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10.11. Signal Sets 

We need a data type to represent multiple signals—a signal set. We'll use this with such functions as 
sigprocmask  (in the next section) to tell the kernel not to allow any of the signals in the set to occur. As we 
mentioned earlier, the number of different signals can exceed the number of bits in an integer, so in general, we 
can't use an integer to represent the set with one bit per signal. POSIX.1 defines the data type sigset_t  to 
contain a signal set and the following five functions to manipulate signal sets. 

#include <signal.h> 
 
int sigemptyset(sigset_t *set); 
 
int sigfillset(sigset_t *set); 
 
int sigaddset(sigset_t *set, int signo); 
 
int sigdelset(sigset_t *set, int signo); 

 

All four return: 0 if OK, –1 on error  

int sigismember(const sigset_t *set, int signo);  

 

Returns: 1 if true, 0 if false, –1 on error 

 

The function sigemptyset  initializes the signal set pointed to by set so that all signals are excluded. The 
function sigfillset  initializes the signal set so that all signals are included. All applications have to call either 
sigemptyset  or sigfillset  once for each signal set, before using the signal set, because we cannot assume 
that the C initialization for external and static variables (0) corresponds to the implementation of signal sets on a 
given system. 

Once we have initialized a signal set, we can add and delete specific signals in the set. The function sigaddset  
adds a single signal to an existing set, and sigdelset  removes a single signal from a set. In all the functions 
that take a signal set as an argument, we always pass the address of the signal set as the argument. 

Implementation 

If the implementation has fewer signals than bits in an integer, a signal set can be implemented using one bit per 
signal. For the remainder of this section, assume that an implementation has 31 signals and 32-bit integers. The 
sigemptyset  function zeros the integer, and the sigfillset  function turns on all the bits in the integer. These 
two functions can be implemented as macros in the <signal.h>  header: 

   #define sigemptyset(ptr)   (*(ptr) = 0) 
   #define sigfillset(ptr)    (*(ptr) = ~(sigset_t)0, 0) 

 

Note that sigfillset  must return 0, in addition to setting all the bits on in the signal set, so we use C's comma 
operator, which returns the value after the comma as the value of the expression. 



Using this implementation, sigaddset  turns on a single bit and sigdelset  turns off a single bit; sigismember  
tests a certain bit. Since no signal is ever numbered 0, we subtract 1 from the signal number to obtain the bit to 
manipulate. Figure 10.12 shows implementations of these functions. 

Figure 10.12. An implementation of sigaddset, sigdelset, and sigismember 

#include     <signal.h> 
#include     <errno.h> 
 
/* <signal.h> usually defines NSIG to include signa l number 0 */  
#define SIGBAD(signo)   ((signo) <= 0 || (signo) >=  NSIG) 
 
int 
sigaddset(sigset_t *set, int signo) 
{ 
    if (SIGBAD(signo)) { errno = EINVAL; return(-1) ; } 
 
    *set |= 1 << (signo - 1);       /* turn bit on */ 
    return(0); 
} 
 
int 
sigdelset(sigset_t *set, int signo) 
{ 
    if (SIGBAD(signo)) { errno = EINVAL; return(-1) ; } 
 
    *set &= ~(1 << (signo - 1));    /* turn bit off */ 
    return(0); 
} 
 
int 
sigismember(const sigset_t *set, int signo) 
{ 
     if (SIGBAD(signo)) { errno = EINVAL; return(-1 ); } 
 
     return((*set & (1 << (signo - 1))) != 0); 
} 

We might be tempted to implement these three functions as one-line macros in the <signal.h>  header, but 
POSIX.1 requires us to check the signal number argument for validity and to set errno  if it is invalid. This is 
more difficult to do in a macro than in a function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10.12. sigprocmask Function 

Recall from Section 10.8 that the signal mask of a process is the set of signals currently blocked from delivery 
to that process. A process can examine its signal mask, change its signal mask, or perform both operations in 
one step by calling the following function. 

#include <signal.h> 
 
int sigprocmask(int how, const sigset_t *restrict s et,  
                sigset_t *restrict oset); 

 

Returns: 0 if OK, –1 on error 

 

First, if oset is a non-null pointer, the current signal mask for the process is returned through oset. 

