136

CHAPTER 5 /VIRTUAL MEMORY

5.2.3 Software Components
e and user processes behave in ways that make virtual

Both operating system softwar virtua
' : and the latter have implicit

memory efficient. The former implements explicit policies,

characteristics that follow expected patterns.

Operating System Policies

Several alternatives exist for the operating system desi
interrupts and other aspects of virtual memory manag
a component of the set of policies for memotry managem

gner for handling page-fault
ement. Each choice enforces

ent. We briefly review them

here.

rETcHPOLICY The determination about when a page migrates from auxiliary mem-
onstitutes the fetch policy. There are two alternatives. The

d fetching because a page comes into real memory only when
Its from its absence. The characteristics of auxiliary mem-
k and rotational delays preceding information transfer)
encourage forms of prepaging in which pages other than the one demanded by a
page fault are brought into page frames. The utility of this scheme has not been
established. However, when a process is initiated (or reactivated) it may be advan-
tageous to immediately preload some pages to prevent frequent page faults.

ory to a page frame ¢
simpler is called deman
a page-fault interrupt resu
ory (such as disks with see

PLACEMENT POLICY Determining where in real memory a page is to reside is irrel-
evant in a paged-memory system because the address translation hardware will use
any element of the page table with equal efficiency. Placement policies are important,
however, in pure-segmentation systems, where the parts of a program are variable
in size and the minimization of external fragmentation in main memory is an issue.
Recent systems that support segmentation also provide paging at a lower level so
that segments need not reside in contiguous memory locations, once again rendering
a placement policy unimportant. Because modern segmented memory is supported

by paging, we do not discuss pure segmentation.

REPLACEMENT POLICY Replacement policy has been much studied over the last two
decades. The decision about which page to replace when all frames have resident
pages can have a great effect on the frequency of subsequent page faults. General-
purpose approaches rely on the locality of reference to make decisions. Since the
correlation between recent referencing history and near-future referencing patterns
is high, realizable replacement policies try to predict future references from past
behavior. The set of pages to which accesses are being made changes relatively
slowly; if the operating system can accurately determine what this subset is and keep
it in real memory, page faulting can be greatly reduced. Both program and data
structures contribute to this tendency. The desirable subset that ought to be in real
memory is sometimes called a resident set or a locality.

Several common replacement policies will be useful in this chapter. All are
demand replacement policies: No prepaging is done, and replacement occurs only

¥ e AP T T TS

52 BACKGROUND AND REVIEW

policies, the process-
tates. Specifically,

states

when real memory is full. For any pair of fetch and replacement
ing of virtual memory references results in a sequence of memory s
corresponding to a reference string w is a sequence of real memory

MO:Mls"'aMt'--)MT
where M, is the initial state, usually empty. Real memory ha
reference to r, causes a transition from M;_; to My
Mie=M_1+X;,- Y,

where X, is the set of pages fetched because of the reference to 1y,
of pages removed from real memory. A demand algorithm defines th
memory states by

Mt—l if Iy in Mt—l

M, <{M,_; + r,ifr,notin M,_; and | M;_1 | <m
M,_; + r, — vy for some y in M,_1 if r, not in M;_1 and | M,_

s m page frames. A

and Y, is the set
e transition of

1| =m

Replacement policies vary in how the page y is selected for removal from real memory:

e Least recently used: LRU replaces the page in real memory whose last reference
was the longest in the past. A faithful implementation of LRU requires hard-
ware support to maintain a stack of pages referenced, an expensive prospect.
However, a policy based on examining use bits and dirty bits approximates
LrU well. By dividing all frames into four classes according to the value of
the pair (use bit, dirty bit), the page to replace is chosen from the first nonempty
class in [(0,0), (0,1), (1,0), (1,1)]. All use bits must be periodically reset [Shaw,
1974).

o Optimal replacement: OPT selects for replacement the page that will be ref-
erenced next the longest time in the future. If a page is not referenced again,
its future reference time is «. Several pages may have value %; any can be
selected and optimality is preserved. Although this is not a realizable policy,
it is valuable in simulations to determine the best possible paging behavior
for a reference string.

o First-in, first-out: A FIFO policy is extremely easy to implement with a pointer
rotating circularly among the page frames. Unfortunately, the performance
of FIFO is inferior to that of LRU.

e Last-in, first-out: LIFO ensures that a page will be removed as soon as another
page is referenced. This may have utility in specific cases of sequential references
o Least frequently used: LFU replaces the page whose total usage count is the

smallest. Implementing LFU accurately requires expensive hardware, and other
s 3
methods generally outperform it.

e Most recently used: MRU replaces the most recently accessed page.

A distinction can be made between replacement policies that consider g} a
in real memory for replacement and those that choose only among the pages (l))f tggs
process that generated the fault. The former are global policies and the latter arz

137

138

CHAPTER 5 /VIRTUAL MEMORY

ing i i i licy; a page of one process may be
I. Page stealing is possible with a global policy; :
iZ;Tacec‘;fﬁ a framf with the page for another process. The dichotomy between local
and global policies is well summarized by Carr [1984]:

i i unit
Local algorithms have gained considerable popul.arlty among the res:eiall'ch Gcl(::::;a] O)i
because they are easier to analyze and use in mult:pr_ogram system models. C L gof
rithms are more popular with operating system designers because of their simplicity
implementation and minimal overhead.

