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The
mathematics
of halftoning
This paper describes some mathematical aspects of halftoning
in digital printing. Halftoning is the technique of rendering a
continuous range of colors using only a few discrete ones.
There are two major classes of methods: dithering and error
diffusion. Some discussion is presented concerning the method
of dithering, but the main emphasis is on error diffusion.

Introduction
The problem of halftoning in digital printing has provided
a splendid new example of a mathematical opportunity in
modern technology. Digital halftoning is the technique
used to display an image with a few immiscible colors
discretely applied to paper. This problem involves various
fields of science such as the physics of light, the biology of
the human visual system, and the mathematics of analog-
to-digital conversion. Digital halftoning can be considered
a huge optimization problem, but we shall see that by
sacrificing optimality one can construct efficient algorithms
which achieve very satisfactory results. Halftoning is above all
an art, yet mathematics, particularly the theory of dynamical
systems, helps to improve this art, while the art suggests a
rich collection of mathematical problems and insights.

Specifically, we address the question of how full-color
images should be imitated by printers which print at
positions on a lattice with colors limited to a few available
choices. This question subsumes the simpler, more
restrictive one of getting continuous-tone gray-scale
images from black and white dots. Black and white digital
halftoning was initially created for television well before
digital printers! We call the available colors pixel colors
and the locations on the lattice pixel locations. Purists
reserve the term pixels for screens and instead use pels for
printing, but we shall stick to pixels. Pixel colors are for us
the colors of inks or toners. In some printers the choice of
pixel colors can be augmented by superposition of these
substances, but this is not allowed in highlight printers.
The two images of Brian Wu (see Figure 1) illustrate
halftoning for gray scale: Figure 1(b) is a coarse-grain
halftone image of the fine-grain image in Figure 1(a),
which is approximately a full gray-scale image.

The halftone image in Figure 1 was made by a clustered
dither mask, which is discussed later. It was modified to

accommodate artificially large pixels. The mathematical
problem of digital halftoning is to construct an algorithm
whose output is a sequence of pixel colors that creates the
full-color visual experience of an input image sequence.
For gray-scale images, one wants discrete black and white
dots to appear as continuous tones.

In discussing the mathematics of printing, one cannot
avoid using the language of geometry. It has long been
known that our perception of color can be modeled by
vector addition in a color space, the dimension of which
we call the color dimension. For rendering gray-scale
images with black and white dots, the color dimension
is 1; for the color space of full color, it is 3.

Colors and gamuts
Standard ink and toner colors are cyan (C), magenta (M),
yellow (Y), and black (K). The letters in parentheses
represent color vectors. Added to this set is white (W),
taken for the color of paper. The primary colors for light
are red (R), green (G), and blue (B). In color space we
have the following relations:

W � R � G � B,

M � W � G � R � B,

C � W � R � G � B,

Y � W � B � R � G.

Since inks and toners act as light absorbers, only blue light
is reflected from a combination of magenta and cyan on
white paper. Similarly, only red light is reflected from
magenta and yellow, and green from cyan and yellow.

We assume that the coefficient of the color vector of inks
is either 0 or 1, although the use of more levels is on the
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rise, and 16 (4 bits of information per pixel) is typically
used in the new high-end machines.

Vector addition is used to describe the perceived color
generated by a combination of light rays emanating from
a single source. However, a printed image is made up of
many sources, each emitting its own pixel color. The eye
averages received light over areas consisting of many
pixels. This means that we do not describe the perceived
color in a printed image by taking positive linear
combinations of color vectors at individual pixels, but
rather by convex combinations.

Given the set of pixel colors available to a printer, the
set of convex combinations of these pixel color vectors is
called the printer gamut, or simply gamut. The geometrical
significance of this is that the gamut is a polytope in color
space (defined in the subsection on color error diffusion).

The printer gamut is a subset of the gamut of the human
eye (see the Commission Internationale de l’Eclairage
(CIE) colorimetric system in [1]), which is a much more
complicated convex body in color space [2].

