114

CHAPTER 4/DEADLOCK

Pl
I ~
~
Rl

RZ

PZ
Figure 4.5 Complete Reducibility May Be Order-

Dependent.

Combined with an important necessary condition, we have the following result
for a general resource system:

THEOREM 4.2

A cycle is a necessary condition for deadlock. If the graph is expedient, a knot
is sufficient condition for deadlock.

The necessity of a cycle follows from the obse

rvation that absence of a cycle implies
the existence of a linear ordering of process

nodes following arcs from processes to

vation that each process node in a knot is directly or indirectly waiting for other
process nodes in the knot to release resources, Since all are waiting on each other,
1o process node ini a knot can be reduced.

If a general resource graph is not expedient, then a knot is not a sufficient
condition for deadlock. This is demonstrated by the example in Figure 4.7. Expe-

4.5 SPECIAL CASES WITH USEFUL RESULTS

Figure 4.7 A Nonexpedient General Resource Graph.

(cihency will be l:;msumed throughout the remainder of this chapter. Figure 4.7 also
emonstrates that the presence o_f a cycle in a general resource graph is not a suffi-
cient condition for deadlock. This is true even for expedient systems.

4.5 Special Cases with Useful Results

By further restricting general resource systems, we can obtain useful approaches to
managing deadlock in situations common to current computer systems.

4.5.1 Single-Unit Requests

In these systems a process may have at most one outstanding request for a single
unit of some resource. These single-unit request systems are also expedient. Some
message-passing systems are examples of systems with these characteristics. Dead-
lock may be efficiently detected in tbis case. . . ‘

In the most general case of Section 4./-!, the existence of a knot in ap_expedlent
graph implied a deadlock state. The following three facts lead to two efficient detec-

tion algorithms.

First, if a graph is a deadlock state, then a knot exists. If we were to assume
3

that there is no knot, then each process P; is either a sipk (it'iskno'; }l:logked), or there
is a path (P; Rj, Pes + -+ P,, Ry, P2) s0 ,that Tious Agias, sl S ink s e

e of expedience. Then P is not blocked and we can reduce the graph
process because of €xp and reduction by P, must have increased R,’s inventory.
by P,. No.de R, 1s a-resqurce,nc unit of R,, it is no longer blocked and we reduce by
Since P, is r;questlngh]usta?h 1, this way until P; is no longer blocked. Thus, there
o SE R BB tbfe pd with the second part of Theorem 4.2, we see that the
is no deadlock. Combine ivalent to deadlock in single-unit request systems, and
existence of a knpt is equl hms can be used to determine the existence of deadlock.
graph-knot detection algorithm usences lead to the same irreducible state. The

ion s€q :
Sec;oEd, i twot l;z(]iil:;ton two propositions. (1) If two sequences of reductions
truth of this statemen

115

LOCK 2 ;

116 CHAPTER 4/DEAD sin thes2 e processes 11 different
n £

he twO sequence® i her casé- This is tru€ because eac.h

me in €lt o the same end result is

ing state T uence .
esulting in either seq ' p. but instead we reduce

are appli
e edges by Fis T
es the SaME =7) 4 veduce the graph Zducible by P;. This 1s true

order, then the r

reduction remov .

. we ¢0 o still £

d.2)Ina state S, if T is st! .

achieved. (2) her Processes ro state Ts © encrease in the alternate reduction to T,
” declining. These

the graph by ot ' o ot
because reusable lear.l . f onsumable resources from e
LR eduction sequences that yield irre-

' invento
and expedience prevents Vet
propositions allow one tO verify that any I dhet “bon these o SCaKEs ISt -

ducible states must be permutatio the need t0 consider reduction

identical. This fact is important becau ial cost of searching

sequences that are permutations 0 e eont
i i ' to a polynomid cost. il .
for an irreducible state 15 reduced poly S if dtid il (D b ona

Third, process P 1s not deadlocked in state ' :
path tolra sil;k. This fact leads to an effective method for checking if a partlcular

is deadlocked. : "
O Rt o useful algorithms are NOW available. The first

On the basis of these facts, tW
bsence of deadlock. The

detects the presence of a knot to determine the presence or %
ode F to the node list L (if it does not already exist

expression “L || F” appends the
in L).