Second, if set is a non-null pointer, the how argument indicates how the current signal mask is modified. Figure 
10.13 describes the possible values for how. SIG_BLOCK is an inclusive-OR operation, whereas SIG_SETMASK is 
an assignment. Note that SIGKILL  and SIGSTOP can't be blocked. 

Figure 10.13. Ways to change current signal mask using sigprocmask 

how Description 

SIG_BLOCK The new signal mask for the process is the union of its current signal mask and the signal set 
pointed to by set. That is, set contains the additional signals that we want to block.  

SIG_UNBLOCK The new signal mask for the process is the intersection of its current signal mask and the 
complement of the signal set pointed to by set. That is, set contains the signals that we want to 
unblock.  

SIG_SETMASK The new signal mask for the process is replaced by the value of the signal set pointed to by set. 

 

If set is a null pointer, the signal mask of the process is not changed, and how is ignored. 

After calling sigprocmask , if any unblocked signals are pending, at least one of these signals is delivered to the 
process before sigprocmask  returns. 

The sigprocmask  function is defined only for single-threaded processes. A separate function is provided to 
manipulate a thread's signal mask in a multithreaded process. We'll discuss this in Section 12.8. 

Example 

Figure 10.14 shows a function that prints the names of the signals in the signal mask of the calling 
process. We call this function from the programs shown in Figure 10.20 and Figure 10.22. 

To save space, we don't test the signal mask for every signal that we listed in Figure 10.1. (See 
Exercise 10.9.) 



Figure 10.14. Print the signal mask for the process 

#include "apue.h" 
#include <errno.h> 
 
void 
pr_mask(const char *str) 
{ 
    sigset_t    sigset; 
    int         errno_save; 
 
    errno_save = errno;     /* we can be called by signal handlers */  
    if (sigprocmask(0, NULL, &sigset) < 0) 
        err_sys("sigprocmask error"); 
 
    printf("%s", str); 
    if (sigismember(&sigset, SIGINT))   printf("SIG INT "); 
    if (sigismember(&sigset, SIGQUIT))  printf("SIG QUIT "); 
    if (sigismember(&sigset, SIGUSR1))  printf("SIG USR1 "); 
    if (sigismember(&sigset, SIGALRM))  printf("SIG ALRM "); 
 
    /* remaining signals can go here */ 
 
    printf("\n"); 
    errno = errno_save; 
} 
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8.1. Introduction 

We now turn to the process control provided by the UNIX System. This includes the creation of new processes, 
program execution, and process termination. We also look at the various IDs that are the property of the 
process—real, effective, and saved; user and group IDs—and how they're affected by the process control 
primitives. Interpreter files and the system  function are also covered. We conclude the chapter by looking at the 
process accounting provided by most UNIX systems. This lets us look at the process control functions from a 
different perspective. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8.2. Process Identifiers 

Every process has a unique process ID, a non-negative integer. Because the process ID is the only well-known 
identifier of a process that is always unique, it is often used as a piece of other identifiers, to guarantee 
uniqueness. For example, applications sometimes include the process ID as part of a filename in an attempt to 
generate unique filenames. 

Although unique, process IDs are reused. As processes terminate, their IDs become candidates for reuse. Most 
UNIX systems implement algorithms to delay reuse, however, so that newly created processes are assigned IDs 
different from those used by processes that terminated recently. This prevents a new process from being 
mistaken for the previous process to have used the same ID. 

There are some special processes, but the details differ from implementation to implementation. Process ID 0 is 
usually the scheduler process and is often known as the swapper. No program on disk corresponds to this 
process, which is part of the kernel and is known as a system process. Process ID 1 is usually the init  process 
and is invoked by the kernel at the end of the bootstrap procedure. The program file for this process was 
/etc/init  in older versions of the UNIX System and is /sbin/init  in newer versions. This process is 
responsible for bringing up a UNIX system after the kernel has been bootstrapped. init  usually reads the 
system-dependent initialization files—the /etc/rc*  files or /etc/inittab  and the files in /etc/init.d —and 
brings the system to a certain state, such as multiuser. The init  process never dies. It is a normal user process, 
not a system process within the kernel, like the swapper, although it does run with superuser privileges. Later in 
this chapter, we'll see how init  becomes the parent process of any orphaned child process. 

