2-6

BINDING AND BINDING TIME

The preceding sections have described the translator/virtual computer
structure common to all programming language implementations. We have
stressed the importance of understanding the gross structure of a language
implementation if one is to use the language properly in programming. In
this section the same question is viewed in a somewhat different light. We
may encompass much of the discussion in terms of the central concepts of
binding and binding time.

Binding is not a concept that allows a single precise definition, nor is
binding time. There are many different varieties of bindings in program-
ming languages, as well as a variety of binding times. Without attempting
to be too precise, we may speak of the binding of a program element to a
particular characteristic or property as simply the choice of the property
from a set of possible properties. The time during program formulation or
processing when this choice is made is termed the binding time of that



property for that element. In addition we wish to include within the concepts
of binding and binding time the properties of program elements that are
fixed either by the definition of the language or by its implementation.

Classes of Binding Times

While there is no simple categorization of the various types of bindings, a
few main binding times mav be distinguished if we recall our basic
assumption that the processing of a program, regardless of the language,
alwavs involves a translation step followed by execution of the translated
Program:

1. Execution time (run time). Many bindings are performed during
program execution. These include bindings of variables to their values, as
well as (in many languages) the binding of variables to particular storage
locations. Two important subeategories mayv be distinguished:

a. On entry to a subprogram or block. In most languages important
classes of bindings are restricted to occur onlv at the time of entry to a
subprogram or block during execution. For example, in Pascal the binding
of formal to actual parameters and the binding of formal parameters to
particular storage locations may occur only on entry to a subprogram.

b. At arbitrary points during execution. Other important classes of
bindings may occur at any point during execution of a program. The most
important example here is the basic binding of variables to values through
assignment.

2. Translation time (compile time). In all languages, but especially
those that are compiled, important classes of bindings are performed during
translation. Two different classes of translation time bindings may be
distinguished:

. Bindings chosen by the programmer. In writing a program, the
programmer consciously makes many decisions regarding choices of
variable names, types for variables, program statement structures, etc. that
repreésent bindings during translation. The language translator makes use
of these bindings in determining the final form of the object program.

h. Bindings chosen by the translator. Other bindings are chosen by the
language translator without direct programmer specification. For example,
in FORTRAN, bindings of variables to particular storage locations are
performed at load time, the last stage of translation when translated
programs are linked and loaded into memory in their final executable form.
In all languages, the binding of the source program to a particular object
program representation is made by the translator,



Programming Language Processors / Ch. 2

3. Language implementation time. Some aspects of a language defini-
tion may be the same for all programs that are run using a particular
implementation of a language, but they may vary between implementa-
tions. For example, often the details associated with the representations of
numbers and of arithmetic operations are determined by the way that
arithmetic is done in the underlying hardware computer. A program written
in the language that uses a feature whose definition has been fixed at
implementation time will not necessarily run on another implementation of
the same language; even more troublesome, it may run and give different
results.

4. Langunge definition time. Most of the structure of a programming
language 18 fixed at the time the language is defined, in the sense of
specification of the alternatives available to a programmer when writing a
program. For example, the possible alternative statement forms, data
structure types, program structures, ete. are all often fixed at language
definition time.

To illustrate the variety of bindings and binding times, consider the
simple assignment statement

, X:=X+10

Suppose that this statement appeared within some program written in a
language L. We might inquire into the bindings and binding times of at least
the following elements of this statement:

1. Set of possible types for variable X. The variable X in the statement
usually has a data type associated with it, such as real, integer, or Boolean.
The set of allowable types for X is often fixed at language definition time;
e.g., only types real, integer, Boolean, set, and character might be allowed,
Alternatively, the language may allow each program to define new types, as
in Pasecal and Ada, so that the set of possible types for X is fixed at
translation time.

2. Type of variable X. The particular data type associated with
variable X is often fixed at translation time, through an explicit declaration
in the program such as the Pascal:

X:real:

In other languages, such as APL and LISP, the data type of X may be bound
only at execution time through assignment of a value of a particular type to

X.Inthese languages, X may refer to an array at one point and to an integer
at a later point in the same program.

3. Setf of possible vaiues for variable X. If X has data type real, then its
value at any point during execution is one of a set of bit sequences
representing real numbers. The precise set of possible values for X is



determined by the real numbers that can be represented and manipulated in
the virtual computer defining the language, which ordinarily is the set of
real numbhers that can he represented conveniently in the underlying
hardware computer. Thus the set of possible values for X is determined at
language implementation time; different implementations of the language
may allow different ranges of possible values for X.

4. Value of the variable X. At any point during program execution, a
particular value is bound to variable X. Ordinarily this value is determined
at execution time through assignment of a value to X. The assignment
X:= X + 10 changes the binding of X, replacing its old value by a new one
that is ten more than the old one.

h. Representation of the constant 10, The integer ten has both a
representation as a constant in programs, using the string 10, and a
representation at execution time, commonly as a sequence of bits. The
choice of decimal representation in the program (i.e., using 10 for ten) is
usually made at language definition time, while the choice of a particular
sequence of bits to represent ten at execution time is usually made at
language implementation time.

