
Search articles… SEARCH

END USERS HACKING HUMOUR INTERVIEWS OPINONS REVIEWS ALL ARTICLES ISSUES

BOOKS

Writing device drivers in
Linux: A brief tutorial
BY XAVIER CALBET IN HACKING 4/26/2006 PERMALINK

“Do you pine for the nice days of Minix-1.1, when men were men and wrote their own device drivers?”

Linus Torvalds

In order to develop Linux device drivers, it is necessary to have an understanding of the following:

• . Some in-depth knowledge of C programming is needed, like pointer usage, bit

manipulating functions, etc.

• . It is necessary to know how microcomputers work internally:

memory addressing, interrupts, etc. All of these concepts should be familiar to an assembler

programmer.

There are several different devices in Linux. For simplicity, this brief tutorial will only cover type char

devices loaded as modules. Kernel 2.6.x will be used (in particular, kernel 2.6.8 under Debian Sarge,

which is now Debian Stable).

When you write device drivers, it’s important to make the distinction between “user space” and “kernel

space”.

• . Linux (which is a kernel) manages the machine's hardware in a simple and

e�cient manner, offering the user a simple and uniform programming interface. In the same

way, the kernel, and in particular its device drivers, form a bridge or interface between the end-

user/programmer and the hardware. Any subroutines or functions forming part of the kernel

(modules and device drivers, for example) are considered to be part of kernel space.

• . End-user programs, like the UNIX shell or other GUI based applications

(kpresenter for example), are part of the user space. Obviously, these applications need to

interact with the system's hardware . However, they don’t do so directly, but through the kernel

supported functions.

All of this is shown in �gure 1.

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

1 of 26 29/10/25, 21:17

http://freesoftwaremagazine.com/
http://freesoftwaremagazine.com/
http://freesoftwaremagazine.com/
http://freesoftwaremagazine.com/
http://freesoftwaremagazine.com/
http://freesoftwaremagazine.com/
http://freesoftwaremagazine.com/sections/end_users
http://freesoftwaremagazine.com/sections/end_users
http://freesoftwaremagazine.com/sections/hacking
http://freesoftwaremagazine.com/sections/hacking
http://freesoftwaremagazine.com/sections/humour
http://freesoftwaremagazine.com/sections/humour
http://freesoftwaremagazine.com/sections/interviews
http://freesoftwaremagazine.com/sections/interviews
http://freesoftwaremagazine.com/sections/opinions
http://freesoftwaremagazine.com/sections/opinions
http://freesoftwaremagazine.com/sections/reviews
http://freesoftwaremagazine.com/sections/reviews
http://freesoftwaremagazine.com/all_articles/
http://freesoftwaremagazine.com/all_articles/
http://freesoftwaremagazine.com/issues/
http://freesoftwaremagazine.com/issues/
http://freesoftwaremagazine.com/books/
http://freesoftwaremagazine.com/books/
http://freesoftwaremagazine.com/authors/Xavier%20Calbet
http://freesoftwaremagazine.com/authors/Xavier%20Calbet
http://freesoftwaremagazine.com/sections/hacking
http://freesoftwaremagazine.com/sections/hacking
http://fsmsh.com/1238
http://fsmsh.com/1238
http://fsmsh.com/1238
http://fsmsh.com/1238
http://fsmsh.com/1238

Figure 1: User space where applications reside, and kernel space where modules or device drivers reside

The kernel offers several subroutines or functions in user space, which allow the end-user application

programmer to interact with the hardware. Usually, in UNIX or Linux systems, this dialogue is performed

through functions or subroutines in order to read and write �les. The reason for this is that in Unix

devices are seen, from the point of view of the user, as �les.

On the other hand, in kernel space Linux also offers several functions or subroutines to perform the low

level interactions directly with the hardware, and allow the transfer of information from kernel to user

space.

Usually, for each function in user space (allowing the use of devices or �les), there exists an equivalent in

kernel space (allowing the transfer of information from the kernel to the user and vice-versa). This is

shown in Table 1, which is, at this point, empty. It will be �lled when the different device drivers concepts

are introduced.