MAIN STORAGE ALLOCATION POLICY Allocation policigs can be diyided if‘nto two
categories based on how main memory is allocated. A fzxec?-allocatz.on policy gives
a process a fixed number of pages in which to execute, while a varza_ble.-allocatton
policy allows the page frames held by a process to vary over .the lifetime of the
process. The former implies a local page replacement policy while the latter allows
cither a local or global policy. If a process has a fixed number of page frames,
difficulties arise if the allocation is too small. Difficulties may also arise if the pro-

gram makes a phase transition from one locality to another. Two properties char-
acterize a reasonable page-replacement algorithm:

1. If a program is executing in a locality whose size exceeds the size of the
fixed partition, then the algorithm should do a good job of making the best
of a bad situation; that is, on the average it should do a respectable job in
attempting to minimize the number of page faults.

2. The algorithm should quickly adapt to a phase transition.

If the amount of main memory exceeds the size of the largest locality, then
property 1 is not a factor and one may argue the merits of various page-replacement
algorithms. For example, consider the MRU and Ly policies previously mentioned.
Both are poor choices for satisfying property 2. The following reference string (for
a fictitious program) shows the execution of two program loops:

w = (123)(456)°

If the program executes in a partition of three
have difficulties, Mry incurs 3(1
LIFO also fails to adapt to 2 phas
policies each incur the minimum
phase transition, Most page repl
enhancements of the LRy of FIF

page frames, then both MRU and [Fy
+ s) faults and LU incurs 3(1 + min(r,s)) faults.
€ transition. On the other hand, the LrU and FIFO
number of page faults (six), readily adapting to the

acement algorithms used in Practice are variants or
0 algorithms.

e . It determines
_ . Hied will be written to auxiliary memory. In demand

cteaming a dirty page will be written only when selected for removal by the replace-

mer(llt gollcy. A precleaning policy writes dirt

neede. i

' Y pages before their pPage frames are
penig i resndgnt pages. If a form of precleaning is imple-

Ir age n i i i
transfer. The aper; ¥ Page need not make it unavailable for use during the

as output is initiated; if a process

5.2 BACKGROUND AND REVIEW

modifies it during the transfer, the dirty bit is set and the page must be cleaned again
subsequently. A careful balance is necessary between cleaning dirty pages and fetch-
Ing needed pages. A static priority given to one or the other can result in management
problems [Carr, 1984)

LOAD-CONTROL POLICY Without a mechanism to control the number of active
processes, it is very easy to overcommit a virtual memory system. Each process is
actively referencing some subset of its virtual pages. If the sum of the sizes of these
subsets exceeds the number of page frames, then frequent faulting will occur. The
virtual memory Management overhead becomes so great that a precipitous decrease
1N system performance is visible as soon as the memory overcommitment occurs. A
System in this state is said to be thrashing. Figure 5.1 shows a typical curve. As the
multiprogramming level increases, one would expect that throughput would increase
up to the level of System capacity and then decline slowly due to increasing overhead.
Instead, throughput falls dramatically because active processes require more real
memory than is available. Question 6 illustrates concretely the concept of thrashing.

Global-replacement policies are more susceptible to thrashing because they lack
mechanisms to gauge the memory required by individual processes and hence the
total demand. A local policy can measure the page-faulting rate of individual processes
and determine if more page frames (or fewer) are required. The working set virtual
meémory management method, discussed in Section § 4, is especially attractive in
this regard. Section 5.6 includes a discussion of a global policy that shows promise
in handling the load control problem well.

Process Behavior

No action by processes in execution is required to implement virtual memory. Attempts
have been made to describe how code should be written or data structures arranged

Throughput
}

Intuiti\[e
expectation

Actual system
behavior

Degree of
multiprogramming

Figure 5.1 Throughput vs. Multiprogramming Level with
Thrashing.

o

139

140

CHAPTER 5/ VIRTUAL MEMORY

n, 1968; McKellar, 1969]. HOWCVer,
agement is the freedorp .fr.om explicit
lies on programs exhlbnt_mg locality
proving locality is discusse

to improve virtual memory perfo-rmance lBr::n
one of the advantages of automatic mcn;ogess %
action by processes (or programmer's). u oy
in memory references. An automatic proce

in Section 5.7.

5.3 Stack Algorithms

In this section we investigate a class of replacem'ent algor lthlimt; lfallec:hset?:fl “180'
rithms [Mattson, et al., 1970; Coffman and .Denmng, 1973]ft at have i flszlt)n
property. This property allows the computatlon'of the cost o processmhg a particu a(;
reference string for all memory sizes of interest in on}y one pass (c)lvzr the string, an
to predict the cost of executing a particular string in an expande memory. First,
we define what we mean by cost.

5.3.1 Cost Function

If the replacement policy is fixed, the cost of processing virtual memory references
depends both on the amount of real memory (m page frames) and the particular
reference string w. This in turn determines the contents of X, and Y,, the successive
fetch and replacement sets. Since many pages in Y, may be clean, and page writes
can be overlapped with other Processing, we ignore the latter.

