
School of Computer and Information Sciences Due Date: 10 November 2023 @ 7:00 PM

IE305: PRINCIPLES OF PROGRAMMING LANGUAGES
31 October 2023

Duration: 10 Days Total Marks: 20

Answer all the questions. Marks are given alongside the questions.

1. (14 Marks) Choose one of the two problems given below.
PROBLEM 1:

This exercise makes you implement a number theory library. As you build the library, you
will learn how the runtime structure influences the running program.

Write and organise your code as follows:

(a) The code should be in four files:

nt.h: a header file that contains information necessary for all the functions. It can have
only include, define, typedef and function declarations. Theremay be a few extern
variables but their number should be a minimum.

Any C code in the header file will automatically get you a 0 on this question!!

nt_primes.c: a C code file containing the following functions.
i. int *primes_below(int num): finds all the prime numbers less than num and

returns them in an array. Don’t use any lists or such structures as you will have to
write a lot of excess code.

ii. int is_prime(num): returns 0 if the num is a prime; returns the smallest factor
that divides num if it is not a prime.

nt_factors.c: a C code file containing the following functions.
i. int is_divisible(int num, int x): returns 0 is num is divisible by x; returns

any positive value otherwise.
ii. int *prime_factors(int num): finds all the prime factors of num and returns

them in an array. If num is a prime number, then it returns NULL.
iii. int *proper_factors(int num): This function finds the factors of num from 1

upto but not including the number num itself. For example, the proper factors of
12 are 1, 2, 3, 4 and 6.

nt_props.c: a C code file containing the following functions.
i. int *twin_primes(int num): returns all twin primes below num. Twin primes are

numbers n and n+2 where both are primes. Examples are: (3, 5), (11, 13), (41, 43)
etc.

ii. int *is_abundant(int num): a number is said to be abundant is the sum of all
its factors is more than the number itself; deficient if the sum is less; and perfect if
the sum is the same. This function returns -1 if num is deficient, 0, if perfect and 1
if abundant.

(b) There are two extern variables:

_numplt1000: the number of primes below 1000.
_primes1000[]: an array containing the list of primes below 1000. These two are used by

the other functions to find if a number is a prime, otherwise its prime factors, proper
factors, etc.

(c) Write a main() function in a file called nt_main.c and use it to test all the functions you
wrote.

(d) Compile and run your code as follows.

GOOD LUCK University of Hyderabad

School of Computer and Information Sciences Due Date: 10 November 2023 @ 7:00 PM

i. Compile each of the files nt_primes.c, nt_factors.c and nt_props.c separately
using the command

gcc -c -fPIC <filename.c>
You can also use -lm in the above command, if needed.

ii. Build them all into a single library libnumtheory.so with the following command
gcc -shared -o libnumtheory.so nt_*.o

iii. Now, compile your main() function as
gcc -o ntmain nt_main.c -L. -lnumtheory -lm

Again, -lm is used only if needed.

After implementing the code above, draw the run-time structure clearly showing the loca-
tions of different variables at any stage in your running program.

List when and where each variable and its association are created for all those variables that you
have in your above run-time structure diagram.

PROBLEM 2:

This problem makes you implement a simple document processing library. As you build the
library, you will learn how the runtime structure influences the running program.

Write and organise your code as follows:

(a) The code should be in four files:

sdp.h: a header file that contains information necessary for all the functions. It can have
only include, define, typedef and function declarations. Theremay be a few extern
variables but their number should be a minimum.

Any C code in the header file will automatically get you a 0 on this question!!

sdp_strings.c: a C code file containing the following functions.
i. char starts_with(char *sent): returns the start character of the given sent. If

there is any problem with sent, it returns '\0'.
ii. char ends_with(char *sent): returns the lastt character of the given sent dis-

counting any punctuation. If there is any problem with sent, it returns '\0'.
sdp_words.c: a C code file containing the following functions.

i. void words_and_sentences(FILE *ip, char *words[], char *sent[]): This
function returns an array of keywords and the array of sentences found in the file
pointed to by *ip in two separate arrays via the parameters. If a keyword occurs
more than once in the file, it will have multiple entries in the array words. We will
only deal with sentences ending with a ’.’ (full-stop)

ii. char **words_with_suffix(FILE *ip, char *suff): This function returns a
list of all the words ending with the given suffix string suff from the file pointed to
by *ip. For example, words_with_suffix(inp, "est") should give the answer
as 'richest', 'largest', 'highest', etc.

iii. char **words_with_prefix(FILE *ip, char *pref): This function returns a
list of all the words beginning with the given prefix string pref from the file pointed
to by *ip. For example, words_with_prefix(inp, "est") should give the answer
as 'establish', 'estuary', 'estranged', etc.

sdp_sentences.c: a C code file containing the following functions.
i. int *keyword_freq(FILE *ip): Returns an array containing how many times

each keyword occurs in the words found in the file pointed to by *ip. The frequen-
cies are given in the same order as that of the keywords in the external array (see
below).

GOOD LUCK University of Hyderabad

School of Computer and Information Sciences Due Date: 10 November 2023 @ 7:00 PM

ii. int number_sentences(FILE *ip): returns the number of sentences with one or
more keywords in them.

(b) There are two extern variables:

int _num_kwords: the number of keywords for use.
char *_keywords[]: an array containing the list of keywords. These two are used by the

other functions you will write in this problem.

(c) Write a main() function in a file called sdp_main.c and use it to test all the functions you
wrote.

(d) Compile and run your code as follows.

i. Compile each of the files sdp_strings.c, sdp_words.c and sdp_sentences.c sepa-
rately using the command

gcc -c -fPIC <filename.c>
You can also use -lm in the above command, if needed.

ii. Build them all into a single library libsimpledocs.so with the following command
gcc -shared -o libsimpledocs.so sdp_*.o

iii. Now, compile your main() function as
gcc -o sdpmain sdp_main.c -L. -lsimpledocs -lm

Again, -lm is used only if needed.

After implementing the code above, draw the run-time structure clearly showing the loca-
tions of different variables at any stage in your running program.

List when and where each variable and its association are created for all those variables that you
have in your above run-time structure diagram.

2. (6 Marks) A crude version of coroutines is shown in the figures below. yield statement pauses
the coroutine execution and returns control to the main program. send statement resumes the
paused coroutines and the value sent as the argument is the value returned by yield statement.
When you see the statement, printname.send(6), the value 6 is returned by the yield statement
in printname coroutine and sets the value of n = 6.

GOOD LUCK University of Hyderabad

School of Computer and Information Sciences Due Date: 10 November 2023 @ 7:00 PM

What is the output of the above?

Also, explain how these two coroutines may be implemented using the cip and cep pointers
discussed in class. Follow the style and detail of explanation in the textbook (Pages 399 – 401
in the 4th Edition).

GOOD LUCK University of Hyderabad

