elements are processes and resources. Processes compete for resources or commu-
nicate by producing and consuming resources. The abstract nature of the model
means that results are widely applicable and do not depend on the characteristics
of particular operating systems. This first, completely general, model captures the
nature of deadlock but, unfortunately, fails to help us develop algorithms for coping
with the problem. Section 4.5 considers sorne‘rest_rictigns on the_gener_a! model.
These models depict frequently occurring special situations wherein efficient and
useful approaches to the deadlock problem are available. Recovery from dgac‘ilock
is considered in Section 4.6. Deadlock can be prevented by system dem_gn; thlg is th.e
subject of Section 4.7. Section 4.8 considers how the methods considered in this

chapter are combined in the design of complete operating systems.

4.2 The Deadlock Problem

fine terms used in the rest of the chagter, give exalm?les of
In this section we de 1r11;‘.: acteristics of resource types, and introduce policies for
char

deadlock, explain the
dealing with dgadlock.

s, ealeCk
421 DeflnltllOn of D - represented by a pair of sets (3, IT), where
e abs

A computer system may b

s = {Allpossible allocati
[T = {Processes

on states of all system resources}
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ible state in the distribution of the resources,
ssi

3 0 i
Each element in 3 represents 07 ¥ for each system state in %, maps to another set

Each process in I1 is a function that,

ates (possibly empty). = { P4, P,}. There are only four possible
of st For C(Eaﬁ“i:?iﬁszb;tfise’ :;g;ﬁ;g:e? cauS{C tihe syu;rfr; .to change from state to
23:::.“183?;235’13 the possible actions by the two PIISEIAED SE-

Py(S) ={T,U} Py ={U}

P =@  PyT) ={5V}

P,(U)={V} PU)=0

Pi(V)={U} Py(V)=0

= hat when P is in state S, it may operate
here, for example, Py(S) = {T, U} means t '
::; E;Z’ng the syrs’te,m 1to state T’or state U. When the range is &, the proce:? mla;y
not operate when the system is in the given state. One may sho?w the statesh graphically
by using nodes for the possible states and arcs for the possible state changes. The
arcs are labeled with the process that can effect that state change. The example
above is also defined by:

An operation by process i changes the system state from, say, S to T. We abbre-
viate this by writing S—i—T. In the figure, S—1-U, T—2-V, and so forth. If a

sequence of operations by processes LJ,..., kis possible (S—=i—T, T-j>U, ...,
V—k—W), we abbreviate sequences by S—*—W,
With this minimal setting,

we can define some terms relating to deadlock in an
unambiguous way.

. A process 'P,~ is blOCke_d in state § if there exists no T so that S—i—T. In the
flggre, P is blocked in state T because there is no arc labeled 1 starting at
node T.

Sif P, is blocked in § "
S—*—T, P; s blocked in T. N edIn S and, for all states T wit

1 . . No matter how other processes change the system
state, there will never be an OPportunity for P; to perform an operation. In

the figure, P, is deadlocked in state U : :
because, for example, T—2—» o 22 V. Py s not deadlocked in T



4.2 THE DEADLOCK PROBLEM

o State S is secure if Sis

notad
S (S>*—T), T is nox a deadlock state and, for any state T reachable from

a deadlock state,

Here is an ex i
il o ctaffnple that will help make these abstract ideas more concrete: Two
o Bothp el_or exclusive access to a disk file D and the only tape drive T in
+ PO €yclic programs perform these operations:

P 1 P;:
0 i, 0: g
" while (true) do while (true) do
s : Request(D); 1: Request(T);
3 T 25 )
i: Request(T); 3: Request(D);
< . 4. i3
Release(T); Release(D);
3: i sl 5 . th s
Release(D); Release(T);
endwhile endwhile

As each process executes its cycle, it may be in one of six states relative to the
ownership of system resources, as seen here:

P;: 4 o Py

0: Holds no resources 0:  Holds no resources
1:  Holds none, requests D 1:  Holds none, requests T
2: HoldsD 2: HoldsT
3: Holds D, requests T 3:  Holds T, requests D
4. Holds Dand T 4: Holds Tand D
8- Holds D, T released 5:  Holds T, D released
Pl
0 1 2 4 5
0 ,oé,o —0—=0 = O
; ¥
1 — — —_— O

!

O-FO+4-0-O |-
Vo

Sttt
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; while P2 is in state ;. The possible
orizontal arrows (left or right) are

up or down) are state Changes

isin state

A state of this system 5 reflects ;}lizﬁ:g graph. H
: r

system states arc found in the P al arrows (

state changes due t0
due to the action of P: dlocked in $33¢ It is a total deadlock state. States S5 ang

Both P, and P2 ar¢ dea p, and Py are deadlocked in the states, respectively,
e : 5

S3; are dcadlo_ck states I;ecaus :md sos Py IS tlocked in states S S, LS,

P, is blocked in states 914 32

There are no secure states.

actions by s

f Deadlock

ber of processes and resources in simple or compli-

4.2.2 Examples O

Deadlock may involve any num
cated ways.
As a first example, €

tape drive T in the exa?pl o

requests .