Events User functions Kernel functions

Load module

Open device

Read device

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

2 of 26 29/10/25, 21:17

Write device

Close device

Remove module

Table 1. Device driver events and their associated interfacing functions in kernel space and user space.

There are also functions in kernel space which control the device or exchange information between the

kernel and the hardware. Table 2 illustrates these concepts. This table will also be �lled as the concepts

are introduced.

Events Kernel functions

Read data

Write data

Table 2. Device driver events and their associated functions between kernel space and the hardware

device.

I’ll now show you how to develop your �rst Linux device driver, which will be introduced in the kernel as a

module.

For this purpose I’ll write the following program in a �le named nothing.c

<nothing.c> =

#include <linux/module.h>

MODULE_LICENSE("Dual BSD/GPL");

Since the release of kernel version 2.6.x, compiling modules has become slightly more complicated.

First, you need to have a complete, compiled kernel source-code-tree. If you have a Debian Sarge system,

you can follow the steps in Appendix B (towards the end of this article). In the following, I’ll assume that

a kernel version 2.6.8 is being used.

Next, you need to generate a make�le. The make�le for this example, which should be named

Makefile , will be:

=

obj-m := nothing.o

Unlike with previous versions of the kernel, it’s now also necessary to compile the module using the

same kernel that you’re going to load and use the module with. To compile it, you can type:

$ make -C /usr/src/kernel-source-2.6.8 M=`pwd` modules

This extremely simple module belongs to kernel space and will form part of it once it’s loaded.

In user space, you can load the module as root by typing the following into the command line:

insmod nothing.ko

The insmod command allows the installation of the module in the kernel. However, this particular

module isn’t of much use.

It is possible to check that the module has been installed correctly by looking at all installed modules:

lsmod

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

3 of 26 29/10/25, 21:17

Finally, the module can be removed from the kernel using the command:

rmmod nothing

By issuing the lsmod command again, you can verify that the module is no longer in the kernel.

The summary of all this is shown in Table 3.

Events User functions Kernel functions

Load module insmod

Open device

Read device

Write device

Close device

Remove module rmmod

Table 3. Device driver events and their associated interfacing functions between kernel space and user

space.

When a module device driver is loaded into the kernel, some preliminary tasks are usually performed like

resetting the device, reserving RAM, reserving interrupts, and reserving input/output ports, etc.

These tasks are performed, in kernel space, by two functions which need to be present (and explicitly

declared): module_init and module_exit ; they correspond to the user space commands insmod

and rmmod , which are used when installing or removing a module. To sum up, the user commands

insmod and rmmod use the kernel space functions module_init and module_exit .

Let’s see a practical example with the classic program Hello world :

<hello.c> =

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

4 of 26 29/10/25, 21:17

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

MODULE_LICENSE("Dual BSD/GPL");

static int hello_init(void) {

 printk("<1> Hello world!\n");

 return 0;

}

static void hello_exit(void) {

 printk("<1> Bye, cruel world\n");

}

module_init(hello_init);

module_exit(hello_exit);

The actual functions hello_init and hello_exit can be given any name desired. However, in order

for them to be identi�ed as the corresponding loading and removing functions, they have to be passed

as parameters to the functions module_init and module_exit .

The printk function has also been introduced. It is very similar to the well known printf apart from

the fact that it only works inside the kernel. The <1> symbol shows the high priority of the message

(low number). In this way, besides getting the message in the kernel system log �les, you should also

receive this message in the system console.

This module can be compiled using the same command as before, after adding its name into the

Make�le.

=

obj-m := nothing.o hello.o

In the rest of the article, I have left the Make�les as an exercise for the reader. A complete Make�le that

will compile all of the modules of this tutorial is shown in Appendix A.

When the module is loaded or removed, the messages that were written in the printk statement will

be displayed in the system console. If these messages do not appear in the console, you can view them

by issuing the dmesg command or by looking at the system log �le with cat /var/log/syslog .