When all eight colors C, M, Y, R, G, B, K, and W are
available to a printer and arranged in the cube, as in
Figure 2, the Cartesian product structure of the cube
allows for significant mathematical simplification in
printing, as follows:

1. Each component of a color vector along the C, M, Y
axes is treated separately with W in the same way one
would deal with a black and white image. The page is
overprinted three times, one for each pixel color, and
possibly a fourth time in order to print as much K as
possible (black ink or toner is cheaper, and K, W
render better grays than C, M, Y, W).

2. When overprinting the sheet multiple times, one
must take care of interference (Moiré) patterns due
to misalignment in the superposition of colors, a
phenomenon which is now well understood (see for
instance [3, 4] and the discussion at the end of the
subsection on clustered masks).

Actually, the eight color vectors form the vertices of a
six-sided figure which is far from cubic in any perceptual
color space such as the one given by the CIE colorimetric
system. Furthermore, constraints such as the impossibility
of superimposing inks to get R, G, or B, or the addition of
other shades to augment printer gamuts, such as “light
magenta” and “light cyan,” also lead to significant
departures from the cube.

Index dimension
While printing is done in two dimensions, we define an
index dimension as the dimension of the coordinate system
used to specify pixel locations. If pixel locations are simply
ordered, the index dimension is 1, but if locations are
given by a pair (i, j) of integers, the index dimension is 2,
and so on. From the point of view of dynamical systems,
color dimension can be thought of as a phase-space
dimension, while index dimension is that of time: This
is indeed our mindset in treating the digital halftoning
problem by using an algorithm which corresponds to
running a nonautonomous dynamical system.

Suppose over a region R an image has input color
vectors �(�) at pixel locations �, where � specifies an index
of some given index dimension; and we print pixel color
vectors �(�). The total error �(R) made over the region R
is

��R� � �
��R

����� � ����� . (1)
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(a) Gray-scale image. (b) halftone image.

(a) (b)

R. L. ADLER ET AL. IBM J. RES. & DEV. VOL. 47 NO. 1 JANUARY 2003

6



The question as to whether a uniform bound on �(R)
exists has a negative answer for two-dimensional regions
R. We recall that the uniform distribution theory
developed by T. van Aardenne-Ehrenfest, H. Davenport,
K. F. Roth, and others (see for example [5]) shows that it
is not possible to bound the error over all possible two-
dimensional rectangles using black and white pixels. This
is in strong contrast to one-dimensional results, which
show that these errors can be very well bounded for black
and white printing [6 –12]. Thus, mathematics seems to
imply that, while there is no inherent difficulty in digital
printing on a line, there may be one in doing it on a page.

Although we wish to make �(R) as small as possible, we
do not require a uniform bound on this quantity. All that
is really needed is that the average error (1/N)�(R),
where N is the number of pixels in R, be small for all
regions of reasonable size and shape. The eye’s averaging
is somewhat different, but the average given above is
sufficient for our purposes. For more realistic models of
the human visual system and the role they play in digital
halftoning, see for instance [6, 7, 13–17].

One gets a sense of the size of the combinatorial
optimization problem associated with digital halftoning
from the fact that typical printers print 600 pixels per
linear inch. For a modest size 4 � 4 image, this gives
5 760 000 pixels! A sine qua non for industrial applications
is fast and cheap methods of deciding at each pixel
location an output pixel color which gives good imitations
of the input. Two classes of techniques are primarily used:
dithering and error diffusion. Dithering makes decisions
pixel by pixel on the basis of a threshold mask. Error
diffusion is a dynamical system which makes decisions
on the basis of a running error.

Dithering
Dithering is based on a completely local determination
which is both simple and fast. We first consider the easier
case of black and white (BW) printing, for which the color
dimension is 1. Furthermore, we assume that the index
dimension is 2. A dithering mask (mask for short) is
specified by an n � m matrix M of threshold coefficients
M(i, j). The numbers M(i, j) range over the unit interval
in a uniform fashion. The image to be halftoned is given
by an h � v matrix � of input gray levels �(i, j), also
numbers in the unit interval. Typically, n and m are much
smaller than either v or h. The output image (or halftone
image) is given by an h � v zero-one matrix, � � [�(i, j)],
which controls the printing of black as follows: At pixel
location (i, j), black is printed if and only if �(i, j) � 1.
The matrix �(i, j) is defined by

��i, j� � �1 if ��i, j� � M�i mod n, j mod m�,
0 otherwise.