Let f(k) be the cost of a page-fetch operation that obtains k pages from auxiliary
memory. The function is normalized by

L= Timede;‘,y + Timetransfer

the time required to fetch 4 single page, so f

(1) = 1. In keepin with practical
algorithms, we assume that ping P

f0) = 0, f(k) = £(1) for k > Lk + 1) = f(k) for all k
Then the cost C(m,w) is given by

¥
Clm,w) = ¥ £]X,)
If a demand replacement s ip effect, 0 < |X,| <1, and
T
Clm, w) = 2] |X, |
t=

f(k) = %

53 STACK ALGORITHMS
flk) <k x f(1) =
and so f(k) (1) = k. If electronic auxiliar ;
Time'y, Y memory is used,

f(k)=kx\’“%&
Z

with f(k) = k X £(1) = k, Thjs leads to the following result

THEOREM 5.1

Suz;p Oie f(k) = k. Then for any page-replacement
mand algorithm with t tion that does at
least as well for all memory sizes and reference strsz;so.s rnomey

Because effective prepaging algorithms are generally difficult to find and analyze,

n;ost .vlllrtualFmer}rllory_ 1mpl§n}entgtions using disks and drums use demand-paging
algorit nllls'f urther, in anticipation that electronic auxiliary memory will be com-
mon 1n the tuture, nearly all research has focused on demand algorithms.

5.3.2 Definition of a Stack Algorithm

To expapd the notation for memory states, M(m,) is the state of real memory after
processing reference string @ in m frames, with initial memory state 0. A replacement
algorithm is a stack algorithm if it satisfies the inclusion property:

M(m,») C M(m + 1,w) for all m and

Equivalently, we can express the inclusion property as follows. Given , there is a
permutation of the virtual pages labeled 1, 2, . . ., n called the stack

S(m) = [Sl(w), woim ey sn(w)]

so that for all m,

M(l‘l‘l,(:.)) = {81((1)), LR Sm(m)}

That is, the contents of real memory consisting of m frames is always identified by
the first m elements of S(w). :
For a stack algorithm processing @ = r1, .+, I . . . , a sequence of stacks S, . . ,
S, can be constructed so that the memory stateé sequence for each value of m is
e : :
just the first m pages in the stacks. The LRU replacement policy results in a stack
algorithm. It is easy to see that, for LRU,

M(m,w) = {m most recently referenced pages} € M(m + 1, w)

On the other hand, FIFO is ot 2 stack al.gorith_m, as can be seen from the
processing of a reference string in two memory SiZes. Figure 5.2(a) S.hOW.S processing
in three page frames; the same string is processed in four frames in Figure § 2(b).
The final memory contents in the two cases show that M(3,w) = {5,1,2} ¢ {5,2,3,4}
= M(4,0). oy

’ - Iso exhibit an unusual property called B

N leorithms such as FIFO a! y called Be-

lady’s 32::;1;3’3[%2151 dy, et al., 1969]. It is not always true that C(m,w) is a nonin-

141

142

CHAPTER 5/VIRTUAL MEMORY

g 3 2 2 1 1 1
. “ 3 3 3 2 p)

(a) FIFO Processing in Three Frames.

” 1 2 3 4 1 2 5
M 1 1 1 1 1 5
" 2 2 2 2 2 A
= - 3 3 3 3 3
- - - 4 4 4 4

(b) FIFO Processing in Four Frames.

Figure 5.2 FIFO Processing.

creasing function of m; consider Figures 5.3(a) and 5.3(b) in which a reference string
is processed in three and then four page frames. The references that result in page
fetches are marked with *. In the former, C(3,0) = 9, but in the latter, C(4,w)
= 10.

5.3.3 Stack-Updating Procedure

We need a method of describing how to obtain the stack S, ; from S,. First we make
some observations about how the movements of pages in a stack are restricted.
Define the stack distance of a page p as its position in S(w). Let dp(w) = k if sp(w)
= p. If p has not yet been referenced, it does not appear in S(w) and dy(w) = oo,

Note that a fault occurs in an m-frame memory on the last element p of wp if
dy(w) > m.

@ l 1* 2# 3* 4* 1* 2* 5*

1 2 3+ 4* 5

M et R PR R L S SR e
SRS e Pty el SR Y i vee g

B et Rt Bl et Y s B AT g o s &

Figure 5.3(a) Belady’s Anomaly: Three Frames.

@ 1* 2% 3* 4* 1 2 5* 1* 2% 3 4* 5
M S O T R N N G
ISR S T N I W Tl

Figure 5.3(b) Belady’s Anomaly: Four Frames.

5.3 STACK ALGORITHMS

Observation 1: S!'nce the most recently referenced page p must be in memory
of any size (and, in particular, for m = 1), we must have dy(wp) = 1.
Observation 2: Stack algorithms are demand algorithms, so a page that is not
referenced may not be brought into memory of any size, so d,(w) < dy(wp) if
p*4q

Observation 3: 1f some page q resides in the stack at position k below the
referenced page p, observation 2 tells us that it cannot move up the stack. If it
could move down the stack, a reference to p in a k-frame memory would result

in the rempval of q even though no fault had occurred. Hence, such a page does
not move in the stack at all: s, (wp) = sy(w) if d,(w) < k.

As a result of these observations, we have a general picture in Figure 5.4 of how
stack elements move. The referenced page p moves to the top of the stack, the
elements from position 1 through d,(w) — 1 arrange themselves into positions 2
through d;(»), and the pages below d,(w) are unchanged.