Each UNIX System implementation has its own set of kernel processes that provide operating system services. 
For example, on some virtual memory implementations of the UNIX System, process ID 2 is the pagedaemon. 
This process is responsible for supporting the paging of the virtual memory system. 

In addition to the process ID, there are other identifiers for every process. The following functions return these 
identifiers. 

#include <unistd.h> 
 
pid_t getpid(void); 

 

Returns: process ID of calling process 

pid_t getppid(void); 

 

Returns: parent process ID of calling process 

uid_t getuid(void); 

 

Returns: real user ID of calling process 

uid_t geteuid(void); 

 

Returns: effective user ID of calling process 

gid_t getgid(void); 

 



#include <unistd.h> 
 
pid_t getpid(void); 

 

Returns: real group ID of calling process 

gid_t getegid(void); 

 

Returns: effective group ID of calling process 

 

Note that none of these functions has an error return. We'll return to the parent process ID in the next section 
when we discuss the fork  function. The real and effective user and group IDs were discussed in Section 4.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.3. fork Function 

An existing process can create a new one by calling the fork  function. 

#include <unistd.h> 
 
pid_t fork(void); 

 

Returns: 0 in child, process ID of child in parent, –1 on error 

 

The new process created by fork  is called the child process. This function is called once but returns twice. The 
only difference in the returns is that the return value in the child is 0, whereas the return value in the parent is 
the process ID of the new child. The reason the child's process ID is returned to the parent is that a process can 
have more than one child, and there is no function that allows a process to obtain the process IDs of its children. 
The reason fork  returns 0 to the child is that a process can have only a single parent, and the child can always 
call getppid  to obtain the process ID of its parent. (Process ID 0 is reserved for use by the kernel, so it's not 
possible for 0 to be the process ID of a child.) 

Both the child and the parent continue executing with the instruction that follows the call to fork . The child is a 
copy of the parent. For example, the child gets a copy of the parent's data space, heap, and stack. Note that this 
is a copy for the child; the parent and the child do not share these portions of memory. The parent and the child 
share the text segment (Section 7.6). 

Current implementations don't perform a complete copy of the parent's data, stack, and heap, since a fork  is 
often followed by an exec . Instead, a technique called copy-on-write (COW) is used. These regions are shared 
by the parent and the child and have their protection changed by the kernel to read-only. If either process tries to 
modify these regions, the kernel then makes a copy of that piece of memory only, typically a "page" in a virtual 
memory system. Section 9.2 of Bach [1986] and Sections 5.6 and 5.7 of McKusick et al. [1996] provide more 
detail on this feature. 

Variations of the fork  function are provided by some platforms. All four platforms discussed in this book 
support the vfork (2) variant discussed in the next section. 

Linux 2.4.22 also provides new process creation through the clone (2) system call. This is a generalized form of 
fork  that allows the caller to control what is shared between parent and child. 

FreeBSD 5.2.1 provides the rfork (2) system call, which is similar to the Linux clone  system call. The rfork  
call is derived from the Plan 9 operating system (Pike et al. [1995]). 

Solaris 9 provides two threads libraries: one for POSIX threads (pthreads) and one for Solaris threads. The 
behavior of fork  differs between the two thread libraries. For POSIX threads, fork  creates a process containing 
only the calling thread, but for Solaris threads, fork  creates a process containing copies of all threads from the 
process of the calling thread. To provide similar semantics as POSIX threads, Solaris provides the fork1  
function, which can be used to create a process that duplicates only the calling thread, regardless of the thread 
library used. Threads are discussed in detail in Chapters 11 and 12. 

Example 

The program in Figure 8.1 demonstrates the fork  function, showing how changes to variables in a child process 



do not affect the value of the variables in the parent process. 

If we execute this program, we get 

$ ./a.out 
a write to stdout 
before fork 
pid = 430, glob = 7, var = 89      child's variable s were changed 
pid = 429, glob = 6, var = 88      parent's copy wa s not changed 
$ ./a.out > temp.out 
$ cat temp.out 
a write to stdout 
before fork 
pid = 432, glob = 7, var = 89 
before fork 
pid = 431, glob = 6, var = 88 

 

In general, we never know whether the child starts executing before the parent or vice versa. This depends on 
the scheduling algorithm used by the kernel. If it's required that the child and parent synchronize, some form of 
interprocess communication is required. In the program shown in Figure 8.1, we simply have the parent put 
itself to sleep for 2 seconds, to let the child execute. There is no guarantee that this is adequate, and we talk 
about this and other types of synchronization in Section 8.9 when we discuss race conditions. In Section 10.16, 
we show how to use signals to synchronize a parent and a child after a fork . 