The method of dithering for black and white printing is
illustrated in Figure 3.

The problem of dithering is to arrange the numbers
M(i, j) in the mask so that good image quality results.
This can be quite printer-dependent, at least when
it comes to fine tuning. The more thresholds in the
mask, the more continuity in the gray spectrum and the
smoother the picture. A commonly used upper limit to
the number of gray levels is 256. Masks are constructed
so that constant gray images look good, the idea
being that natural images, which are nearly constant
in small areas, will then also look good. There is a
price to be paid for the instant decision-making ability
of a mask: Namely, it is always possible to construct
improbable images on which it will fail badly. However,
this does not happen for the usual pictures for which
masks are designed.

Two main classes of masks
One usually distinguishes two classes of masks:

1. The dispersed masks, mostly used by ink-jet printers,
which are slow but reliably print single ink dots.

2. The clustered masks, used by laser printers, which do
not reliably print isolated dots.

Dispersed masks
One might think that numbers M(i, j) should be placed in
the mask as randomly as possible. However, this produces
undesirable irregular clusters and other unpleasant
defects. To avoid such shortcomings, one tries to place
numbers in the mask so that �(i, j) � 1 will be well
dispersed for each gray level. Masks by their nature
(dispersed or clustered) impose an increasing gray-level
constraint (or stacking constraint); i.e., if some pixel is
printed for a gray level, it is also printed for any darker

Figure 3
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one (see Figure 4). This constraint presents a serious
difficulty in designing masks.

Another disturbing feature of an improperly constructed
dispersed mask is that periods n and m of the mask
dimensions can sometimes be detected. To avoid this,
masks are often constructed so that the product n � m is
much larger than the number of distinct threshold levels.
Particularly popular in this respect are blue noise masks,
so called because low frequencies in the power spectrum
of the patterns turn out to be attenuated [18]. The most
pleasing pattern for gray level 0.5 is the maximally
dispersed checkerboard pattern, but too much regularity
in the presence of noise is undesirable, so checkerboard
patterns are avoided in most blue noise masks. Adler,
Thompson, Tresser, and Wu based an invention [19] on
the aperiodic Thue–Morse sequence1 in order to tile a
large mask by two much smaller ones. The memory
required for this is considerably less than that for
one large mask alone. This gives an alternative (or a
complement) to blue noise masks, and can be used in
the clustered mask case also.

Clustered masks
It is difficult to construct a good clustered mask when its
size is not much larger than the number of gray levels to
be rendered. Furthermore, there is a tradeoff between
the number of gray levels to be rendered and the size
of clusters: The bigger the cluster, the more levels the
mask can render, but the more noticeable the cluster.
Thompson, Tresser, and Wu, using ideas inspired by
celestial and statistical mechanics, have addressed this
difficulty in patents2 [24 –26]. The main idea behind the
new masks is to start with a large mask consisting of
several copies of a small mask with 256 levels. There are
certain gray levels for which there is an ideal pattern:
for example, the checkerboard for the 0.5 gray level.
One attempts to keep these patterns and obtain the

intermediate threshold values by interpolation. This
involves a trial-and-error procedure in which one
repetitively resets thresholds and judges print quality. This
method is very versatile, and it can be used for a variety
of situations: for example, to create several masks for
machines whose behavior degrades between maintenances,
to adapt a mask to a new printer that has been tuned for
another, etc. Other inventions mentioned above concern
variations on this theme. These ideas can also be used
for the simpler problem of building dispersed masks.

For standard color dithering, four different masks are
used, one for each nonwhite color (including K, which is
applied first, since it is usually the cheapest ink). Using
the same mask four times is usually avoided because of
the possibility of misregistration that causes disturbing
Moiré patterns. In the past, color printing was done with
screens that performed like masks (indeed, the word
screen is still used in lieu of dithering mask). To minimize
Moiré patterns, the screens for separate colors were set at
different angles. For digital printing, there is a technique
in designing the different masks that is equivalent to the
effect of rotating a screen. For a description of this
method, see [4]. A pending patent by Rao, Thompson,
Tresser, and Wu proposes to build what they call semi-
digital printers: printers intermediate to digital and analog
ones, in which each color plane is treated as in the usual
digital printing, but the screens are rotated as in
traditional analog printing.3

Calibration of dither masks
In constructing dither masks, it is usually assumed
that the number of black pixels in a halftone pattern is
proportional to the gray level. We refer to such dither
masks as linear dither masks. This assumption is not true
when nonlinear effects such as dot gain or dot overlap
are introduced. Another nonlinear effect occurs when a
quantity called lightness [4] is used to measure gray levels.