2: l;i ss;sl::nl;efi(:s]irgcr? E?mr, ?ts occurrence in practice is.rgal an'd Of_teg?fl_l'lb?dd_(;d in

complicated program logic to the extent that a priort etection 1s di icult, 1f not

impossible. Strategies to COP€ with this type of problem mglude imposing constraints
on system design so that certain resources are requested in a part}cular order, _

For a second example, suppose the main memory space required for activation

records of processes is dynamically allocated. Suppose the: total space consists of
20K bytes and two processes require memory in the following way:

onsider the two processes competing for d-isk file D and
¢ of the preceding section. Deadlock occurs if each process
Although this example can be regarded

P]! PZ:

Request 8K bytes ~ Request 7K bytes
Request 6K bytes ~ Request 8K bytes
deadlock occurs if both processes progress to their
second request. Note that the processes are not incorrectly designed since neither
requests more than the total space in the system. Strategies to cope with this type
of problem include the preemption of main memory through paging or requiring
processes to specify in advance the maximum amount of memory space needed.

As a third example, suppose two communicating processes have the structure:

As in the previous example,

P1: PZ:

Receive (P,,M)  Receive (P1,M)

Send (P,,M’) Send (P,,M’)
Design errors such as these may occur at i

TO solated places in very large programs and

may be difficult to detect. The actual occurrence of deadlock rr}lla f)ge ig;reg uent and
may Iocc:urhoniy l::fter the system has been in service for many yeers )

n each of these examples, deadlock occurs because processes r.equest resources

held by other pro 1
ok pyrocessesPTl:jess'es afnd, at the same time, hold resources requested by these
- This is a fundamental characteristic of deadlock
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Deadlock is similar o Starvation, since each of these involves one or more
processes that are permanently blocked and waiting for the availability of resources.
The two, however, are distinctly different phenomena. A deadlocked process waits
for resources (held by another Process) that will never be released. Starvation occurs
when some process waits for resources that periodically become available but are
never allocated to that procesg due to some scheduling policy. An example of star-

Va:i‘ﬁgsl:: p;'ocessfwan-ing for the simultaneous availability of two tape drives. An
en quence of processes request, are allocated, and release tape drives such that

eltheiltwo drives a°¢ never simultaneously available or, if they are available, they
are allocated to a higher Priority process.

4.2.3 Resource Types

Resources can b.e divided into two classes: reusable and consumable. Each class has
distinct properties that are ref]

ected in the various strategies designed to deal with
the deadlock problem. i 2

A reusable (serially reusable) resource is characterized by the following properties:

e There is a fixed total inventory. Additional units are neither created nor
destroyed.

® Units are requested and acquired by processes from a pool of available units
and, after use, are returned to the pool for use by other processes.

Examples of serially reusable resources are processors, 10 channels, main and sec-
ondary memory, devices, channels, busses, and information such as files, databases

and mutual exclusion semaphores. The first two examples of the last section illus-
trate deadlock involving serially reusable resources.

A consumable resource type is characterized by the following properties:

e There is no fixed total number of units. Units may be created (produced or
released) or acquired (consumed) by processes.

e An unblocked producer of the resource may release any number of units. These
units then become immediately available to consumers of the resource.

e An acquired unit ceases to exist.

Examples of consumable resources are iqterrupts ar‘ld signal.s, messages, and infor-
mation in Vo buffers. The third example in the previous section illustrates deadlock
involving messages. _ Jois

In gineral deadlock may involve any combination of classes of resources, both
reusable and c;nsumable. The classes of resources present in any system or subsystem
affects the manner in which the deadlock problem can be handled. This will become

clear in subsequent sections.

42.4 Deadlock Policies

. ; i hree categories. In this ch :
ith deadlock fall into thre ] chapter we wil]
ls\g: t:fadr:lli(l:scg:lc))ﬁge\:ch class. The first policy is detection and recovery. Here no
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aiat ing e fom i
from occurring: of deadlocked Pro ;

ken to keep d?d':gorith'“' When the i‘;’l‘;g back to an earlier state if

sminated (Ol:reak the deadlock. This approach

ust !