To more clearly define how the dynamic section of stack is actually sorted out,
we define priority algorithms. A paging algorithm is a priority algorithm if, asso-
ciated with each reference r; in w, there is a priority list L, with two properties:

1. The priority list L, is an ordering (by decreasing priority) of the distinct
pages referenced so far. This list is independent of the memory size in which
a process executes. '

2. For all real memory sizes m, the page q removed from real memory as a
result of referring to r, ., is the lowest priority page (according to L;) that
is also resident. Refer to this page as q = min[M]. Note that max[M] also
has a reasonable meaning. We will extend the notation to select the lower
or higher priority of two individual pages as well.

»
=
—
€
=

O—Z»2Z=<

O=H»-Hwn|

Figure 5.4 Stack Updating Procedure: General Motion.

143

144

B

Priority algorithms are stack algorithms. If memory of size m + 1 conty;

M U {y} (for any page y), then the page to be removed upon a fault jg min[l % Page

= min[min[M], y], the lower priority page between that which would be U vy

from M and the page y. This is just an alternative definition of 2 stack a] “eMoyeg
Stack algorithms are also priority algorithms. The stack algorithms Iﬁg“‘h

in this chapter all have a method of ordering pages independently of real me

size: %

CHAPTER 5/ VIRTUAL MEMORY

LRU Orders by increasing time to last reference
OPT Orders by increasing time to next reference
LFU Orders by decreasing frequence of reference

(any deterministic tie-breaker will do)
LIFO Orders by increasing time of real memory entry

One may be tempted to include FIFO in this list, since it also orders pages b
time of entry to real memory. However, consider processing @ = 123412 i threz
and four page frames.After processing w, the two alleged priority lists would b,
(3,4, 1,2) and (1, 2, 3, 4). Page 2 precedes page 4 in the former, but follows it ip
the latter. No single priority list suffices independently of real memory size (and
FIFO orders only pages in real memory, not all pages referenced), so FIFO is not 4
priority algorithm and there is no contradiction.

Only in LRU do the stack S and the priority list L coincide. In all other stack
algorithms, both must be explicitly maintained in order to perform stack updating,
Specifically, we define the stack-updating procedure in terms of the priority of pages.
If S(w) is a stack in which d,(w) = k, we define each stack element s;(wp) by

p ifi=1

max [s;(w), min [M(i — 1, w)]] ifl1<i<k
si{(wp) =] min [M(k — 1, w)] ifi =k

S,'((l)) ifi>k

To summarize, the referenced page (at position k) moves to the top element of
the new stack, and the page displaced from the top position and the page originally
in the second position are compared. The “max” page becomes the page in th
second position of the new stack, and the “min” page is compared with the page!?
the original third position. This comparison continues until the “min” page 1
placed into the new stack at position k — 1 falls into the empty position at POSIUO[?
k. Pages below position k do not move. Figure 5.5 gives a diagram of stack move
ment, with a circle, O, used to represent the comparison of two page pl‘iOI:lthS-wn

An example of processing a reference string using optimal replacement 5% fheﬂ
in Figure 5.6. At each reference r,, the stack S, is formed using S, 1 and Li-1
the new priority list L, is obtained.

5.3.4 Calculating Cost Function of
of 4

: , : s for
One attractive property of stack algorithms is that the cost of fetching Pagehe tring
reference string can be computed for all memory sizes in one pass over t

5.3 STACK ALGORITHMS

$1(w)

$i(wp)

Sl(w) - S:(h’p)

$3(w) - $y(wp)
S-1(@) % St 1 (wp)

(@) = $;(wp)
S+1(0) — Sp41(wp)

Sq(w) = 5, (wp)

Figure 5.5 Stack Updating Procedure: Priority Operator.

by using the procedure described here. Define a vector with elements ¢, = the
number of times that a page p moved from position d, = k to position 1 in the
stack because it was referenced. Then the cost of processing the string is

n
Cmw)= D ¢+ o
k=m+1

where c.. is the number of times a new page was referenced and n is the number of
distinct pages in w.

A tableau like the one exemplified in Figure 5.7 can be used to manually process
small examples, and gives the method for programming a simulator that processes
large reference strings.

w 1 2 3 4 1 2 3 2 3 1
S, 1 2 3 4 1 2 3 2 3 1
- 1 1 | 4 1 2 3 2 2
- . 2 2 2 4 1 1 1 3
2 : . 3 3 3 4 4 4 4
E; el ARURT GELL UG- REN SIS Miatil: ks RN
. g 2 2 3 2 3 1 2 2
2w 18 e oD o B8
IR DI i’ COK NS SN I

Figure 5.6 Stack and Priority List Updating: OPT
Replacement.

145

CHAPTER 5 /VIRTUAL MEMORY

2 3 1

N S
] P Tkt R S il S
L TREAT iR RN N T N - I

ol TS oy B B O SN

. . 3 3 1 1 1 2 3 3

3 N . 4 4 4 4 4 4 4
d, 00 0 0 0 2 3 4 2 2 3 | C(m,w)
1 0 0 0 0 0 0 0 0 0 0 10
g N
& o 0 et ki R B
s BT R SE D e
& . G g A A i S A

Figure 5.7 Calculating Cost Function.

5.3.5 The Extension Problem

rithm processes a reference string in real memory
o available at the time of faults may be recorded,
can we predict performance in a real memory with m + k frames? The answer to
this extension problem is yes only if the paging algorithm is a stack algorithm. Such
an algorithm allows one to predict the performance of a memory management
system before actually installing additional storage by recording information only
at fault times, not at each reference.