One way to compensate for nonlinear effects is to first
apply a tone reproduction curve (TRC) to the input data
and then use a linear dither mask, as shown in Figure 5.
The TRC describes the relationship between input gray
levels and output ones. Using 8-bit numbers to represent
gray levels, the TRC as used in Figure 5 maps an 8-bit
number to another one. Since the TRC is generally not
the identity map, this means that the output of the TRC
has less than 256 distinct values (see Figure 6 for a 2-bit
input/output example). Thus, after the application of
such a dither mask, there will be fewer than 256 distinct
halftone patterns, which reduces the number of renderable
gray levels, especially when the nonlinearity is strong.
However, for small nonlinearities it is the method of
choice.

1 The Thue–Morse sequence is a sequence of 0s and 1s formed by a series of
concatenations. In each step, a new block is concatenated to an old one, the new
block being formed by interchanging 0s and 1s in the old. The first four blocks
of the sequence are 0, 01, 0110, 01101001, . . . . The total sequence has the
property that no subblock is repeated more than twice in succession [20 –23].
2 M. J. Stanich, G. Thompson, C. Tresser, and C. W. Wu, patent pending. 3 R. Rao, G. R. Thompson, C. P. Tresser, and C. W. Wu, patent pending.

Figure 4

Dither mask and resulting halftone patterns.
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A way to compensate for strong nonlinearities is to
directly modify thresholds in the mask, which has the
advantage of preserving the number of renderable gray
levels. Furthermore, since it obviates the need for a TRC,
it can increase processing speed. The construction of such
a nonlinear dither mask proceeds as follows. First, a series
of good halftone patterns are chosen to be reproduced
by the dither mask; this provides a set of data points.
A curve, serving as a tone reproduction curve, is then
obtained by interpolating, say, a spline curve between
these data points. However, instead of using the curve as
in Figure 5, the inverse of the curve is used to determine
the number of black pixels needed for each gray level.
This information is then used to generate a dither mask
with correct output. In contrast to the linear dither mask,
the difference in the number of black pixels between
halftone patterns of successive gray levels is not constant,
but is determined by the inverse curve. The stacking
constraint requires that interpolation generate a monotonic
curve. See [26] for more details. This method can be used
in color printers in which multiple masks are used [27].
For related matter, see also [28].

Several of the new techniques for dithering that we have
discussed have been employed in the halftone design of the
IBM line of laser printers, ranging from the desktop models
to production print machines.

Error diffusion
For error diffusion, as before, we first consider the easier
case of color dimension d � 1, e.g., black and white
printing. In addition, we take the index dimension to
be 1. Instead of Equation (1), we define the running
error �(n) by

��n� � �
k�1

n

���k� � ��k��, (2)

where, at pixel location k, �(k) is a gray defined
proportionally to its darkness by a number from 0 for
white to 1 for black, and �(k) the printed pixel color, with
�(k) � 0 for white and 1 for black. The running error
satisfies the recursion

��n � 1� � ��n� � ��n � 1� � ��n � 1�, (3)

where n � 0, 1, 2, . . . and �(0) � 0.

Simple error diffusion
Simple error diffusion is defined by taking �(n 	 1) to
satisfy the greedy algorithm: Namely, �(n 	 1) takes the
value 0 or 1, whichever minimizes �(n 	 1) with a tie-
breaking rule. It is easy to show that �(n) lies in the
interval [
 1

2
, 1

2
] under (3) for any choice of the sequence

{�(n)}n��
. Thus, �(n) is bounded, and �(n)/n 3 0.