Table 4 shows these two new functions.

Events User functions Kernel functions

Load module insmod module_init()

Open device

Read device

Write device

Close device

Remove module rmmod module_exit()

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

5 of 26 29/10/25, 21:17

Table 4. Device driver events and their associated interfacing functions between kernel space and user

space.

I’ll now show how to build a complete device driver: memory.c . This device will allow a character to be

read from or written into it. This device, while normally not very useful, provides a very illustrative

example since it is a complete driver; it's also easy to implement, since it doesn’t interface to a real

hardware device (besides the computer itself).

To develop this driver, several new #include statements which appear frequently in device drivers

need to be added:

=

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

6 of 26 29/10/25, 21:17

/* Necessary includes for device drivers */

#include <linux/init.h>

#include <linux/config.h>

#include <linux/module.h>

#include <linux/kernel.h> /* printk() */

#include <linux/slab.h> /* kmalloc() */

#include <linux/fs.h> /* everything... */

#include <linux/errno.h> /* error codes */

#include <linux/types.h> /* size_t */

#include <linux/proc_fs.h>

#include <linux/fcntl.h> /* O_ACCMODE */

#include <asm/system.h> /* cli(), *_flags */

#include <asm/uaccess.h> /* copy_from/to_user */

MODULE_LICENSE("Dual BSD/GPL");

/* Declaration of memory.c functions */

int memory_open(struct inode *inode, struct file *filp);

int memory_release(struct inode *inode, struct file *filp);

ssize_t memory_read(struct file *filp, char *buf, size_t count, loff_t *f_pos);

ssize_t memory_write(struct file *filp, char *buf, size_t count, loff_t *f_pos);

void memory_exit(void);

int memory_init(void);

/* Structure that declares the usual file */

/* access functions */

struct file_operations memory_fops = {

 read: memory_read,

 write: memory_write,

 open: memory_open,

 release: memory_release

};

/* Declaration of the init and exit functions */

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

7 of 26 29/10/25, 21:17

module_init(memory_init);

module_exit(memory_exit);

/* Global variables of the driver */

/* Major number */

int memory_major = 60;

/* Buffer to store data */

char *memory_buffer;

After the #include �les, the functions that will be de�ned later are declared. The common functions

which are typically used to manipulate �les are declared in the de�nition of the file_operations

structure. These will also be explained in detail later. Next, the initialization and exit functions—used

when loading and removing the module—are declared to the kernel. Finally, the global variables of the

driver are declared: one of them is the major number of the driver, the other is a pointer to a region in

memory, memory_buffer , which will be used as storage for the driver data.

In UNIX and Linux, devices are accessed from user space in exactly the same way as �les are accessed.

These device �les are normally subdirectories of the /dev directory.

To link normal �les with a kernel module two numbers are used: major number and minor number .

The major number is the one the kernel uses to link a �le with its driver. The minor number is for

internal use of the device and for simplicity it won’t be covered in this article.

To achieve this, a �le (which will be used to access the device driver) must be created, by typing the

following command as root:

mknod /dev/memory c 60 0

In the above, c means that a char device is to be created, 60 is the major number and 0 is the

minor number .

Within the driver, in order to link it with its corresponding /dev �le in kernel space, the

register_chrdev function is used. It is called with three arguments: major number , a string of

characters showing the module name, and a file_operations structure which links the call with the

�le functions it de�nes. It is invoked, when installing the module, in this way:

=

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

8 of 26 29/10/25, 21:17

int memory_init(void) {

 int result;

 /* Registering device */

 result = register_chrdev(memory_major, "memory", &memory_fops);

 if (result < 0) {

 printk(

 "<1>memory: cannot obtain major number %d\n", memory_major);

 return result;

 }

 /* Allocating memory for the buffer */

 memory_buffer = kmalloc(1, GFP_KERNEL);

 if (!memory_buffer) {

 result = -ENOMEM;

 goto fail;

 }

 memset(memory_buffer, 0, 1);

 printk("<1>Inserting memory module\n");

 return 0;

 fail:

 memory_exit();

 return result;

}

Also, note the use of the kmalloc function. This function is used for memory allocation of the buffer in

the device driver which resides in kernel space. Its use is very similar to the well known malloc

function. Finally, if registering the major number or allocating the memory fails, the module acts

accordingly.