When we write to standard output, we subtract 1 from the size of buf  to avoid writing the terminating null byte. 
Although strlen  will calculate the length of a string not including the terminating null byte, sizeof  calculates 
the size of the buffer, which does include the terminating null byte. Another difference is that using strlen  
requires a function call, whereas sizeof  calculates the buffer length at compile time, as the buffer is initialized 
with a known string, and its size is fixed. 

Note the interaction of fork  with the I/O functions in the program in Figure 8.1. Recall from Chapter 3 that the 
write  function is not buffered. Because write  is called before the fork , its data is written once to standard 
output. The standard I/O library, however, is buffered. Recall from Section 5.12 that standard output is line 
buffered if it's connected to a terminal device; otherwise, it's fully buffered. When we run the program 
interactively, we get only a single copy of the printf  line, because the standard output buffer is flushed by the 
newline. But when we redirect standard output to a file, we get two copies of the printf  line. In this second 
case, the printf  before the fork  is called once, but the line remains in the buffer when fork  is called. This 
buffer is then copied into the child when the parent's data space is copied to the child. Both the parent and the 
child now have a standard I/O buffer with this line in it. The second printf , right before the exit , just appends 
its data to the existing buffer. When each process terminates, its copy of the buffer is finally flushed. 

Figure 8.1. Example of fork function 

#include "apue.h" 
 
int     glob = 6;       /* external variable in ini tialized data */  
char    buf[] = "a write to stdout\n"; 
 
int 
main(void) 
{ 
    int       var;      /* automatic variable on th e stack */ 
    pid_t     pid; 
 



    var = 88; 
    if (write(STDOUT_FILENO, buf, sizeof(buf)-1) !=  sizeof(buf)-1) 
        err_sys("write error"); 
    printf("before fork\n");    /* we don't flush s tdout */ 
 
    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid == 0) {      /* child */ 
        glob++;                 /* modify variables  */ 
        var++; 
    } else { 
        sleep(2);               /* parent */ 
    } 
 
    printf("pid = %d, glob = %d, var = %d\n", getpi d(), glob, var);  
    exit(0); 
} 

File Sharing 

When we redirect the standard output of the parent from the program in Figure 8.1, the child's standard output is 
also redirected. Indeed, one characteristic of fork  is that all file descriptors that are open in the parent are 
duplicated in the child. We say "duplicated" because it's as if the dup  function had been called for each 
descriptor. The parent and the child share a file table entry for every open descriptor (recall Figure 3.8). 

Consider a process that has three different files opened for standard input, standard output, and standard error. 
On return from fork , we have the arrangement shown in Figure 8.2. 

Figure 8.2. Sharing of open files between parent and child after fork 

 
 

It is important that the parent and the child share the same file offset. Consider a process that fork s a child, then 
wait s for the child to complete. Assume that both processes write to standard output as part of their normal 
processing. If the parent has its standard output redirected (by a shell, perhaps) it is essential that the parent's 



file offset be updated by the child when the child writes to standard output. In this case, the child can write to 
standard output while the parent is wait ing for it; on completion of the child, the parent can continue writing to 
standard output, knowing that its output will be appended to whatever the child wrote. If the parent and the 
child did not share the same file offset, this type of interaction would be more difficult to accomplish and would 
require explicit actions by the parent. 

If both parent and child write to the same descriptor, without any form of synchronization, such as having the 
parent wait  for the child, their output will be intermixed (assuming it's a descriptor that was open before the 
fork ). Although this is possible—we saw it in Figure 8.2—it's not the normal mode of operation. 

There are two normal cases for handling the descriptors after a fork . 

1. The parent waits for the child to complete. In this case, the parent does not need to do anything with its 
descriptors. When the child terminates, any of the shared descriptors that the child read from or wrote to 
will have their file offsets updated accordingly. 

2. Both the parent and the child go their own ways. Here, after the fork , the parent closes the descriptors 
that it doesn't need, and the child does the same thing. This way, neither interferes with the other's open 
descriptors. This scenario is often the case with network servers. 