Setting x(n 	 1) � �(n) 	 �(n 	 1), we can rewrite
Equation (3) as

��n � 1� � ��n� � ��n � 1� � �*� x�n � 1��, (4)

where �*[ x(n 	 1)] is the closest (with a tie-breaking
rule) endpoint of the interval [0, 1] to x(n 	 1). (Since
their domains of definition are different, we chose not to
abuse notation by using � for �*.) It is easy to see that
x(n) is trapped in the interval [
 1

2
, 3

2
]. Bounding x(n) is

equivalent to bounding �(n). Adding �(n 	 2) to both
sides of Equation (4) and reducing indices, we get

x�n � 1� � x�n� � ��n � 1� � �*� x�n��. (5)

The advantage of Equation (5) over Equation (4) is due to
the fact that (5) can be interpreted as a time-dependent
dynamical system, as follows. The orbits x(n) of this system
can be expressed recursively by x(n) � f

�(n)[ x(n 
 1)],
where {�(n)} is a sequence of points in the unit interval

Figure 5
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and { f
�(n)} is a sequence of mappings selected from a

family of mappings { f
�
�� � [0, 1]}, each defined by

f
�
� x� � x � � � �*� x�, (6)

�*( x) being the closest endpoint (with a tie-breaking rule)
of the unit interval to x. Trapping the orbits x(n), and
hence bounding the errors �(n), is equivalent to the
following.

Theorem 1
There exists a bounded interval ( J � [
1/2, 3/2]) containing
[0, 1] which is invariant under all members f

�
of the family.

Sturmian sequences
When the sequence {�(n)}n��

is constant, �(n) � �0 ,
Equation (6) taken mod 1 is a classical dynamical system,
i.e., rotation on the circle by angle �0. It is easy to check
that the sequence {�*[ x(n)]}n��

is a (non-exceptional)
Sturmian sequence with the proportion of 1s equal to �0.
The non-exceptional Sturmian sequences have the property
that a given proportion of 0s and 1s are distributed as
evenly as possible (the exceptional ones are those
that are not generated by rotations) [29, 30]. This is
remarkable considering that these well-distributed
sequences are all generated by a single simple greedy
algorithm. We are currently investigating a higher-
dimensional generalization of this striking fact.

Color error diffusion
We now turn our attention to color printing. In color
space, the printer gamut is a polytope P with pixel color
vectors as vertices. A polytope is defined as the convex hull
of a finite set of points: Equivalently, it is a compact
intersection of a finite number of half spaces.

As we have mentioned, when all eight colors M, C, Y,
R, G, B, K, W are used, replacing P with a cube gives

reasonable results even though P is far from a cube. A
generalization to simple error diffusion is vector error
diffusion, in which �(n), �(n 	 1), x(n 	 1) � �(n) 	

�(n 	 1), and �*[ x(n 	 1)] of Equation (4) are vectors
in 3-space (see also [31]).

The boundedness of � x(n)� and ��(n)� is a corollary to
the following d-dimensional generalization to Theorem 1,
although we give a proof here for only d � 2.

Theorem 2
Let P be an arbitrary polytope and { f

�
�� � P} a family of

mappings defined as in (6) by

f
�
� x� � x � � � �*� x�, (7)

where now x and � are vectors in n-space, � � P, and
�*( x) is the closest vertex of P to x. Then there exists a
bounded convex set P� � P which is invariant under any
member f

�
of the family. Furthermore, P� can be constructed

to be arbitrarily large.
It is easy to give examples of sequences {�(n)}n��

in which the �(n) are not in P such that { x(n)} and hence
{�(n)} diverge. Figure 7 illustrates the geometrical nature
in two dimensions of Equation (7) with triangular P.

By taking flatter and flatter triangles, one can check
that the ratio of the diameters of P� and P can be
arbitrarily large. This can be taken as an indication
of the non-triviality of the general problem.

Notice that we have considered Euclidean distance only
in Theorem 2, so that only the shape of P counts. For
some important choices of P such as a cube with faces
parallel to the coordinate planes, other norms such as the
max or the sum of the absolute values of the coordinates
might be useful as well.

Notation
We adhere to the convention of writing the inner product
of vectors as a dot product.