In order to remove the module inside the memory_exit function, the function unregsiter_chrdev

needs to be present. This will free the major number for the kernel.

=

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

9 of 26 29/10/25, 21:17

void memory_exit(void) {

 /* Freeing the major number */

 unregister_chrdev(memory_major, "memory");

 /* Freeing buffer memory */

 if (memory_buffer) {

 kfree(memory_buffer);

 }

 printk("<1>Removing memory module\n");

}

The buffer memory is also freed in this function, in order to leave a clean kernel when removing the

device driver.

The kernel space function, which corresponds to opening a �le in user space (fopen), is the member

open: of the file_operations structure in the call to register_chrdev . In this case, it is the

memory_open function. It takes as arguments: an inode structure, which sends information to the

kernel regarding the major number and minor number ; and a file structure with information

relative to the different operations that can be performed on a �le. Neither of these functions will be

covered in depth within this article.

When a �le is opened, it’s normally necessary to initialize driver variables or reset the device. In this

simple example, though, these operations are not performed.

The memory_open function can be seen below:

=

int memory_open(struct inode *inode, struct file *filp) {

 /* Success */

 return 0;

}

This new function is now shown in Table 5.

Events User functions Kernel functions

Load module insmod module_init()

Open device fopen �le_operations: open

Read device

Write device

Close device

Remove module rmmod module_exit()

Table 5. Device driver events and their associated interfacing functions between kernel space and user

space.

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

10 of 26 29/10/25, 21:17

The corresponding function for closing a �le in user space (fclose) is the release: member of the

file_operations structure in the call to register_chrdev . In this particular case, it is the function

memory_release , which has as arguments an inode structure and a file structure, just like before.

When a �le is closed, it’s usually necessary to free the used memory and any variables related to the

opening of the device. But, once again, due to the simplicity of this example, none of these operations

are performed.

The memory_release function is shown below:

=

int memory_release(struct inode *inode, struct file *filp) {

 /* Success */

 return 0;

}

This new function is shown in Table 6.

Events User functions Kernel functions

Load module insmod module_init()

Open device fopen �le_operations: open

Read device

Write device

Close device fclose �le_operations: release

Remove module rmmod module_exit()

Table 6. Device driver events and their associated interfacing functions between kernel space and user

space.

To read a device with the user function fread or similar, the member read: of the

file_operations structure is used in the call to register_chrdev . This time, it is the function

memory_read . Its arguments are: a type �le structure; a buffer (buf), from which the user space

function (fread) will read; a counter with the number of bytes to transfer (count), which has the

same value as the usual counter in the user space function (fread); and �nally, the position of where to

start reading the �le (f_pos).

In this simple case, the memory_read function transfers a single byte from the driver buffer

(memory_buffer) to user space with the function copy_to_user :

=

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

11 of 26 29/10/25, 21:17

ssize_t memory_read(struct file *filp, char *buf,

 size_t count, loff_t *f_pos) {

 /* Transfering data to user space */

 copy_to_user(buf,memory_buffer,1);

 /* Changing reading position as best suits */

 if (*f_pos == 0) {

 *f_pos+=1;

 return 1;

 } else {

 return 0;

 }

}

The reading position in the �le (f_pos) is also changed. If the position is at the beginning of the �le, it

is increased by one and the number of bytes that have been properly read is given as a return value, 1 .

If not at the beginning of the �le, an end of �le (0) is returned since the �le only stores one byte.

In Table 7 this new function has been added.

Events User functions Kernel functions

Load module insmod module_init()

Open device fopen �le_operations: open

Read device fread �le_operations: read

Write device

Close device fclose �le_operations: release

Remove modules rmmod module_exit()

Table 7. Device driver events and their associated interfacing functions between kernel space and user

space.