ALGORITHM 4.1
Is state S a deadlock state?

L := [List of sinks in state §]
for the next N in L do
for F so that (F,N) is an edge do
L:= L||F
endfor
endfor
Deadlock : = {Nodes} # L

List L begins as a list of initial si
ial sinks. Th
nodes F that ar . Lhe outer loop pr .
oy et HZ;’; f; rI;a;h of l:length 1 from sink nocll)ef (gieszeti throu_gh L to find
ppended to L. When the outer logp resat;)l 3111}1?8) alrcelzdg
ches these adde

nodes, new nodes tha
t are
two steps from the original sinks
: are appended. When

the entire list L
in a k has been processed, it will
not. If this is not all nodes that are
1 not participating

resources defining the dead] i i
T'he second algorithm :tctk condition, S the group of processes and
order to establish th i €nPLs to find om
at P is not deadlocked a path fr a process P k
_ to a sink 1n

ALGORITHM 4.2
Is process P deadlocked?

4.5 SPECIAL CASES WITH USEFUL RESULTS

else L .= | |F ‘= false

knot and is deadlocked,

_ hEac::lofl t};SC algorithms eXecutes in time proportional to the number of edges
a1 i IDC GUE Braphs are bipartite with n processes and m resources, we

ms execute in O(mn) time, Further, the second algorithm is
under most circumstances,

Thus, continual deadlock detection can be done at a reasonable cost. When
process P requests an unavailable unit, the second algorithm should be executed. As

a poteptially cheaper but less immediate alternative, the first algorithm should
“occasionally” be executed.

4.5.2 Consumable Resources Only

In some system models, reusable resources may not be present. For example, models
of operating systems that rely solely on message passing may depict only consumable
resources. We assume that each process is a producer or consumer of at least one
resource. Although we cannot obtain an efficient detection algorithm for reasons
explained in Section 4.4, we can prevent deadlock by a conservative system design
method.

We define the claim-limited graph of the consumable resource system to be the
graph corresponding to the special state in wh_ich 'all inventories are.exhausted and
each consumer of each resource requests one unit. Figure 4.8 shows a simple example.
Clearly, this may be a desperate situation. If th?re are no producer processes that
consume no resources, all processes must remain blockcq and hence deadlocked.
The result that leads to a scheme for preventing deadlock is:

A consumable resource system is secure from deadlock if and only if its claim-limited
consum
graph is completely reducible.

, uter system during its design. When a]]
T ed to analyze a comp o T
his result can be us ducer processes are known, the claim-limited graph

cibility means that the system cannot enter a dead-
y strong deadlock prevention criterion and thus
It is useful in consumable resource systems for
olute requirement.

crates why the result is often too strong to be
a “send” operation does not cause a process to

resources, and consumer and pro
is constructible. Its complete redu
lock state. However, this is a ver
results in poor resource utilﬁzatlon-
which deadlock prevention is an abs

The following example demons
of practica] value. It is assumed that

117

118 CHAPTER 4/ DEADLOCK

P, P, .
f f i
P
| 3§
e
| -
/

R, R,

Figure 4.8 A Claim-Limited Graph.

become blocked. Here the claim-limited graph of the message-passing system is not
reducible even though the system is deadlock-free:

P,: while true do P,: while true do
begin begin
produce M produce L
send (P,,M) send (P;,L)
receive (P,,L’) receive (P, M’)
end end

This system results in the claim-limited graph shown in Figure 4.9.

4.5.3 Reusable Resources Only

A reusable resource system is a special case of a general resource system in which
there are only reusable resource types. Assuming expediency, efficient algorithms
can be defined for all three policies: detection, prevention, and avoidance. Each of
these policies will be examined in subsequent sections.

Detection in Reusable Resource Systems

The following major result provides necessary and sufficient conditions for the exis-
tence of deadlock, establishing the basis for efficient deadlock detection:

THEOREM 4.3

Let S be any state of a reusable resource system. Any sequence of reductions of
the corresponding graph leads to a unique graph that cannot be reduced. S is
not deadlocked if and only if S is completzly reducible.