Let v i , i � 0, . . . , n 
 1, n 	 2, be the vertices of a
convex polygon P and nj , j � 1, . . . , n, the unit normal
vectors to edges v j	1v j of P. Let Pt denote the polygon
generated by moving the edges of P perpendicularly
outward a distance t: i.e.,

Pt � �
j

 x�x � nj 
 dj � t�,

where P � P0 . The Voronoi region Rv i
of vertex v

i is the
set of points closer to v i than to any other vertex. It is
defined as

Rv i
� �

j

 x�� x � vi� 
 � x � vj��.

For � � P we define the mapping f
�
��

2 3 �
2 by

f
�
� x� � x � � � v� x�, (8)

Figure 7

Two-dimensional error diffusion in action.
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where v( x) � v i , the index i being the smallest for which
x � Rv i

.

Lemma 1
If ni � n0 and ni � n1 , then either (v2 
 v1) � ni � 0 or
(v0 
 v1) � ni � 0. Furthermore, if (v2 
 v1) � ni � 0,
then (n1 , ni) is a basis, and if (v0 
 v1) � ni � 0, then
(n0 , ni) is a basis of �

2.

Proof
It is clear from Figure 8 that ni can be written as ni �

an0 	 bn1 , where either a � 0 or b � 0. Suppose a � 0;
then (v2 
 v1) � ni � a(v2 
 v1) � n0 . Since v1 � n0 � d0

and v2 � n0 � d0 , it follows that (v2 
 v1) � n0 � 0, and
thus (v2 
 v1) � ni � 0. Furthermore, since a � 0, ni is
not parallel to n1 , and thus (n1 , ni) form a basis. The case
in which b � 0 is similar. �

Proof [Proof of Theorem 2]
It suffices to show that for t large enough,

f��Pt�Rv i
��Pt

for all � � P.
Let x � Pt � Rv1

. Then f
�
(x) � n0 � (x 	 � 
 v1) � n0 �

x � n0 	 � � n0 
 v1 � n0. Since v1 � n0 � d0 and � � n0 
 d0,
it follows that (x 	 � 
 v1) � n0 
 x � n0 
 d0 	 t. Similarly,
(x 	 � 
 v1) � n1 
 x � n1 
 d1 	 t. Let ni � n0, ni � n1.
Without loss of generality, we assume that by Lemma 1
(v2 
 v1) � ni � 0 and (n1, ni) is a basis. Clearly, (n1 � ni)

2 � 1.
Let x � c1n1 	 c2ni . Then c1 	 c2n1 � ni � x � n1

and c1n1 � ni 	 c2 � x � ni . Solving for c2 , we obtain

c2 �
1

1 � �n1 � ni�
2 � x � ni � �n1 � ni� x � n1�.

Therefore, (v2 
 v1) � x � c2(v2 
 v1) � ni � �[ x � ni 


(n1 � ni) x � n1], where

� �
�v2 � v1� � ni

1 � �n1 � ni�
2 � 0.

Since x � Rv1
, �x 
 v1 � 2


 �x 
 v2 � 2 . This implies that
(v2 
 v1) � x 
 (1/2)(�v2�

2 
 �v1�
2), and therefore x � ni 


(n1 � ni)x � n1 
 (1/2�)(�v2�
2 
 �v1�

2), which implies that

x � ni 
 �n1 � ni��d1 � t� �
1

2�
��v2�

2
� �v1�

2�,

provided d1 	 t � 0. Since (1/ 2�)(�v2 � 2 
 �v1 � 2) is
independent of t and �n1 � ni � � 1, it is clear that x � ni 


di 	 t for large enough t. Therefore, x � Pt , and the
proof is complete. �

Remark
The above method works for d � 1, 2 but will not
work for d 	 3. Moving all faces outwardly a fixed

perpendicular distance is doomed to failure. A simple
tetrahedral counterexample can be constructed in which
one of the vertices passes out of its Voronoi region. A
new idea for an invariant set is needed. We deal with this
in a subsequent work. However, the theorem can easily
be proved for special polytopes P such as the cube or the
regular simplex in any dimension. Also, Adler et al. [6, 7]
have proved the existence of an error bound in vector
error diffusion in all dimensions under a rule different
from the greedy algorithm.