To write to a device with the user function fwrite or similar, the member write: of the

file_operations structure is used in the call to register_chrdev . It is the function

memory_write , in this particular example, which has the following as arguments: a type �le structure;

buf , a buffer in which the user space function (fwrite) will write; count , a counter with the number

of bytes to transfer, which has the same values as the usual counter in the user space function

(fwrite); and �nally, f_pos , the position of where to start writing in the �le.

=

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

12 of 26 29/10/25, 21:17

ssize_t memory_write(struct file *filp, char *buf,

 size_t count, loff_t *f_pos) {

 char *tmp;

 tmp=buf+count-1;

 copy_from_user(memory_buffer,tmp,1);

 return 1;

}

In this case, the function copy_from_user transfers the data from user space to kernel space.

In Table 8 this new function is shown.

Events User functions Kernel functions

Load module insmod module_init()

Open device fopen �le_operations: open

Close device fread �le_operations: read

Write device fwrite �le_operations: write

Close device fclose �le_operations: release

Remove module rmmod module_exit()

Device driver events and their associated interfacing functions between kernel space and user space.

By joining all of the previously shown code, the complete driver is achieved:

<memory.c> =

<memory initial>

<memory init module>

<memory exit module>

<memory open>

<memory release>

<memory read>

<memory write>

Before this module can be used, you will need to compile it in the same way as with previous modules.

The module can then be loaded with:

insmod memory.ko

It’s also convenient to unprotect the device:

chmod 666 /dev/memory

If everything went well, you will have a device /dev/memory to which you can write a string of

characters and it will store the last one of them. You can perform the operation like this:

$ echo -n abcdef >/dev/memory

To check the content of the device you can use a simple cat :

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

13 of 26 29/10/25, 21:17

$ cat /dev/memory

The stored character will not change until it is overwritten or the module is removed.

I’ll now proceed by modifying the driver that I just created to develop one that does a real task on a real

device. I’ll use the simple and ubiquitous computer parallel port and the driver will be called

parlelport .

The parallel port is effectively a device that allows the input and output of digital information. More

speci�cally it has a female D-25 connector with twenty-�ve pins. Internally, from the point of view of the

CPU, it uses three bytes of memory. In a PC, the base address (the one from the �rst byte of the device)

is usually 0x378 . In this basic example, I’ll use just the �rst byte, which consists entirely of digital

outputs.

The connection of the above-mentioned byte with the external connector pins is shown in �gure 2.

Figure 2: The �rst byte of the parallel port and its pin connections with the external female D-25 connector

The previous memory_init function needs modi�cation—changing the RAM memory allocation for the

reservation of the memory address of the parallel port (0x378). To achieve this, use the function for

checking the availability of a memory region (check_region), and the function to reserve the memory

region for this device (request_region). Both have as arguments the base address of the memory

region and its length. The request_region function also accepts a string which de�nes the module.

=

 /* Registering port */

 port = check_region(0x378, 1);

 if (port) {

 printk("<1>parlelport: cannot reserve 0x378\n");

 result = port;

 goto fail;

 }

 request_region(0x378, 1, "parlelport");

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

14 of 26 29/10/25, 21:17

It will be very similar to the memory module but substituting the freeing of memory with the removal of

the reserved memory of the parallel port. This is done by the release_region function, which has the

same arguments as check_region .

=

 /* Make port free! */

 if (!port) {

 release_region(0x378,1);

 }

In this case, a real device reading action needs to be added to allow the transfer of this information to

user space. The inb function achieves this; its arguments are the address of the parallel port and it

returns the content of the port.

=

/* Reading port */

parlelport_buffer = inb(0x378);

Table 9 (the equivalent of Table 2) shows this new function.

Events Kernel functions

Read data inb

Write data

Device driver events and their associated functions between kernel space and the hardware device.

Again, you have to add the “writing to the device” function to be able to transfer later this data to user

space. The function outb accomplishes this; it takes as arguments the content to write in the port and

its address.