At each fault, record a pair of virtual page numbers (p q;), where p; 1 the page
referenced that caused the fault and will be brought into real memory, and g; 18 the
page that will be removed. Also record the priority lists at each fault that were us
to determine which page was to be replaced. Then, with this information we ¢t

maintain the stack segment [s,, 41, « + 5 S+ k)-
Given [(p; q;)], construct a new sequence by considering two cases 4

When a demand-paging algo
with m frames, and only informatio

s follows:

o occur 1

1. The stack distance for p; exceeds m + k. Hence a fault will als
tac

m + k frames. Using the priority list recorded at fault i, update the ®
segment to find the page q; that will be removed from the larger memot?
Emit (p;, g;) into the new sequence. See Figure 5.8(a).

2. The stack distance for p; lies in the range [m + 1, m + K]- Then 1 faﬂ!;
will occur in the larger memory. Simply update the, stack segment and e
no entry into the new sequence. See Figure 5.8(b).

148

"

CHAPTER 5/ VIRTUAL MEMORY

To predict paging behavior in four frames, we l—?eed to maintain only ,
element in position 4, s4(). Each initial fault is unc anged in the new Sequene Stag

at the pair (3, 4) we recognize that sa(w) = ‘; 3?d n‘;)“fault results from thisce’ by
in four frames. We correctly pre&?lct that fourf au t}? will occur in the l.al'ger mezirlng

Clearly, the stack segment 1 necessary for the operation of thig Prozeg .
the paging algorithm does not have the stack property, the problem canpg, be ;lre. I

: - : ol
with only this amount of information. Veq

5.4 Working Sets

em we have conflicting policies for process and Memg
management. To maximize throughput we sh'ould 'have as Many active processes ,,
possible to keep processor and device utilization high. To minimize page-faylt OVer.
head, each process should have as much real memory as possible. If we limit
number of active processes t0O much, throughput can suffer; if we do not cony,
them enough, thrashing can result. Working sets can lielp determine the optimyy,
point between policies for process and memory management.

In a multiprogramming syst

5.4.1 Definition of Working Set

The working set with parameter A for a process at time t, W(t, A), is the set of pages
that have been referenced in the last A time units [Denning, 1968; Denning, 1970}
A is the window size, and it is a tuning parameter. Since A is a time measure, and
we are considering multiprogramming systems, A must measure process time rather
than real time. If A is large enough so that the working set contains pages being
frequently accessed, and small enough to contain no more, the working set is 2
reliable way to obtain a description of the needs of a process. Observe that | W(t,)/
can vary over time. If a process executes for A time units and uses only a single pag
then | W(t, A) | = 1. Working sets can also grow as large as the number of pages”
of a process if many different pages are rapidly addressed.

The importance of working sets is that they link memory and process manag”
ment via the Working Set Principle: :
page may

A process may execute only if its working set is resident in main memory- A s
proces®

not be removed from main memory if it is in the working set of an executing

This means that, if the working set of a process contains those pages Currefﬁ
needed, frequent page faulting is eliminated. The working set of process maytivf
be affected by the execution of other processes. By limiting the num er o azoﬂ"
processes to a group whose working sets will fit in real memory, memory ‘?verlocﬁ]
mitment is avoided and thrashing is eliminated. The working set strateg) " avﬂfy'
policy that allows the number of page frames u.sed by executing processe® !
i ll(f ; proce;s hgs run long enough to have established a working s¢v an e;,;ed 10
ocked or otherwise suspended from execution, its working set can b€ ;

5.4 WORKING SETS

disappear from real memory. When reactivated, the Working Set Principle dictates
that all _Of its former working set should be prepaged back before execution resumes
If care is taken,.the_transfer of a working set into real memory can be much less
costly than moving it using the normal faulting mechanism page by page.

5.4.2 Properties of Working Sets

Working sets eXhlbl_t SOome Interesting properties that make them attractive for mem-
ory management. Fll‘_St, as mentioned, the size of a working set can vary. Specifically,
1 <|W(t, A) | < min(A, n). This means we can avoid allocating a fixed partition
of real memory for a process.

Ig addlt‘xon, working sets are inclusive: W(t, A) C W(t, A + 1). This is similar
to the inclusive nature of stack algorithms; working set management will not exhibit
Belady’s anomaly.

Finally, a graph of working set size versus time will show that, for many pro-
grams, periods of relatively constant sizes alternate with periods of much larger
sizes. This reflects periods of fairly constant locality followed by rapid changes to a
new locality. Since A is constant for the process, the working set size temporarily
increases as new pages rapidly join the working set. Later, as pages no longer in use
leave the working set (also at a rapid pace), the working set size falls to another
stable level. Figure 5.9 shows a typical graph of working set size. This phenomenon
can also be seen in a plot of page number referenced versus time; see Figure 5.10
[Hatfield and Gerald, 1971] for an example. The rectangular areas show that for
long periods of time (horizontal dimension) a well-defined subset (vertical dimen-
sion) of pages is being referenced. See also that the shifts to new localities occur

Working Set Size
]

o,

i — i s i

= Time

e e e W i e — — — — -

I
|
|
|
|
|
I
|

—_——

=
Stable Stable Stable Stable
Transient Transient Transient Transient

Figure 5.9 Typical Graph of Working Set Size.