Beyond simple error diffusion
In simple error diffusion, only the error accumulated
up to the last pixel is explicitly taken into consideration.
Instead, one can take into account several past errors and
weight them. In practice, the system of weights is often
taken as a probability vector (non-negative entries that
sum to one), which is not necessarily constant, as follows:

��n � 1� � � �
i�0

m

wi�n���n � i�� � ��n � 1� � ��n � 1�,

(9)

where wi(n) 	 0, ¥ wi � 1, and �(n 	 1) is the greedy
algorithm which minimizes �(n 	 1). Setting

x�n � 1� � � �
i�0

m

wi�n���n � i�� � ��n � 1�, (10)

we have

��n� � x�n� � ��n�; (11)

thus,

Figure 8
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x�n � 1� � �
i�0

m

wi�n�� x�n � i� � �*� x�n � i�� � ��n � 1��

� �
i�0

m

wi�n� f
��n	1�

� x�n � i��, (12)

where wi(n) 	 0, ¥ wi � 1, and �*[ x(n)] � �(n). A
corollary to Theorem (2), by virtue of the convexity of
P�, is that x(n) � P� for all n, hence the error �(n) of
Equation (9) is bounded.

For printing, the natural index dimension is 2. Trials
of space filing curves to overcome the fundamental two-
dimensionality of a page, as in [32], give reasonable but
largely suboptimal results. Floyd and Steinberg made a
crucial invention in the field of digital halftoning [33]
which allows index dimension 1 to resemble in some sense
index dimension 2. They used a scheme of weights wi(k)
which involved the neighbors to the left and above the

current pixel. Soon afterward, Jarvis, Judice, and Ninke
[34] introduced a larger 12-neighbor error scheme. Stucki
[35] also constructed a 12-neighbor scheme (see also [36, 37]).
Figure 9 shows the two schemes (to obtain individual
weights, one normalizes the numbers in a table by dividing
by their sum).

For reasons which have not been completely understood,
error diffusion creates artifacts in the form of small-scale
worms (see Figure 10). More recently, Tresser and Wu [38]
made improvements to reduce these artifacts using systems
of weights chosen to produce predetermined patterns
judged to be good for certain gray levels in BW printing,
and then interpolating sets of weights for the remaining
gray levels. In their scheme there are gray levels with
negative weights. In this case, Theorem 2 cannot be
applied to prove boundedness of �(n).

Calibration for error diffusion
As in the case of the dither mask, one has to take account
of the dot gain and dot overlap. A method patented by
Tresser and Wu [39] improves on former methods for
correction [40, 41].

Constrained error diffusion
Late in the last century, all major manufacturers of high-
end printers competed to bring to market their own
models based on a common new print engine. The
only pixel colors available to a preliminary version of
the IBM InfoColor* 100 printer were black, yellow,
magenta, cyan, and white. No overlap of toners was
allowed. This constraint is shared by certain types of
printers such as the Kodak ImageSource** 70cp Series II.
Printers with such constraints are often used as highlight
printers, to color simple objects such as pie charts. We
developed algorithms to transform the preliminary IBM
version into a near-full-color printer4 by using error
diffusion on the restricted printer gamut P � convex
hull of {K, Y, M, C, W}, in combination with a gamut-
reduction map from the unit three-dimensional color cube
to P. Even though no saturated red, green, or blue was
printable, the results were quite acceptable. IBM was
consequently able to present the first color high-speed
Advanced Function Presentation* (AFP*) printer at the
1998 XPLOR trade show, enabling the corporation to
enter a market it had previously not penetrated. In
subsequent, more advanced printers, in which red, green,
and blue are available by superimposing colors, our
method developed for the IBM InfoColor 100 printers
can be used in a draft mode as a toner or ink saver.

4 R. L. Adler, M. Martens, J. L. Mitchell, R. Risch, N. Rijavec, C. P. Tresser, and
C. W. Wu, patent pending.

Figure 9

(a) Jarvis scheme; (b) Stucki scheme.
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Figure 10

Image by error diffusion.
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Finally, a comprehensive survey of error diffusion and
other techniques can be found in the books of R. Ulichney
[42] and H. Kang [4].
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