;dentified, some of t,hm;s':v,ilable) ino eadlock is low ar_nd the
int inform i . sources is not

i‘;h :::(islg'c:':ol’&' ol ble bec;:':c the utilization ;)fO:in::‘: \:;l } be discumed

cost of recovery 18 rcas;(ma acion Efficient detection alg

degraded during normal OF ’ desi re-

inegsccrions 4.5.1 and 4.5.3. revention. Here the system gn p

. 9 's . A ¥

A second class of wdmcm:;:\:?e :iegdlock is inev;table.f Thl:§ cl; Zcrzo:‘;;c)::l:;ic;

by denyine ot (::lcﬁ:;nthe tout following conditionss ai ot v
y denying

for deadlock to occur:

action 15 ta
the execution © a

hold resources exclusively, making them

2. Nompreemption: Resources are not taken away from a process holding them;
- only processes can release resources they hold.

3. Resource Waiting: Processes that request unavailable units of resources block

until they become available. |
4. Partial Allocation: Processes may hold some resources when they request
additional units of the same or other resources.

Deadlock is prevented by designing the resource management sections of an oper-
ating system so that one of the conditions cannot occur. Denying any condition
inevitably degrades utilization of system resources, but is appropriate in systems for
which deadlock carries a heavy penalty (real-time systems controlling chemical or
nuclear processes, or systems that monitor or control hospital intensive care units,
for example). We will see examples of prevention policies in Sections 4.4 and 4.7.
Avof:mlls the third type of deadlock policy. This refers to methods that rely
:ﬁ :;ij) . 8: edge of futdure process l_)ehav1or to constrain the pattern of resource
c - Once again a degradation in resource utilization is inevitable. Often, a
subset of resources for which deadlock is especiall ive i ith :
e ol oile deion o pecially expensive is managed with an
oo ety tion and recovery suffices for other resources in the
e system. Future information may be reasonabl
ably easy for a system to deduce or

» l] l ’ ma be lm .

Banker’s Algorithm) is found in Section 4.5.3 od you may already know (the

43 Concepts from Graph Theory

Before we can int
roduce
graph theory, the model,

* A directed graph (

. digraph) is a pa;
Is a set of edges. Each edge is( a;xE()),rc\;,el;Zlc'ie i Uy Soal doos
pa

ir of nodes.
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® A bipartite graph is one i
subsets 7 and p so that
interesting result of bipar
a detection algorithm lat
respectively, then the m

® Node z is a sink if there

n which all the nodes in N divide into two disjoint
a‘ll edges consist of a node from each subset. An
tite graphs will help us determine the efficiency of
er; that is, if the subsets contain m and n nodes,
aximum number of nonidentical edges is 2mn.

: are no edges (z,b).

® Node z is an isolated node if there are no edges (z,b) or (b,z).

® A path is a Sequence (a,b,c, .. ., y, z) of at least two nodes for which (a,b),
(bye)y ..., (y,z) are edges.

® Acycleis a path with the same first and last node.

. Thq reachable set of a node z is the set of all nodes to which there is a path
beginning with z. The reachable set of z may contain z itself if there is a cycle.

. A knot K is a nonempty set of nodes with the property that, for each node z
in K, the reachable set of z is exactly the knot K.

In Figure 4.1 we see a bipartite graph with nodes N = {a,b,c,d} and edges E =
{(a,b), (a,b), (a,c), (c,d), (d,c)}. All edges connect between nodes in the two sets {a,d}
and {b,c}. Node b is a sink, (c,d,c) is a cycle, and {c,d} is a knot. Note that from now
on we will allow multiple edges from one node to another.

Some results of knots will be the basis for future deadlock detection algorithms:

olfa digraph has a knot, then it has a cycle.
e No node in a knot is a sink.
e There is no path from a node in a knot to a sink.

e A digraph is free of knots if and only if, for each node z, z is a sink or there
is a path from z to a sink.

In the next section we introduce the graph model of completely general systems
of processes and resources.

Figure 4.1 A Bipartite Digraph.
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4.4 The Gencral f Lonempty set T = {Pig o549 P,} of
jsts of @ i iti

ral resource system model cons!S R} of resources: The se[tn p lbsl giétltloned
= ’ a SO

d a nonempty S€t Pd re] sresenting reusable and consu e l}lr o

ubsets, py and Po pource . is the current number ot avai able

ved with each r€s bl resource R, is the total number of units

ach reusablé nonempty set of processes that

ed with € .
sa
ble resource R; there 1

Model

A gene
processes and:
into two disjoints
respectively Assoc?a
units 1, = 0. Associat

t, > 0. For each consuma
produce units of R;.