4.5 SPECIAL CASES WITH USEFUL RESULTS

M

Figure 4.9 Irreducible Claim-Limited Graph of a
Deadlock-Free System.

The first statement follows from the observation that a reduction never decreases
the number of available units of a resource. As a consequence, reducibility is not
order-dependent and any two reduction sequences that leave the graph in an irre-
ducible state must necessarily involve the same set of process nodes. For the second
statement, it was shown in Section 4.4.3 that complete reducibility implies absence
of deadlock. To establish the necessity of the condition, note that if S is not dead-
locked, then no process is deadlocked. From the first statement, it follows that any
reduction sequence leads to a completely reduced graph.

Theorem 4.3 provides the basis for efficient deadlock-detection algorithms. The
first of these algorithms is appealing because of its simplicity:

ALGORITHM 4.3
Detection in reusable systems (simple version):

L : = [List of process nodes];

finished : = false;

while (L # &) and not finished) do
P : = First process in L by which graph can be reduced;
if P # nil then Reduce graph by P; Remove P from L
else finished : = true
endif

endwhile

Upon completion of2 Algorithm 4.3, L = [List Qf d«?adlocked processesj. The algo-
rithm has an O(mn®) worst-case time cqmplexnty since a reduction can involve m
resource nodes, the selection of P on the ith pass of th; loop may require inspection
of(n —i+ 1) nodes, and n total passes may be r.ec-]unred.

At the expense of extra storage, a more e'ffl(:l'ent algorithm is available. The
following data structures are assumed to be maintained by this system:

o wait_count: Associated with each process, this denotes the number of resources
for which the process is currently waiting,

119

120 CHAPTER 4 / DEADLOCK

with each resource, this is a list of Processes

e ordered_requests: Associated | £€ : :
q aintained in increasing order of units requested,

that request units. This list is m

ALGORITHM 4.4
Detection in reusable systems (ordered requests):

cess nodes];

s L ' 0
L : = [List of nonisolated pr o misolated process no doa

list_to_be_reduced : = [List 0
whose wait_count is 0];

while (list_to_be_reduced # &) do
Select P from list_to_be_reduced;

for R € {Resources assigned to P} do _ .
Increase available units of R by number of units assigned to P;

for each process Q in ordered_requests for this R
whose request can be satisfied do
Decrease wait_count of Q by 1;
if wait_count of Q = 0 then
Add Qto list_to_be_reduced
endif
endfor

endfor;
Remove P from L

endwhile

Upon completion of Algorithm 4.4, L = [Deadlocked processes]. Since the selection
of Q does not require a search of ordered_requests, the time complexity of this
algorithm is O(mn).

The next example illustrates the use of Algorithm 4.4. Consider a system of
three processes, P, P,, and P3, and three reusable resources, Ry, R5, and Rj, with

total units of 2, 3, and 2, respectively.

1. Initial State
wait_count: 0 for all processes

ordered_requests: empty for all resources

2. P; requests and acquires two units of Rj.
wait_count: 0 for all processes
ordered_requests remains unchanged
The deadlock detection algorithm is not applied since all wait_counts are
zero.

3. Pj requests and acquires two units of R,.
The wait_counts and ordered_requests remain unchanged

4. P requests two units of R,
wait_count| P3] = 1, all other wqit co
" » ts are 0
ordered_request| R;] = {P3} e
‘ a1, all other ordered_requests are empty
The deadlock detection algorithm is applied withq LS i {PuPI;} and

1
4.5 SPECIAL CASES WITH USEFUL RESULTS 12

llsLto_Abe_reduced = {P1}. The algorithm terminates in one pass with the
conclusion that deadlock does not exist,

5. P; requests and acquires two units of R;.
The wait_counts and ordered_requests remain unchanged
6. P, requests two units of R,.

wait_count(P,] = 0, wait_count(P,] = wait_count(Ps] = 1
ordered._requests[Rl] = (J, ordered_requests[R;] = {P,},
ordered_requests[R3] = {P;}
The deadlock detection algorithm is applied with L = {P;,P,,P;} and
list_to_be_reduced = {P1}. The algorithm reduces Py, P5, and finally P,.
7. Py requests a unit of R;.
wait_count: 1 for all processes
ordered_requests[R,] = {P1}, ordered_requests[R,] = {P,}
ordered_requests[R3] = {P;}
The deadlock algorithm is applied with L = {P1,P,,P3} and list_to_be_
reduced = (. No processes are reducible and the algorithm terminates with
the conclusion that all three processes are deadlocked.