=

/* Writing to the port */

outb(parlelport_buffer,0x378);

Table 10 summarizes this new function.

Events Kernel functions

Read data inb

Write data outb

Device driver events and their associated functions between kernel space and the hardware device.

I’ll proceed by looking at the whole code of the parlelport module. You have to replace the word

memory for the word parlelport throughout the code for the memory module. The �nal result is

shown below:

<parlelport.c> =

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

15 of 26 29/10/25, 21:17

<parlelport initial>

<parlelport init module>

<parlelport exit module>

<parlelport open>

<parlelport release>

<parlelport read>

<parlelport write>

In the initial section of the driver a different major number is used (61). Also, the global variable

memory_buffer is changed to port and two more #include lines are added: ioport.h and

io.h .

=

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

16 of 26 29/10/25, 21:17

/* Necessary includes for drivers */

#include <linux/init.h>

#include <linux/config.h>

#include <linux/module.h>

#include <linux/kernel.h> /* printk() */

#include <linux/slab.h> /* kmalloc() */

#include <linux/fs.h> /* everything... */

#include <linux/errno.h> /* error codes */

#include <linux/types.h> /* size_t */

#include <linux/proc_fs.h>

#include <linux/fcntl.h> /* O_ACCMODE */

#include <linux/ioport.h>

#include <asm/system.h> /* cli(), *_flags */

#include <asm/uaccess.h> /* copy_from/to_user */

#include <asm/io.h> /* inb, outb */

MODULE_LICENSE("Dual BSD/GPL");

/* Function declaration of parlelport.c */

int parlelport_open(struct inode *inode, struct file *filp);

int parlelport_release(struct inode *inode, struct file *filp);

ssize_t parlelport_read(struct file *filp, char *buf,

 size_t count, loff_t *f_pos);

ssize_t parlelport_write(struct file *filp, char *buf,

 size_t count, loff_t *f_pos);

void parlelport_exit(void);

int parlelport_init(void);

/* Structure that declares the common */

/* file access fcuntions */

struct file_operations parlelport_fops = {

 read: parlelport_read,

 write: parlelport_write,

 open: parlelport_open,

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

17 of 26 29/10/25, 21:17

 release: parlelport_release

};

/* Driver global variables */

/* Major number */

int parlelport_major = 61;

/* Control variable for memory */

/* reservation of the parallel port*/

int port;

module_init(parlelport_init);

module_exit(parlelport_exit);

In this module-initializing-routine I’ll introduce the memory reserve of the parallel port as was described

before.

=

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

18 of 26 29/10/25, 21:17

int parlelport_init(void) {

 int result;

 /* Registering device */

 result = register_chrdev(parlelport_major, "parlelport",

 &parlelport_fops);

 if (result < 0) {

 printk(

 "<1>parlelport: cannot obtain major number %d\n",

 parlelport_major);

 return result;

 }

 <parlelport modified init module>

 printk("<1>Inserting parlelport module\n");

 return 0;

 fail:

 parlelport_exit();

 return result;

}

This routine will include the modi�cations previously mentioned.

=

void parlelport_exit(void) {

 /* Make major number free! */

 unregister_chrdev(parlelport_major, "parlelport");

 <parlelport modified exit module>

 printk("<1>Removing parlelport module\n");

}

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

19 of 26 29/10/25, 21:17

This routine is identical to the memory driver.

=

int parlelport_open(struct inode *inode, struct file *filp) {

 /* Success */

 return 0;

}

Again, the match is perfect.

=

int parlelport_release(struct inode *inode, struct file *filp) {

 /* Success */

 return 0;

}

The reading function is similar to the memory one with the corresponding modi�cations to read from

the port of a device.

=

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

20 of 26 29/10/25, 21:17

ssize_t parlelport_read(struct file *filp, char *buf,

 size_t count, loff_t *f_pos) {

 /* Buffer to read the device */

 char parlelport_buffer;

 <parlelport inport>

 /* We transfer data to user space */

 copy_to_user(buf,&parlelport_buffer,1);

 /* We change the reading position as best suits */

 if (*f_pos == 0) {

 *f_pos+=1;

 return 1;

 } else {

 return 0;

 }

}

It is analogous to the memory one except for writing to a device.

