

PHYSICS OF COLOUR

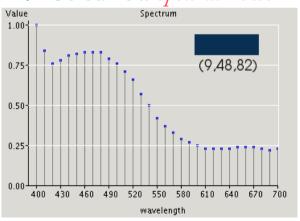
SPECTRA, EMISSION, ABSORPTION, TRANSMISSION AND DISPERSION

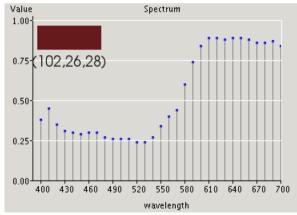
Chakravarthy Bhagvati School of Computer and Information Sciences University of Hyderabad

SCHOOL OF COMPUTER AND INFORMATION SCIENCES

OVERVIEW

- ► Colour in Physics
- ► Spectrum and Spectral Energy
- ► Modes of Generating Colour
- ► Colour Terminology

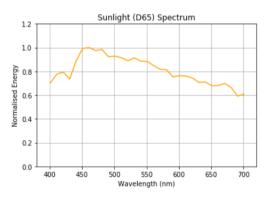



THE PHYSICS OF COLOUR

• Colour is *electromagnetic radiation* within a specific range of wavelengths $(380 nm < \lambda < 780 nm)$

				Freque	ncy [THz]			
750	700	650	600	550	500	450		400 750
400	450 I		500	550	600	650	700	
				$\lambda = Wave$	elength [nm]			

► Colour is a Spectral Power Distribution (SPD)



SCHOOL OF COMPUTER AND INFORMATION SCIENCES

SPECTRA

- Spectrum gives the relative fractions of energy present at each wavelength
- ► Wavelength of visible light is measured in *nanometres (nm)*, where a nanometre = 10⁻⁹ m.
- \blacktriangleright Spectrum may be represented mathematically as a function $S(\lambda)$ where λ is the wavelength

- For visual spectra, $380nm \le \lambda \le 780nm$
- Spectrum for sunlight shows that all wavelengths are present. Normally, humans perceive this colour as *white*.

CAUSES OF COLOUR

• Kurt Nassau¹ stated that there are *fifteen* causes of colour, but, we list only four!

► Emission:

- Any hot object emits light according to the black-body law
- The colour emitted depends on the temperature: blue means very high, and red, low temperature

Scattering and Absorption:

Objects illuminated by a light source selectively absorb certain wavelengths

 Leaf absorbs red and blue and scatters green, thus appearing green

SCHOOL OF COMPUTER AND INFORMATION SCIENCES

¹Color for Science, Art and Technology, Elsevier Press, 1998

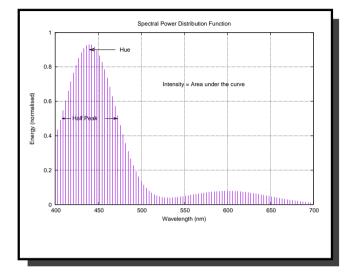
CAUSES OF COLOUR ...

► Dispersion:

- Certain materials change the speed of light according to the wavelength and are called *dispersive media*
- Dispersion causes light to split into its individual wavelengths and produce colours
- Rainbow is caused by such a process

► Transmission:

- Light passing through a medium transparent to certain wavelengths results in colour
- Sunglasses, coloured glass and camera



TERMINOLOGY

There are *four* important terms in relation to physics of colour

Intensity: Total Energy falling on an object or emitted by an object; units *Watts/m*²

- **Brightness:** How human vision perceives intensity; subjective
- Hue: Dominant colour; measured as the peak wavelength

Saturation: Purity of colour; how dominant is the peak?

SUMMARY

- ► Colour starts as a *physical process*
- ► Colour is how the human vision system responds to a *spectrum*
- ▶ Visible spectrum lies between 380 nm and 780 nm
- ► Four major features of colour are defined on a spectrum

END OF MODULE I