6. Propertiesof the operator +. Let us consider the binding times of the
various properties of the operator + in the statement. The choice of the
symbol + to represent the addition operation is made atlanguage definition
time. However, it is common to allow the same symbaol + to represent real
addition, integer addition, complex addition, ete., depending on the context.
In a compiled language it is common to make the determination of which
operation is represented by + at compile time. The mechanism for specifying
the binding desired is usually the typing mechaniam for variables: If X is
tvpe integer, then the + in X + 10 represents integer addition; if X 1s type
real, then the + represents real addition: ete.

Another property of the operation represented by + 18 its value for any
given pair of operands. Thus, in our example, if X has the value 12, then
what is the value of X + 107 Or if X has the value 2%, then what is the value
of X + 10? In other words, when is the meaning of addition defined? The
meaning is usually fixed at language implementation time and 18 drawn
from the definition of addition used in the underlyving hardware computer.

In summary, for alanguage like Pascal the symbol +is bound to a set of
addition operations at language definition time, each addition operation in
the set is defined at language implementation time, each particular use of
the symbol + in a program is bound to a particular addition operation at
translation time, and the particular value of each particular addition
operation for its operands is determined only at execution time. This set of
bindings represents one choice of possible hindings and binding times
typical of a variety of programming languages. Note, however, that many
other bindings and binding times are also possible. In SNOBOILA4, all these
bindings could be made at execution time.



Importance of Binding Times

In the analysis and comparison of programming languagesin the following
chapters many distinctions are based on differences in binding times. We
shall be continuously in the process of asking the question: Is this done at
translation time or at execution time? Many of the most important and
subtle differences among languages involve differences in binding times.
For example, almost every language allows numbers as data and allows
arithmetic operations on these numbers. Yet not all languages are equally
suited for programming problems involving a great deal of arithmetic. For
example, while both SNOBOL4 and FORTRAN allow one to set up and
manipulate arrays of numbers, solving a problem requiring large arrays
and large amounts of arithmetic in SNOBOL4 would probably be most
inappropriate if it could also be donein FORTRAN. If we were to try to trace
the reason for this by comparing the features of SNOBOL4 and FORTRAN,
we ultimately would ascribe the superiority of FORTRAN in this case to the
fact that in SNOBOL4 most of the bindings required in the program will be
set up at execution time while in FORTRAN most will be set up at
translation time, Thus a SNOBOL4 version of the program would spend
most of its execution time creating and destroyving bindings, while in the
FORTRAN .version most of the same bindings would be set up once during
translation, leaving only a few to be handled during execution. As a result
the FORTRAN version would execute much more efficiently. On the other
hand, we might turn around and ask a related question: Why 1s FORTRAN
so inflexible in its handling of arrays, numbers, and arithmetic, as com-
pared to SNOBOLA4? Again the answer turns on binding times. Because most
bindings in FORTRAN are performed at translation time, before the input
data are known, it is difficult in FORTRAN to write programs that can
adapt to a variety of different data-dependent situations at execution time.
For example, the size of arrays and the type of variables must be fixed at
translation time in FORTRAN. In SNOBOL4 bindings may be delayed
during execution until the input data have been examined and the appro-
priate bindings for the particular input data determined.

A language like FORTRAN in which most bindings are made during
translation, early in the processing of a program, is said to have early
binding; a language with late binding, such as SNOBOL4, delays most
bindings until execution time.

The advantages and disadvantages of early binding versus late
binding revolve around this conflict between efficiency and flexibility. In
languages where execution efficiency is a prime consideration, such as
FORTRAN, Pascal, and COBOL, it is common to design the language so
that as many bindings as possible may be performed during translation.
Where flexibility is the prime determiner, as in SNOBOL4 and LISP, most
bindings are delayed until execution time so that they may be made data-



dependent. In a language designed for both efficient execution and flexi-
bility, such as Ada or PL/I, multiple options are often available that allow
choices of binding times.

Binding Times and Language Implementations

Language definitions are usually permissive in specifying binding times. A
language is designed so that a particular binding may be performed at, e.g.,
translation time, but the actual time at which the binding is performed isin
fact defined only by the implementation of the language. For example,
Pascal is designed to permit the type of variables to be determined at
compile time, but a particular Pascal implementation might instead do type
checking at execution time. Thus while the definition of Pascal permits
compile-time type checking, it does not require it. In general a language
design specifies the earliest time during program processing at which a
particular binding is possible, but any implementation of the language may
in fact delay the binding to a later time. However, usually most implementa-
tions of the same language will perform most bindings at the same time. If
the language is designed to permit compile-time bindings, then to delay
these bindings until execution time will probably lead to less efficient
execution at no gain in flexibility. It ordinarily is expedient to perform the
bindings at the earliest possible moment.

One additional caution is needed, however. Often seemingly minor
changes in a language may lead to major changes in binding times. For
example, in FORTRAN the change to allow recursion and computed array
dimensions, two rather simple changes in the language, would modify
many of the binding times of important FORTRAN features. Because
binding times are implementation-dependent, we place emphasis on know-
ing the language implementation. In Part Il a number of languages are
analyzed. In each case a “typical” implementation of the language is
assumed and the binding times of the various language elements in the
context of this implementation are discussed. When approaching your own
local implementation of the same language, it is important to ask about the
binding times in thatimplementation. Are they the usual ones, or have local
modifications to the language caused the usual binding times to be
modified?

REFERENCES AND SUGGESTIONS
FOR FURTHER READING

Software simulation, translation, virtual computers, and binding times are
central topics in the chapters that follow. Tanenbaum [1976] provides an
excellent overview of computer organization at the hardware, firmware, and