A requirement of Algorithm 4.4 is that the system maintain the wait_count and
ordered_requests data structures. However, this information allows efficient allo-
cation to waiting processes when units of a resource are released.

Since only unsatisfiable requests for resources can cause a deadlock in reusable
resource systems, detection needs to be performed only at request time and, conse-
quently, deadlock is detected as soon as it occurs. Assuming that the system does
not already contain a deadlock at the time of such a request, Algorithms 4.3 and
4.4 can be made more efficient by terminating them as soon as it has been determined
that a reduction sequence involves the requesting process.

Avoidance in Reusable Resource Systems

The method presented in this section requires that each process be able to anticipate
its maximum total resource requirements, called its claim, at any point during exe-
cution. Clearly no process can be allocated more than its claimed resources. The
original algorithm for this process was first proposed for a single resource by Dijkstra
[1968], and was called the “Banker’s Algorithm.” It was extended to multiple resources
by Habermann [1969].

Formally, let c;; denote the claim of process P; for resource R;, where 0 < Cj =
t;, and let C[1:n,1:m] denote the claim matrix for n processes and m resources. For
a given state, the maximum-claim graph retlects the projected worst-case future state
and is constructed from the graph of the current state by adding additional request
edges (P;,R)), called claim edges, until the number of request edges plus the number
of assignment edges (R;,P,) is equal to c;;. These.claim edges are denoted by dotted
edges. A state is defined as safe if its corresponding maximum-claim graph is dead-
lock-free. A maximum-claim reusable resource system is one in which all states are

safe. , . -
Whenever a process makes a request, the following algorithm is executed.

122 CHAPTER 4/ DEADLOCK

ALGORITHM 4.5
Avoidance
1. Project the future state by changing the request edge to an assignment edge,

2. Construct the maximum-claim graph for this state and analyze it for dead-
lock. If deadlock exists, then defer granting the request; otherwise, grant

the request.

Figures 4.10(a), 4.10(b), and 4.10(c) show an execution of the deadlock-avoid-
ance algorithm for a system of two processes, P and P, and two reusable resource
types, R; and R,, consisting of 3 and 2 units, respectively. Figure 4.10(a) depicts
the initial safe state along with the claim matrix. Figure 4.10(b) depicts a request by
P, for a unit of R,, along with the corresponding maximum-claim graph for the
projected state. Since the maximum-claim graph contains a deadlock, the request by

P,
Rl Rz
1 2
C=
2.0 ok

P

2

Figure 4.10(a) Initial Safe State and Claim Matrix.

P

1
R, i R,

P

2
P
Figure 4.10(b) Request by P, and D i
S Graplh. eadlocked Claim-

4.6 RECOVERY FROM DEADLOCK

P,
R'l.
R
2 2
W
P2
Figure 4.10(c) Request by P, and Reducible Claim-
Limited Graph.

P, cannot be safely granted now. Figure 4.10(c) shows that a subsequent request
by P, for a unit of Ry can be safely granted.

Given an initial safe state, the deadlock-avoidance algorithm will ensure that
every successive state will also be safe. However, although the algorithm is useful
in specific circumstances involving particular resource types, there may be major
costs associated with its use. First, the algorithm must be executed for every request
prior to granting it. Second, the restriction on resource allocation may severely
degrade system resource utilization. Unless the claims are simultaneously realized
by the processes, it is impossible to actually.reach the pessirpistic state represented
by a maximum-claim graph. Thus, if the claims are not precise, many requests may
be deferred when they might in fact be safely granted. In many cases it is impossible
for a user to estimate resource requirements accurately.