——

149

150

CHAPTER 5/ VIRTUAL MEMORY

§ A nr At n--Av'_JA-- e

A
B s]

Page Number

i o PP RL T L ‘-"_ :
SRS AN | b

v

ok | 200K | 400K 600K 800 K 1000 K

Time (instructions executed)

i ts: Page Referenced vs. Time..
G ?g(c))::l;;ﬁg}?teg) 19'?1 by International Business

Machines. Reprinted by permission.]

quickly. In addition, the relationship between the mean working set size and the
page-fault rate is established in Problem 10.‘ ek ;

A study of page faults under the working set discipline disclosed some inter.
esting phenomena [Kahn, 1976). Stable phases covered nearly all the process time
(98%). Nearly half of the faults occurred during the other 2% of process time while
phase transitions were in progress. Fault rates during transitions were 100 to 100(
times higher than during stable phases. Finally, the observed phases were relatively
insensitive to the choice of working set window size A.

Several variations on simple working sets have been proposed. Denning pro-
posed using different A values for code pages and data pages since they are likely to
exhibit totally different localities. The page-fault-frequency algorithm [Chu and
Opderbeck, 1972] achieves a reverse feedback by altering A to match a target fault

rate. Dealing with abrupt changes in locality is the goal of the damped working sét
algorithm [Smith, 1976,

5.4.3 Implementation

The realization of a working set

s ey policy for process and memory management requ®
" lonal hardware or some compromises in the original definition. *°
Iscuss representatives in each cat

In Morris [1972] we ¢ LHOLY. A
) : ; _ o
concept in the Man; We tind a design for ap implementation of the working®

B Al an o aeons

5.5 MODELS OF VIRTUAL MEMORY

if the associated working set register bit is set; the counter associated with a non-
running process’s page is not incremented. When a counter in a page-frame register
overflows, an alarm bit in the page-frame register is set to indicate that the page in
this frame is no longer in the working set of the process. Each time a page in a frame
is referenced, the counter in that page-frame register is reset to zero (the alarm bit
is also reset). The T-register controls the frequency of updating counters. At a page
fault, the frames with alarm bits set indicate pages eligible for removal from real
memory. Process switching requires replacing the contents of the working set register
but not alteration of any page-frame registers.

An approximation to the working set policy as described here was implemented
in an extant time-sharing system [Rodriguez-Rosell and Dupuy, 1973]. The IBM
360/67 computer system provided use bits with each page frame. The quantum of
processor time is divided into subintervals of T time units corresponding to a work-
ing set window size. At the beginning of an entire quantum all use bits are reset.
After each subinterval pages in frames not referenced are marked as candidates for
replacement by setting the absent bit in the appropriate page-table entries, and then
all use bits are again reset. If the process subsequently references such a page before
its actual removal, a page fault results but the only effect is the return of the page
to the working set of the process. Accurate accounting for the sizes of working sets
is complicated by the special handling of information in shared pages outside of this
mechanism. However, the installation of this scheme successfully eliminated the
thrashing phenomenon.

5.5 Models of Virtual Memory

Models that represent the behavior of programs in virtual memory have been of
interest to researchers since the development of virtual memory itself. They have
value in testing proposed modifications to systems, for capturing essential charac-
teristics of workloads, and for understanding the effects of virtual memory man-
agement policies. A good model is easier to work with than long traces of actual
executions. In Spirn [1977] we see a dichotomy between classes of models. One class,
called extrinsic models, uses information about observed behavior to construct a
description that is representative of more particular instances. The other class, intrin-
sic models, uses what is known about the internal nature of program behavior to
build 2 mathematical structure that displays results similar to observed behavior. 1f
one approach is used, the other can be used to validate the first model. We will
discuss one virtual memory model of each class.

5.5.1 An Extrinsic Model—Lifetime Curves

This simple description of a program’s behavior is generated by processing a refer-
ence string for a range of memory sizes m to obtain mean lifetimes L(m). A lifetime
is a period of execution that is uninterrupted by a page fault, measured in process
time or in number of main memory references. If the residence set has a variable
size, as in the working set method, other parameters (such as the working set window

151

152

CHAPTER 5/ VIRTUAL MEMORY

. : to vary mean residence set size (see Problem 9
size A) are manipulated to ere a0 { the fault rate is 1/L(m)

is the lifetime ¢ ite 18
L(m)lzl(:;ﬁ;rs :][ilietime cf:urve is S-shaped, as shown in Figure 5.11. For g

) The U
¢

ifeti short. As available real mall Mem,,
sizes, faulting is frequent and lifetimes are " e Memor o "
lifetimes increase as expected. However, above a certain threshold the increasje.s)

. 13] »
mean lifetime grows less rapidly. The “primary knee” of the concave-doyp

: : i imal. The knee Ortig
of the curve is the point where L(m)/m 18 maximal phenomenop, has be,,
attributed to two sources [Spitn,

1977]: beer
anation is the concept of locality. After a sufficient

d, a further increase in real memory has a smy]) :flfber
on fault rates and hence on lifetimes. It has been proposed [De“ning aec:
Kahn, 1975] that the primary knef: corresponds to tl:le average size of 10c:|d
ities that span stable phases in residence set composition, and that thi feai

memory allocation 1s optimal.

When a page is first referenced, it always causes a fault. For a reference Strin
of length k that touches n distinct pages, the lifetime curve L(n) is approxg.
imated by k/n. When real memory allocation approaches n page frames, the
mean lifetime is strongly influenced by the length of the reference string
This may lead one to conclude that, beyond the primary knee, a lifetime
curve is an unreliable model of program behavior. Although we may not be
very interested in this area of the curve, studies have shown that initial page
loads can be a major contributor to the existence of the primary knee [Car,

1984].

