School of Computer and Information Sciences Due Date: 23 November 2025

CS401: ADVANCED OPERATING SYSTEMS

Assignment 2

Duration: 18 Days Total Marks: 20

In this assignment, you will add the implementation of the memory management aspects of an
Operating System to your earlier process simulator. These are the experiments for you to do
and submit the results by the due date.

1. Add timing structures and functions to your simulator, if you have not already done so,
for measuring

* RESPONSE TIME: the time interval between process creation and the first time it is
scheduled

* RUNNING TIME: the total time taken for a process to complete execution; this is the
time measured from the time it is first scheduled to the time it completes

* WAIT TIME: the total time process spent in ready and wait states

Include the header file sys/time.h and use the function gettimeofday () to measure
time with microsecond resolution.

2. Add memory-related data structures and variables necessary for implementing the vir-
tual memory manager.

3. Modify the process from the previous assignment and include a logical memory address
reference with every instruction. You have a choice here:

* Implement your own memory address reference generator with the following prop-
erties:

(a) The first &~ 100 address references are from the first page and then page faults
frequently while adequate number of pages are loaded into physical memory.

(b) The process then alternates between stable phases with few page faults and
transitions with frequent page faults

OR
* Use the address reference generator provided by me

(a) Include the header file ScisSosMem.h
Include ScisSosMem. honlyin the C file with memoryrelated functions. Don’t
include it in more than one C file!!!

(b) Use the function
int *memory_gen addrefstrings(int, int)

The first parameter is size (the process size); the second is mtype (memory
type: GOOD, BAD or UGLY.
GOOD means that the working set sizes are small and the transition states are
also small so that the process generates relatively few page faults.
BAD is a process whose working set size is larger and generates more page faults.
UGLY is a process whose working set is large (may not be easy to load into
memory) and generates many page faults: may be spaghetti code.

1 University of Hyderabad



School of Computer and Information Sciences Due Date: 23 November 2025

'To access the function
Dowload the files 1ibscismem.a and ScisSosMem.h
Add #include <ScisSosMem.h> in the source code
Compile as
gcc <C source file> <other object files> -L. -lscismem

You can incorporate the generated address references into the process designed in
the previous assignment.

4. Write a virtual memory manager that implements

* VIRTUAL PAGING: when a process is created, the virtual memory manager loads izs
Jirst page into physical memory and then moves it from new to ready state.

* HANDLE PAGE FAULTS: when a process requests for a memory address that is not
currently in a page loaded in memory, the manager loads the required page into
main memory and then moves the process into ready state.

If there is no free frame in main memory, it calls a global page replacement algorithm
(see below) to identify a frame that may be replaced with the requested page. After
replacing the page, it moves the process into ready state

Implement at least two page replacement algorithms. Both must be global replacement algo-
rithms.

1 Data Structures

Implement the following data structures.

Reference Window: is an integer A which represents a sliding time window for determining
whether a page in memory has been referenced. Set A = 1024. We can vary this param-
eter later.

Main Memory: This is an array of K = 64 frames. You can experiment with K in the experi-
mentation. Each entry in the main memory contains the following
<Page Number>, <PID>, <flags>

PAGE NUMBER is the current page number in that frame, PID is the PID of the process
whose page number is in the frame. FLAGS are two bits: one, the dirty bit, indicates if
the page has been referenced in the previous A address references by that process. The
second bit is a use bit which is set to one if the page has been modified by the process.
Currently, this is unused.

2 Experiments

Do the following to test the simulator as well as to gain some insights into the working of a
virtual memory system.

1. Create 10 processes of different types: COMPUTE INTENSIVE, 10 INTENSIVE and REGULAR.
Assume that the memory size = process size. Let all the processes be either Goop or BAD
from the memory management perspective.

2 University of Hyderabad


https://scis.uohyd.ac.in/~chakcs/AOS2025/code/libscismem.a
https://scis.uohyd.ac.in/~chakcs/AOS2025/code/ScisSosMem.h

School of Computer and Information Sciences Due Date: 23 November 2025

2.

(a) Turn OFF the memory management functions and let the processes run. Save their
timing information.

(b) turn ON the memory manager and observe how the timings get impacted. Write
your findings clearly.

Create 10 processes of the same type computationally. Let 3 of them be Goop and BAD
each and 4 be uGLy with K = 64. See how the timings get impacted as you vary K from
K = 32 to K = 128 in steps of 16 each. Write down your observations clearly.

3 Implementation Instructions

Please organise your code in multiple files if you implement the assignment in C language
(preferred). You may also choose to implement it in C++, Java or Python although the last two
are not really nice!

Here are some suggestions:

Create a header file to store all your constants, data types and function declarations.

Create one file for all process related activities such as create process, run process,
delete process, create PCB, print PCB, etc.

Create a separate file containing functions for the simulator. You really need two functions
here: initialise 0S parameters and scheduler.

Create a separate file for the scheduling algorithm your group (see below) chooses to
implement.

Create a separate file for virtual memory related functions including the page replacement
algorithms.

Write a final file that contains the main () function.

Compile the first four files separately (using the —c option to gcc) and then link them
together when compiling the file containing the main () function.

You may also need to use the library 1ibscismem.a.

You may form groups of two each for writing the overall simulator. Also, discuss among the
groups so that every group’s page replacement algorithms can run with another group’s virtual
memory manager.

You will have to demonstrate the simulator to me or the TAs at a scheduled date and time
after the due date which is 6:00 PM on Monday, 24 November 2025.

University of Hyderabad



	Data Structures
	Experiments
	Implementation Instructions