=

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

21 of 26 29/10/25, 21:17

ssize_t parlelport_write(struct file *filp, char *buf,

 size_t count, loff_t *f_pos) {

 char *tmp;

 /* Buffer writing to the device */

 char parlelport_buffer;

 tmp=buf+count-1;

 copy_from_user(&parlelport_buffer,tmp,1);

 <parlelport outport>

 return 1;

}

In this section I’ll detail the construction of a piece of hardware that can be used to visualize the state of

the parallel port with some simple LEDs.

The circuit to build is shown in �gure 3 You can also read “PC & Electronics: Connecting Your PC to the

Outside World” by Zoller as reference.

In order to use it, you must �rst ensure that all hardware is correctly connected. Next, switch off the PC

and connect the device to the parallel port. The PC can then be turned on and all device drivers related to

the parallel port should be removed (for example, lp , parport , parport_pc , etc.). The hotplug

module of the Debian Sarge distribution is particularly annoying and should be removed. If the �le /

dev/parlelport does not exist, it must be created as root with the command:

mknod /dev/parlelport c 61 0

Then it needs to be made readable and writable by anybody with:

chmod 666 /dev/parlelport

The module can now be installed, parlelport . You can check that it is effectively reserving the input/

output port addresses 0x378 with the command:

$ cat /proc/ioports

To turn on the LEDs and check that the system is working, execute the command:

$ echo -n A >/dev/parlelport

This should turn on LED zero and six, leaving all of the others off.

You can check the state of the parallel port issuing the command:

$ cat /dev/parlelport

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

22 of 26 29/10/25, 21:17

Figure 3: Electronic diagram of the LED matrix to monitor the parallel port

Finally, I’ll develop a pretty application which will make the LEDs �ash in succession. To achieve this, a

program in user space needs to be written with which only one bit at a time will be written to the /dev/

parlelport device.

<lights.c> =

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

23 of 26 29/10/25, 21:17

#include <stdio.h>

#include <unistd.h></p>

int main() {

 unsigned char byte,dummy;

 FILE * PARLELPORT;

 /* Opening the device parlelport */

 PARLELPORT=fopen("/dev/parlelport","w");

 /* We remove the buffer from the file i/o */

 setvbuf(PARLELPORT,&dummy,_IONBF,1);

 /* Initializing the variable to one */

 byte=1;

 /* We make an infinite loop */

 while (1) {

 /* Writing to the parallel port */

 /* to turn on a LED */

 printf("Byte value is %d\n",byte);

 fwrite(&byte,1,1,PARLELPORT);

 sleep(1);

 /* Updating the byte value */

 byte<<=1;

 if (byte == 0) byte = 1;

 }

 fclose(PARLELPORT);

}

It can be compiled in the usual way:

$ gcc -o lights lights.c

and can be executed with the command:

$ lights

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

24 of 26 29/10/25, 21:17

The lights will �ash successively one after the other! The �ashing LEDs and the Linux computer running

this program are shown in �gure 4.

Having followed this brief tutorial you should now be capable of writing your own complete device driver

for simple hardware like a relay board (see Appendix C), or a minimal device driver for complex

hardware. Learning to understand some of these simple concepts behind the Linux kernel allows you, in

a quick and easy way, to get up to speed with respect to writing device drivers. And, this will bring you

another step closer to becoming a true Linux kernel developer.

Figure 4: Flashing LEDs mounted on the circuit board and the computer running Linux. Two terminals are shown: one

where the “parlelport” module is loaded and another one where the “lights” program is run. Tux is closely following

what is going on

A. Rubini, J. Corbert. 2001. Linux device drivers (second edition). Ed. O’Reilly. This book is available for

free on the internet.

Jonathan Corbet. 2003/2004. Porting device drivers to the 2.6 kernel. This is a very valuable resource for

porting drivers to the new 2.6 Linux kernel and also for learning about Linux device drivers.