Nevertheless, a lifetime curve is easy to generate from an actual program trace and
therefore it has the advantage of being derived from real data.

1. A reasonable expl
of frames is allocate

m

Figure 5.11 Ideal Lifetime Curve

5.6 CLOCK ALGORITHMS

5.2.2 An Intrinsic Model—LRU Stack

The LRU stack model of program behavior arose because the LRU replacement policy
was seen to give good performance. It is a relatively simple intrinsic model, and the
stack-updating procedure is easy to understand (see Section 5.3.3). Its origins are
found in Shemer and Shippey [1966], and in Shemer and Gupta [1969].

In this model we assume that successive stack positions p,_1 (r;) at which the
references t, occur are independent random variables drawn from the probability

distribution
Prob[p,_1(r:) = 1] = a;

with cumulative distribution
T
A; = Prob[p,_(r) <i] = .21 a;
l =
Given an initial stack sy (often assumed to be [1, 2, ..., #]), we obtain a sequence
of stack distances from the distribution above and, from that, generate a reference

string. Strings generated this way are called LRU reference strings.
LRU reference strings can be constructed that exhibit statistical behavior similar

to that of actual programs. If a, = 1, a; = 0 for i # k, a looping reference string

results:
=R e =2 sidinds Ayl 0 — Ly s

If a; = a, = - - - a,, then stack positions near the top are favored. In this case, we
are not surprised that the LRU replacement policy is optimal [Coffman and Denning,
1973]. One could empirically obtain estimates of these probabilities by processing

reference strings of interest and observing stack positions.
The LRU stack model, along with some other models, was validated in Spirn

[1977] by comparing its behavior with that observed when actual reference strings
were processed with a working set method. The needed probabilities for stack posi-
tions were obtained empirically by observing those that actually occurred. The ref-
erence strings were all short enough so that they do not include phase transitions.
Within a single locality, the LRU stack model was seen to be the most acceptable

model of the program’s virtual memory behavior.

5.6 Clock Algorithms

Versior s of replacement algorithms have long existed that resemble the simple ver-
sions of the methods in this section. Recent work has shown that they can be
enhanced to provide good alternatives to purely local policies [Carr and Hennessey,
1981; Carr, 1984]. This section is based on that research. Clock algorithms imple-
ment forms of global-replacement policies. Envision the page frames of real memory
arranged circularly, as on a clock face. A pointer travels clockwise among the frames.
Whenever a page must be selected for replacement, the pointer is advanced to the

153

154

CHAPTER 5/ VIRTUAL MEMORY

o fi icular criteri
ining a page that satisfies some particul erion. If ng ¢, »
next frame containing < selected for replacement, lmplementin oy

i d, the next page in turn | '
glto?)l;]li;(s)e method. By using the following scheme, global LRU is app"OXimatede

. 4 1 d and then cleared
i ed, its use bit 18 checke < 1f the
When a page frame is examined, | dvanced to the next frame. If not, ¢, Pay,
ed, the pointer 1 a vanc _ » the pao
?eas]:);eanblr: le:clll (;he pointer is left at the fol_lowmg fralrlnfe. = fran;lcs f€main g:e’s
wil:h equal ;)robability for a given length of time ofve; ’ Oit:tr;ess,ot tﬁ C10c.k algorit m
will find the highest density immediately ahead of the p ’ € pointer shouy

not have far to travel.
When a page has been
differently if its dirty bit is se

deemed replaceable by the c_:ritcrion in effect, it is py

t. In that case the page 1 queued for cleaning 34 the
clock scan proceeds to the next page. Usually the page has beeﬂldt_?aned by the time
it is considered again, and is then replaced. Thls generates a re atively even Streap,
of requests to clean pages and avoids long waits for page writes followed by Feads,
See Figure 5.12 [Carr and Hennessey, 1981]; we refer to this as the Clock algorithy,

5.6.1 A Working Set Approximation——WSClock

The cdlock algorithm framework can be supplied with different criteria in order t,

approximate the replacement methods described in t'hls chapter; we describe ope
hm. This algorithm approximates a working set method

here, the WSClock algorit
nation with global replacement by updating infor-

for pages of processes in combi _
mation about pages as the pointer passes over them. As a frame is considered, its

use bit is tested and reset as usual. If the bit was already set, its time of last reference
is assumed to be the current process time PT and is stored in association with that
frame in LR[f]. If the bit was not set, the page is replaceable if PT — LR[f] > T, the

working set window parameter.

This method has two inaccuracies. First, the estimate of the last reference is
more accurate when the pointer is rapidly moving among the frames. Second, the
algorithm operates on resident pages (frames, actually) instead of all pages. It is,
however, a low-overhead approximation to the standard working set method.

Standard working set schemes do not distinguish among replaceable pages. By
approximating it in the clock algorithm framework, the replaceable pages are ord
in a manner that approximates LRU, Also, no data structure is needed to keep tra
of pages not in working sets; they are found as needed.