Besides the open files, there are numerous other properties of the parent that are inherited by the child: 

• Real user ID, real group ID, effective user ID, effective group ID 
• Supplementary group IDs 
• Process group ID 
• Session ID 
• Controlling terminal 
• The set-user-ID and set-group-ID flags 
• Current working directory 
• Root directory 
• File mode creation mask 
• Signal mask and dispositions 
• The close-on-exec flag for any open file descriptors 
• Environment 
• Attached shared memory segments 
• Memory mappings 
• Resource limits 

The differences between the parent and child are 

• The return value from fork  
• The process IDs are different 
• The two processes have different parent process IDs: the parent process ID of the child is the parent; the 

parent process ID of the parent doesn't change 
• The child's tms_utime , tms_stime , tms_cutime , and tms_cstime  values are set to 0 
• File locks set by the parent are not inherited by the child 
• Pending alarms are cleared for the child 
• The set of pending signals for the child is set to the empty set 

Many of these features haven't been discussed yet—we'll cover them in later chapters. 



The two main reasons for fork  to fail are (a) if too many processes are already in the system, which usually 
means that something else is wrong, or (b) if the total number of processes for this real user ID exceeds the 
system's limit. Recall from Figure 2.10 that CHILD_MAX specifies the maximum number of simultaneous 
processes per real user ID. 

There are two uses for fork : 

1. When a process wants to duplicate itself so that the parent and child can each execute different sections 
of code at the same time. This is common for network servers—the parent waits for a service request 
from a client. When the request arrives, the parent calls fork  and lets the child handle the request. The 
parent goes back to waiting for the next service request to arrive. 

2. When a process wants to execute a different program. This is common for shells. In this case, the child 
does an exec  (which we describe in Section 8.10) right after it returns from the fork . 

Some operating systems combine the operations from step 2—a fork  followed by an exec —into a single 
operation called a spawn. The UNIX System separates the two, as there are numerous cases where it is useful to 
fork  without doing an exec . Also, separating the two allows the child to change the per-process attributes 
between the fork  and the exec , such as I/O redirection, user ID, signal disposition, and so on. We'll see 
numerous examples of this in Chapter 15. 

The Single UNIX Specification does include spawn  interfaces in the advanced real-time option group. These 
interfaces are not intended to be replacements for fork  and exec , however. They are intended to support 
systems that have difficulty implementing fork  efficiently, especially systems without hardware support for 
memory management. 
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15.1. Introduction 

In Chapter 8, we described the process control primitives and saw how to invoke multiple processes. But the 
only way for these processes to exchange information is by passing open files across a fork  or an exec  or 
through the file system. We'll now describe other techniques for processes to communicate with each other: IPC, 
or interprocess communication. 

In the past, UNIX System IPC was a hodgepodge of various approaches, few of which were portable across all 
UNIX system implementations. Through the POSIX and The Open Group (formerly X/Open) standardization 
efforts, the situation has improved, but differences still exist. Figure 15.1 summarizes the various forms of IPC 
that are supported by the four implementations discussed in this text. 

Figure 15.1. Summary of UNIX System IPC 

IPC type SUS FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9 

half-duplex pipes • (full) • • (full) 

FIFOs • • • • • 

full-duplex pipes allowed •,UDS opt, UDS UDS •, UDS 

named full-duplex pipes XSI option UDS opt, UDS UDS •, UDS 

message queues XSI • •   • 

semaphores XSI • • • • 

shared memory XSI • • • • 

sockets • • • • • 

STREAMS XSI option   opt   • 

 

Note that the Single UNIX Specification (the "SUS" column) allows an implementation to support full-duplex 
pipes, but requires only half-duplex pipes. An implementation that supports full-duplex pipes will still work 
with correctly written applications that assume that the underlying operating system supports only half-duplex 
pipes. We use "(full)" instead of a bullet to show implementations that support half-duplex pipes by using full-
duplex pipes. 

In Figure 15.1, we show a bullet where basic functionality is supported. For full-duplex pipes, if the feature can 
be provided through UNIX domain sockets (Section 17.3), we show "UDS" in the column. Some 
implementations support the feature with pipes and UNIX domain sockets, so these entries have both "UDS" 
and a bullet. 