4.6 Recovery from Deadlock

Recovery from deadlock requires the rollback of one or more d_eadlc?cked processes.
o trome Case of rollback is to abgft a process and restart it at its begmmn_g. If
the system has a checkpoint/restart facility, then only partial rollback may be required,
Ithough the rollback may involve more than the deadlocked processes. In many
althou ¢sing Systems, discriminate rollback of an application is possible; this
dat?basc Proc?r es a restart only of the current transaction. Whenever rollback occurs,
typically reCIulst sard against repeated deadlock involving the same processes. The
tlgil?t,:z::igsresgmay involve raising the priority according to the number of roll-
c / i,
backs or d:ieletzeoc;ftz;n :lztgreepof rollback, the ideal selection is one that minimizes
Reggé' reexecuting the mllcd.-back processes. Numerous factors may be involved
Fhe cost OL If che cost of restarting an individual process: priority, type and amount
1r; cclflﬁ;ﬁ}cl::;:)gu wce allocation, number of processes affected, amount of service received,
o

and amount of service required to finish.

123

124

CHAPTER 4/ DEADLOCK

For general resource systems, the cost of executing an optimal recovery algo-
rithm may be prohibitive. Let ¢; denote the cost of recovery for process i and let P,
.. ., Py denote the set of deadlocked processes. Select a subset of deadlocked processes
Py . . ., P;, for removal so that (1) deadlock is resolved, and (2) ¢;; + *** + ¢ isa
minimum. Such a cost-recovery algorithm for n processes, given in Holt [1971], has
an O(n(n + (n — 1) + +++ + n!)) worst-case execution time and O(n * n!) worst-
case storage requirements. For the special case of a reusable resource system with n
processes and m resource types, a more efficient algorithm can be found that has

O((m + n)?) time and space requirements [Purdom, 1968].
Simple and fast algorithms have been devised for suboptimal recovery from

deadlock. The following algorithm [from Holt, 1971], is applicable to reusable
resource systems and has O(mn) execution time.

ALGORITHM 4.6
Recovery:

L = [Processes ordered by increasing termination cost];
while (L # 0) do
Select next P from L;

Terminate P and remove P from L;
Use deadlock-detection Algorithm 4.4 to reduce as many processes as

possible, removing all liberated processes from L
end
If continuous deadlock detection is feasible, then a simple, fast suboptimal recovery
algorithm is to abort the requesting process.

4.7 Prevention by System Design

As mentioned in Section 4.2.4, deadlock prevention is accomplished by designing
the system so that one of four necessary deadlock conditions is denied. A prevention
policy is attractive from the point of view that run-time overhead, required for
deadlock testing in each of the other two policies, is avoided. In general, it is not
practical to execute a deadlock-detection algorithm each time a process requests,
acquires, or releases a shared variable. There are three important prevention meth-
ods: collective requests, ordered requests, and preemption [Havender, 1968].

In the collective-requests method, a process requests and is allocate:?l all resources
that it will need during any moment of its execution, New requests are allowed only
if the process first releases everything that it has been allocated. This method denies
the partial allocation condition necessary for deadlock to exist. The method is simple
and effective, but may seriously degrade utilization of system resources since a process
may ho.ld resources for extended periods of time during which they are not needed-:
Starvation is an(-)ther-p(-)tentlal difficulty since a process with large resource requir€’
RS ey e 1ndgf191tely blocked. For example, processes with large memory
requirements may fit into this category. The usual countermeasures tog < carvation

4.8 TOTAL SYSTEM DESIGN

are aging or running such a job at a designated period of time when demgnd is
usually low. If a large job is run during a peak period, an accounting question IS
raised since it is not clear who should be charged for other idled resources. Although
the method of collective requests has clear disadvantages, it is a particularly useful
approach in dealing with shared variables when it is known that the duration of use
will be short.