441 General Resource Graph
n the general resource sy

of each resourc

of each reusable resource held by each proce : |
state there is a corresponding bipart

of each resource. For each
e Nodes N = {Processes} U {Resources}. To distinguish between them in figures,
[], and resources as round circles, O. For

we draw processes as square boxes,
¢ the total inventory t; by placing small

reusable resources R;, we represen
tokens in the circle for R;. For consumable resources, the tokens represent the

number of currently available units r;.
e Edges E are of three types:
Request edges (P,,R;) connect’
,R.) connect process to resources. They repre I
that have been requested but not yet obtained. prpr=ian

Assignment ed,
ges (R;,P;) connect resourc
. es to proce T s
units of reusable resourc processes. These arcs signify
es R. cur 1g11
; currently held by P,. ;

stem model i8 completely described by
ss requests, the number of units

e that each proce . '
ss, and the cutrent available inventory
ite digraph:

A particular state 1
the number of units

Producer edges (R;,P;)
»P;) connect consumabl
them. The il g , able resources t
se are permanent identifiers of the pro duce(; SP;) OCCszI:s that produce
i O K.

Notice that the e b2
graph is bipartite. Si
and disappear with €. oince request and assi
state nda assi
changes (as we will soon See)gn;lznt edges may appear
» and producer edge
s are

permanent, we draw
: request and assignm
edges with dashed arrows “ssignment edges using solid arrow
. rrows, and prod
oducer

In Figure 4.2
.2 we see a
B general res
o sesources, R, and B Processogrcﬁ glr:'laph, with two pro
tw 1 cesses, P; and P
2

R; ha ' olds two s of
1 has a total inven ory of four unj tWO unit reusa
ble resource Rl'



4.4 THE GENERAL MODEL

[ — — — -

P, R,
Figure 4.2 A General Resource Graph.

e For each process P;, [number of request edges (P;,R;)] + [number of assignment
edges (R;,P)] < ;.

For consumable resources:

e Edge (R,,P,) exists if and only if P; produces R;.

e The inventory r; at any time is constrained only to be nonnegative. This means
that systems containing consumable resources may have an infinite number
of states.

4.4.2 Operations on Resources

Processes perform operations that change the state of the general resource system.
Each state has a corresponding graph. Here we describe the operations that processes
execute—requests, acquisitions, and releases—and the corresponding graph alter-
ations necessary to reflect these new states. All the operations are constrained by

the resource restrictions above.

P, has no outstanding requests (that is, if it is executable), then
of any number of resources R;, Ry, . ... To reflect this in the
Ry), . . . in multiplicities corresponding to the number

REQUESTS If process
it may request units
graph, add edges (Pi,R;), (Pi
of units of each resource requested.

has outstanding requests, and for each requested resource
d units does not exceed the current inventory r; (that is,
if all requests are grantable), then P, may acquire all requested resources. The graph
is altered as follows. For each request edge (P;,R)) to a reusable resource, reverse the
edge direction to make it an assignment edge (R;,P). Eacl; request edge to a consum-
able resource disappears, simulating the consumption of units by P;. In either case

ACQUISITIONS  If process P;
R, the number of requeste
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is reduced by the number of units of R; acquired or Consyp, d
e

each inventory T;
ol hat is, if
e . has no outstanding requests (that is, if it is execyryp
A et o producer dges (R,P), then Py may rlease any suhse o nd
reusable resources it holds or produce any number o ug; 5 OF consumable regq,,
for which it is a producer. Assignment edges from reusable resources disappe,, ¢
dges are permanent. Inventories t; are incremente b

the graph, but producer ¢
sumber of units of each resource R released or produced.
Consider again the system state In Figure 4.2. The successive states shown, in

Figures 4.3(a), 4.3(b), and 4.3(c) reflect the following three operations, respectiyely.

(a) P, requests one unit of Ry and. two units of R;. Edge (P;,R;) and two ed
(P,,R,) appear in the graph. Since Py’s requests are not all satisfiable Pg‘?s
blocked in this state. P18

(b) P,’s request for one unit of R, is granted. Since R, is consumable th
edge (P,R,) disappears. A token disappears from R,. > i€ request

(c) P, produces three units of R,. Three tokens appear j -
blocked in this state. ppear in Ry. Py is no longer

l.'()m
Y the
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P, R,

Figure 4.3(b) P, Acquisition Operation.

allocated units of a reusable resource, and, if P; is a producer of a consumable
resource, the production of a “sufficient” number of units to satisfy all subsequent
requests by consumers. In the case of a consumable resource R;, the new inventory
is represented by  to indicate that all future requests for R; are grantable.

Formally, a graph may be reduced by a nonisolated node, representing an
unblocked process P;, in the following manner:

e For each resource R;, delete all edges (P;,R;) and if R, is consumable, decrement
r; by the number of deleted request edges.

e For each resource R;, delete all edges (R;,P;). If R; is reusable, then increment
r; by the number of deleted edges. If R; is consumable, set r; = o,

R1 Pl
e
CL
PO~
\
Rl
PZ

Figure 4.3(c) P2 Release Operation.
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R,

i
iy
ke

Figure 4.4 A Reduction Sequence.