As we mentioned in Section 14.4, support for STREAMS is optional in the Single UNIX Specification. Named 
full-duplex pipes are provided as mounted STREAMS-based pipes and so are also optional in the Single UNIX 
Specification. On Linux, support for STREAMS is available in a separate, optional package called "LiS" (for 
Linux STREAMS). We show "opt" where the platform provides support for the feature through an optional 
package—one that is not usually installed by default. 



The first seven forms of IPC in Figure 15.1 are usually restricted to IPC between processes on the same host. 
The final two rows—sockets and STREAMS—are the only two that are generally supported for IPC between 
processes on different hosts. 

We have divided the discussion of IPC into three chapters. In this chapter, we examine classical IPC: pipes, 
FIFOs, message queues, semaphores, and shared memory. In the next chapter, we take a look at network IPC 
using the sockets mechanism. In Chapter 17, we take a look at some advanced features of IPC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



15.2. Pipes 

Pipes are the oldest form of UNIX System IPC and are provided by all UNIX systems. Pipes have two 
limitations. 

1. Historically, they have been half duplex (i.e., data flows in only one direction). Some systems now 
provide full-duplex pipes, but for maximum portability, we should never assume that this is the case. 

2. Pipes can be used only between processes that have a common ancestor. Normally, a pipe is created by a 
process, that process calls fork , and the pipe is used between the parent and the child. 

We'll see that FIFOs (Section 15.5) get around the second limitation, and that UNIX domain sockets (Section 
17.3) and named STREAMS-based pipes (Section 17.2.2) get around both limitations. 

Despite these limitations, half-duplex pipes are still the most commonly used form of IPC. Every time you type 
a sequence of commands in a pipeline for the shell to execute, the shell creates a separate process for each 
command and links the standard output of one to the standard input of the next using a pipe. 

A pipe is created by calling the pipe  function. 

#include <unistd.h> 
 
int pipe(int filedes[2]);  

 

Returns: 0 if OK, –1 on error 

 

Two file descriptors are returned through the filedes argument: filedes[0] is open for reading, and filedes[1] is 
open for writing. The output of filedes[1] is the input for filedes[0]. 

Pipes are implemented using UNIX domain sockets in 4.3BSD, 4.4BSD, and Mac OS X 10.3. Even though 
UNIX domain sockets are full duplex by default, these operating systems hobble the sockets used with pipes so 
that they operate in half-duplex mode only. 

POSIX.1 allows for an implementation to support full-duplex pipes. For these implementations, filedes[0] and 
filedes[1] are open for both reading and writing. 

Two ways to picture a half-duplex pipe are shown in Figure 15.2. The left half of the figure shows the two ends 
of the pipe connected in a single process. The right half of the figure emphasizes that the data in the pipe flows 
through the kernel. 

 

 

 

 

 

 



Figure 15.2. Two ways to view a half-duplex pipe 

 
 

The fstat  function (Section 4.2) returns a file type of FIFO for the file descriptor of either end of a pipe. We 
can test for a pipe with the S_ISFIFO  macro. 

POSIX.1 states that the st_size  member of the stat  structure is undefined for pipes. But when the fstat  
function is applied to the file descriptor for the read end of the pipe, many systems store in st_size  the number 
of bytes available for reading in the pipe. This is, however, nonportable. 

A pipe in a single process is next to useless. Normally, the process that calls pipe  then calls fork , creating an 
IPC channel from the parent to the child or vice versa. Figure 15.3 shows this scenario. 

Figure 15.3. Half-duplex pipe after a fork 

 

What happens after the fork  depends on which direction of data flow we want. For a pipe from the parent to the 
child, the parent closes the read end of the pipe (fd[0] ), and the child closes the write end (fd[1] ). Figure 15.4 
shows the resulting arrangement of descriptors. 

 

 

 



Figure 15.4. Pipe from parent to child 

 

For a pipe from the child to the parent, the parent closes fd[1] , and the child closes fd[0] . 

When one end of a pipe is closed, the following two rules apply. 

1. If we read  from a pipe whose write end has been closed, read  returns 0 to indicate an end of file after 
all the data has been read. (Technically, we should say that this end of file is not generated until there are 
no more writers for the pipe. It's possible to duplicate a pipe descriptor so that multiple processes have 
the pipe open for writing. Normally, however, there is a single reader and a single writer for a pipe. 
When we get to FIFOs in the next section, we'll see that often there are multiple writers for a single 
FIFO.) 