In the ordered requests method, a fixed ordering Cy, . . ., Cy is imposed on
resource classes, each containing one or more resources. If a process holds a resource
In class C;, it can only request resources of classes C; for j > 7. This method denies
the existence of a cycle in the resource graph that Theorem 4.2 established as a
necessary condition for deadlock. Although the ordered-request method is more
efficient than the collective-request method, it still may seriously degrade system
performance. Since the order of resource usage differs from one process to another,
processes may be forced to request and be allocated resources unnecessarily early.
If resources are reordered, programs optimized for an old ordering may need to be
redesigned. Since requests for an already allocated resource are not allowed without
release of all resources in this and subsequent classes, a typical approach may be for
a process to request the maximum quantity at each stage. In spite of the potentially
serious impact on resource utilization, the ordered-resource approach is a common
technique used to prevent deadlocks.

Preemption is a third method used to prevent deadlock. For some resource types
or processes, however, the penalty is too high to make this method effective. This is
particularly true for real-time applications, where it may be impossible to recover a
previous system state. Even if recovery is possible, the cost of restarting a long-
running process may be too high. Resources commonly considered preemptible include
the processor in time-shared systems, main memory in swapping systems or virtual
memory systems, and access to data in transaction-based systems.

4.8 Total System Design

Deadlock control in operating systems typically involves a mixture of several poli-
cies, and several methods within each policy. Most operating systems are hierar-
chically organized in layers, ca‘lch of which modifies and.egtends the capabilities of
the underlying layer. A primit'lve operation in one layef 1s implemented in terms of
operations in lower layers. This leads to a natural ordering of groups of resources—
resources used in higher levels are rcgucst_ed be-fore resources in lower levels. Within
each group, other techniques (_iescr'lbed in this chapter for dealing with deadlock
may be employed. The following is a list of resource types and commonly used

policies [Howard, 1973]:

e Swap space in secondary memory: Preallocate the maximum amount o fpice

needed by each process.
e Job or job-step resources: Resgurces,_such as files and special 10 devices, are
typically needed for the duration of job or job step. A common AbpEdeh T

125

126

CHAPTER 4/ DEADLOCK

s to use an avoidance strategy since consideray,
resource usage can be deduced from job-contrg

statements. Another approach might be to “;e ?)CO-“CC.thC—;equ;sF Pl:evention
. : ' ning of each job st

i occurring at the begin ep anq
strategy, with new allocations .

all alloc’ations released at the end of each job step. Some systems use only

deadlock detection for files. . o
o Main memory for user jobs: Preemption is the most effective approach i ,

paging, segmentation, or swapping system. If this is not possible, main mep,.
ory should be included in the class of job resources.

o Internal system resources: Resources such as co_ntrol blocks, buffers, and sem.
aphores are included in this class. Since access 1S frequent, a prevention strat.
egy such as resource ordering is a typ_lcal choice. The hlerarchical nature of
the system may provide a natural choice for the ordering. If ordering is dif-
ficult, a collective-request method may be used. For example, see the simul-

taneous P operation in Chapter 2.

batch-processing systems !
information about future

49 Summary

Deadlock is a difficult problem with no single solution to fit all circumstances. The
three general policies are detection, avoidance, and prevention. In a general resource
system, a cycle in the resource graph is a necessary but not sufficient condition for
deadlock existence. On the other hand, complete reducibility of the resource graph
is a sufficient but not necessary condition for absence of deadlock. As a consequence,
there are no known efficient algorithms for the completely general case. Imposing
certain constraints, however, allows for the derivation of efficient algorithms for
detection and avoidance.

Assuming expedience and single unit requests, a knot in the resource graph and
complete reduc'lbllhty are b.o.th necessary and sufficient conditions for deadlock. Nec-
essary and sufficient conditions for a consumable resource system to be secure from
deaclzllock is the' total redl}c1b111ty of the claim-limited graph. These latter two results
are important in the design of message-based systems.

In reusable resource systems, complete reducibility of the resource graph is both

necessary and sufficient for existence of dead] ici . ised
gocbodk deadiock dasetlon dnd d sl ot av?;ﬁﬁif;aent algorithms can be devise

Three important prevention methods
collective resource requests, ordered resoy
ating systems are designed using combina

employed in many operating systems ar¢
Ice requests, and preemption. Most Oper”
tions of policies and methods.

Key Words
acquisition operation am lai e N6
aging ' _ claim
bipartite gr aph claim-limited graph

assignment edges blocked

