y = 4\cos 2x + 6\cos x + 8x^2 - 4x$$

- 4. Find a particular solution of each of the following equations:
 - (a) $y'' + 2y' + y = e^{-x} logx;$
 - (b) $y'' + 2y' + 5y = e^{-x}sec2x$
- 5. Find the general solution of the following equation:

$$(x^{2}-1)y''-2xy'+2y = (x^{2}-1)^{2}$$