2. If we write  to a pipe whose read end has been closed, the signal SIGPIPE  is generated. If we either 
ignore the signal or catch it and return from the signal handler, write  returns –1 with errno  set to EPIPE. 

When we're writing to a pipe (or FIFO), the constant PIPE_BUF specifies the kernel's pipe buffer size. A write  
of PIPE_BUF bytes or less will not be interleaved with the write s from other processes to the same pipe (or 
FIFO). But if multiple processes are writing to a pipe (or FIFO), and if we write  more than PIPE_BUF bytes, 
the data might be interleaved with the data from the other writers. We can determine the value of PIPE_BUF by 
using pathconf  or fpathconf  (recall Figure 2.11). 

Example 

Figure 15.5 shows the code to create a pipe between a parent and its child and to send data down the 
pipe. 

Figure 15.5. Send data from parent to child over a pipe 

#include "apue.h" 
 
int 
main(void) 
{ 
    int     n; 
    int     fd[2]; 
    pid_t   pid; 
    char    line[MAXLINE]; 
 



    if (pipe(fd) < 0) 
        err_sys("pipe error"); 
    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid > 0) {       /* parent */  
        close(fd[0]); 
        write(fd[1], "hello world\n", 12); 
    } else {                /* child */ 
        close(fd[1]); 
        n = read(fd[0], line, MAXLINE); 
        write(STDOUT_FILENO, line, n); 
    } 
    exit(0); 
} 

In the previous example, we called read  and write  directly on the pipe descriptors. What is more interesting is 
to duplicate the pipe descriptors onto standard input or standard output. Often, the child then runs some other 
program, and that program can either read from its standard input (the pipe that we created) or write to its 
standard output (the pipe). 

Example 

Consider a program that displays some output that it has created, one page at a time. Rather than 
reinvent the pagination done by several UNIX system utilities, we want to invoke the user's favorite 
pager. To avoid writing all the data to a temporary file and calling system  to display that file, we 
want to pipe the output directly to the pager. To do this, we create a pipe, fork  a child process, set 
up the child's standard input to be the read end of the pipe, and exec  the user's pager program. 
Figure 15.6 shows how to do this. (This example takes a command-line argument to specify the 
name of a file to display. Often, a program of this type would already have the data to display to the 
terminal in memory.) 

Before calling fork , we create a pipe. After the fork , the parent closes its read end, and the child 
closes its write end. The child then calls dup2  to have its standard input be the read end of the pipe. 
When the pager program is executed, its standard input will be the read end of the pipe. 

When we duplicate a descriptor onto another (fd[0]  onto standard input in the child), we have to be 
careful that the descriptor doesn't already have the desired value. If the descriptor already had the 
desired value and we called dup2  and close , the single copy of the descriptor would be closed. 
(Recall the operation of dup2  when its two arguments are equal, discussed in Section 3.12). In this 
program, if standard input had not been opened by the shell, the fopen  at the beginning of the 
program should have used descriptor 0, the lowest unused descriptor, so fd[0]  should never equal 
standard input. Nevertheless, whenever we call dup2  and close  to duplicate a descriptor onto 
another, we'll always compare the descriptors first, as a defensive programming measure. 

Note how we try to use the environment variable PAGER to obtain the name of the user's pager 
program. If this doesn't work, we use a default. This is a common usage of environment variables. 

Figure 15.6. Copy file to pager program 

#include "apue.h" 
#include <sys/wait.h> 
 
#define DEF_PAGER   "/bin/more"     /* default page r program */ 
 



int 
main(int argc, char *argv[]) 
{ 
    int    n; 
    int    fd[2]; 
    pid_t  pid; 
    char   *pager, *argv0; 
    char   line[MAXLINE]; 
    FILE   *fp; 
 
    if (argc != 2) 
        err_quit("usage: a.out <pathname>"); 
 
    if ((fp = fopen(argv[1], "r")) == NULL) 
        err_sys("can't open %s", argv[1]); 
    if (pipe(fd) < 0) 
        err_sys("pipe error"); 
 
    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid > 0) {                              /* parent */  
        close(fd[0]);       /* close read end */ 
 