5.6.2 Load-Control Methods

Since thf: glock algorithm in all its forms is still a global replacement schemé, load
conFrol Is important to avoid memory overcommitment. The method in the pext
section applle's to both WSClock and Clock mechanisms. In the sections aftef this
specific techniques for each are described

LT/RT Load Control
ig; (c)i(elsgigcs a mlfthod called loading-task/running-task load control (LT/ RT) Th:lS]
nguishes between loading tasks, which have few resident pages th '

5.6 CLOCK ALGORITHMS

Last frame
replaced

Not replaceable

Main
memory
frames

Not replaceable

Not replaceable

Not replaceable

Replaceable

Advance CLOCK
pointer

Y

Test and clear
use-bit

Set 51

Schedule page
for cleaning

Set

Dirty-bit

= Replace page

Figure 5.12 Clock Algorithm [From Carr and Hennessy,
1981. Copyright © 1981 by Association for

Computing Machinery. Reprinted by
permission.]

fault frequently as needed pages are referenced, and running tasks, which have needed
pages resident and fault infrequently. It is used instead of prepaging the resident sets
of newly activated tasks. LT/RT uses a parameter 7 to distinguish between the classes.
A newly activated task is a loading task initially. As long as its lifetimes (intervals
between successive faults) do not exceed T, it remains a loading task. Whenever a

155

156

CHAPTER 5/ VIRTUAL MEMORY

lifetime longer than T occurs, the task becomes a running task until it ¢,
is deactivated. The LT/RT regime limits the number of loading tasks tq Some
L, a second parameter of the method. Nunp,

wsClock Load Control

Since the WSClock mechanism considers only resident pages, the resident

process is defined to be its working set (for running, not loading, processes), WS‘qua

detects memory overcommitment when an entire lap of the frames complete, withﬂck
0

encountering a replaceable page. When this occurs, the page-cleaning queye en
ined. If there is an outstanding request for a page to be clf:aned, it is Pl'Ocesse; '
yield a replaceable page. Failing that, memory 1s overcommitted and a Process to

st

be deactivated.

Clock Load Control
ect information about the memory demands of processes "
the working set or WSClock methods, some adaptive feedback control mech;nisln
is necessary, or a global replacement algorithm such as Clock will overcommit mmr;ﬁ
ory and cause thrashing. Denning, et al. [1976] suggested two possibilities for global
policies. The first, the L = S criterion, adjusts the multiprogramming level so thy
the mean time between faults is the same as the mean time required to process 3
page fault. The second, the 50% criterion, attempts to keep the utilization of the
auxiliary memory device used for paging at 50%.
The Clock load-control mechanism attempts to keep the rate of pointer travel
C near an optimal rate C,. We will describe below a method to estimate C by C. I
C < C,, the pointer rate is slower than desired, meaning either that few faults are
occurring or that the pointer finds replaceable pages without moving very far. I
cither case, the multiprogramming level may be increased. ¢ > C, indicates either
a high fault rate or the fact that the pointer must travel long distances to find2
replaceable page. This means a memory overcommitment; a process must be
deactivated. o
In addition to C,, three other parameters control the computation of C and it
comparison with Co. The first, 8, controls the frequency with which the load-contrd
mechanism is invoked at times t;. The more frequently load control is executed, te
more responsive the system is to changes that are needed, but then the load-cont™
algorithm itself causes more overhead. A small 3 also introduces more variablllty "T
successive estimates. Each time, an estimate of clock pointer rate, called i 18 Coﬁ-
puted. The second parameter, a, is the exponential smoothing weight used t ﬁfoﬂ
bine ¢; with ¢;_1, G2, . . . into a current average C;. A large a puts mor wels i
Fhe latest c;, allowing faster response to changes, but it also contributes 0 ¥2 en 0
in thg e§timate. T})e third parameter, ¢, governs how the comparison € S in
and Ci is done.l C; is acceptable if it lies in [Co — &, Co T d]; no Chaesponse
mult_lprogrammmg level are necessary. A small ¢ results in quicker system !
but incurs the cost of frequent process activation and deactivation.

In the absence of dir

aenoand . 2o ool

5.6 CLOCK ALGORITHMS

An exponential smoothing method is used
all previous interim measures c;
sures. At each execution of the C

to compute C; because it incorporates
and requires no explicit storage of previous mea-
lock load-control mechanism, compute

-~
i

C; 4+ (!Y,'_l

Z,‘ =14 (!Z,'_l
with Yo = Zy = 0. Then

A

C,' . Y,‘/Z,‘.

Choosing a Process to Deactivate

In either the WSClock or Clock methods, process deactivation must occur when

memory overcommitment is detected. Carr lists six possibilities (in addition to a
random choice):

1. The lowest priority process [Denning, 1980]: This implements a policy deci-
sion and is unrelated to performance issues.

2. The faulting process [Fogel, 1974]: This is an intuitive idea, since the faulting
process may not have its working set resident, and deactivating it eliminates
the need to satisfy this page request.

3. The last process activated: This is the process least likely to have its working
set resident.

4. The smallest process: This will require the least future effort to reload.

5. The largest process: This obtains the most free frames in an overcommitted
memory, making additional deactivations unlikely soon.

6. The largest remaining quantum process: This approximates a shortest
processing time first scheduling discipline.

5.6.3 Simulation Results

In Carr [1984], we find an extensive description of a simulation model for virtual
memory designed to compare the many alternative management policies. The ref-
erence strings from executing eight heavily used programs were captured and processed
for simulator input. We report results germane to the discussion in this section.

Process Deactivation Policies

No differences were observed among selecting the process with the smallest resident
set, the one most recently activated, or the one with the largest remaining quantum.
The other alternatives exhibited inferior performance.

157