B. Zoller. 1998. PC & Electronics: Connecting Your PC to the Outside World (Productivity Series).

Nowadays it is probably easier to surf the web for hardware projects like this one.

M. Waite, S. Prata. 1990. C Programming. Any other good book on C programming would su�ce.

=

obj-m := nothing.o hello.o memory.o parlelport.o

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

25 of 26 29/10/25, 21:17

http://www.xml.com/ldd/chapter/book/
http://www.xml.com/ldd/chapter/book/
http://lwn.net/Articles/driver-porting
http://lwn.net/Articles/driver-porting

To compile a 2.6.x kernel on a Debian Sarge system you need to perform the following steps, which

should be run as root:

1. Install the “kernel-image-2.6.x” package.

2. Reboot the machine to make this the running kernel image. This is done semi-automatically by

Debian. You may need to tweak the lilo con�guration �le /etc/lilo.conf and then run lilo

to achieve this.

3. Install the “kernel-source-2.6.x” package.

4. Change to the source code directory, cd /usr/src and unzip and untar the source code with

bunzip2 kernel-source-2.6.x.tar.bz2 and tar xvf kernel-source-2.6.x.tar .

Change to the kernel source directory with cd /usr/src/kernel-source-2.6.x

5. Copy the default Debian kernel con�guration �le to your local kernel source directory cp /

boot/config-2.6.x .config .

�. Make the kernel and the modules with make and then make modules .

If you would like to take on some bigger challenges, here are a couple of exercises you can do:

1. I once wrote two device drivers for two ISA Meilhaus boards, an analog to digital converter

(ME26) and a relay control board (ME53). The software is available from the ADQ project. Get

the newer PCI versions of these Meilhaus boards and update the software.

2. Take any device that doesn’t work on Linux, but has a very similar chipset to another device

which does have a proven device driver for Linux. Try to modify the working device driver to

make it work for the new device. If you achieve this, submit your code to the kernel and become

a kernel developer yourself!

Three years have elapsed since the �rst version of this document was written. It was originally written in

Spanish and intended for version 2.2 of the kernel, but kernel 2.4 was already making its �rst steps at

that time. The reason for this choice is that good documentation for writing device drivers, the

 book (see bibliography), lagged the release of the kernel in some months. This new

version is also coming out soon after the release of the new 2.6 kernel, but up to date documentation is

now readily available in Linux Weekly News making it possible to have this document synchronized with

the newest kernel.

Fortunately enough, PCs still come with a built-in parallel port, despite the actual trend of changing

everything inside a PC to render it obsolete in no time. Let us hope that PCs still continue to have built-in

parallel ports for some time in the future, or that at least, parallel port PCI cards are still being sold.

This tutorial has been originally typed using a text editor (i.e. emacs) in noweb format. This text is then

processed with the noweb tool to create a LaTeX �le (.tex) and the source code �les (.c). All

this can be done using the supplied makefile.document with the command make -f

makefile.document .

I would like to thank the “Instituto Politécnico de Bragança”, the “Núcleo Estudantil de Linux del Instituto

Politécnico de Bragança (NUX)”, the “Asociación de Software Libre de León (SLeón)” and the “Núcleo de

Estudantes de Engenharia Informática da Universidade de Évora” for making this update possible.

This work is licensed under the GNU Free Documentation License.

Writing device drivers in Linux: A brief tutorial http://freesoftwaremagazine.com/articles/drivers_linux/

26 of 26 29/10/25, 21:17

http://meilhaus.de/
http://meilhaus.de/
http://adq.sourceforge.net/
http://adq.sourceforge.net/
http://es.tldp.org/Presentaciones/200103hispalinux/calbet/html/t1.html
http://es.tldp.org/Presentaciones/200103hispalinux/calbet/html/t1.html
http://lwn.net/Articles/driver-porting
http://lwn.net/Articles/driver-porting
https://www.gnu.org/licenses/fdl-1.3.html
https://www.gnu.org/licenses/fdl-1.3.html