        /* parent copies argv[1] to pipe */ 
        while (fgets(line, MAXLINE, fp) != NULL) { 
            n = strlen(line); 
            if (write(fd[1], line, n) != n) 
                err_sys("write error to pipe"); 
        } 
        if (ferror(fp)) 
            err_sys("fgets error"); 
 
        close(fd[1]);   /* close write end of pipe for reader */ 
 
        if (waitpid(pid, NULL, 0) < 0) 
            err_sys("waitpid error"); 
        exit(0); 
    } else {                                        /* child */ 
        close(fd[1]);   /* close write end */ 
        if (fd[0] != STDIN_FILENO) { 
            if (dup2(fd[0], STDIN_FILENO) != STDIN_ FILENO) 
                err_sys("dup2 error to stdin"); 
            close(fd[0]);   /* don't need this afte r dup2 */ 
        } 
 
        /* get arguments for execl() */ 
        if ((pager = getenv("PAGER")) == NULL) 
            pager = DEF_PAGER; 
        if ((argv0 = strrchr(pager, '/')) != NULL) 
            argv0++;        /* step past rightmost slash */ 
        else 
            argv0 = pager;  /* no slash in pager */  
 
        if (execl(pager, argv0, (char *)0) < 0) 
            err_sys("execl error for %s", pager); 
    } 
    exit(0); 
} 

Example 



Recall the five functions TELL_WAIT, TELL_PARENT, TELL_CHILD, WAIT_PARENT, and WAIT_CHILD 
from Section 8.9. In Figure 10.24, we showed an implementation using signals. Figure 15.7 shows 
an implementation using pipes. 

We create two pipes before the fork , as shown in Figure 15.8. The parent writes the character "p" 
across the top pipe when TELL_CHILD is called, and the child writes the character "c" across the 
bottom pipe when TELL_PARENT is called. The corresponding WAIT_xxx  functions do a blocking 
read  for the single character. 

Note that each pipe has an extra reader, which doesn't matter. That is, in addition to the child reading 
from pfd1[0] , the parent also has this end of the top pipe open for reading. This doesn't affect us, 
since the parent doesn't try to read from this pipe. 

Figure 15.7. Routines to let a parent and child synchronize 

 
#include "apue.h" 
 
static int  pfd1[2], pfd2[2]; 
 
void 
TELL_WAIT(void) 
{ 
    if (pipe(pfd1) < 0 || pipe(pfd2) < 0) 
        err_sys("pipe error"); 
} 
 
void 
TELL_PARENT(pid_t pid) 
{ 
    if (write(pfd2[1], "c", 1) != 1) 
        err_sys("write error"); 
} 
 
void 
WAIT_PARENT(void) 
{ 
    char    c; 
 
    if (read(pfd1[0], &c, 1) != 1) 
        err_sys("read error"); 
 
    if (c != 'p') 
        err_quit("WAIT_PARENT: incorrect data");  
} 
 
void 
TELL_CHILD(pid_t pid) 
{ 
    if (write(pfd1[1], "p", 1) != 1) 
        err_sys("write error"); 
} 
 
void 
WAIT_CHILD(void) 
{ 
    char    c; 
 
    if (read(pfd2[0], &c, 1) != 1) 



        err_sys("read error"); 
 
    if (c != 'c') 
        err_quit("WAIT_CHILD: incorrect data"); 
} 

Figure 15.8. Using two pipes for parent–child synchronization 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



15.3. popen and pclose Functions 

Since a common operation is to create a pipe to another process, to either read its output or send it input, the 
standard I/O library has historically provided the popen  and pclose  functions. These two functions handle all 
the dirty work that we've been doing ourselves: creating a pipe, fork ing a child, closing the unused ends of the 
pipe, executing a shell to run the command, and waiting for the command to terminate. 

 
#include <stdio.h> 
 
FILE *popen(const char *cmdstring, const char *type );  

 

Returns: file pointer if OK, NULL on error 

int pclose(FILE *fp); 

 

Returns: termination status of cmdstring, or –1 on error 

 

The function popen  does a fork  and exec  to execute the cmdstring, and returns a standard I/O file pointer. If 
type is "r" , the file pointer is connected to the standard output of cmdstring (Figure 15.9). 

Figure 15.9. Result of fp = popen(cmdstring, "r") 

 

If type is "w" , the file pointer is connected to the standard input of cmdstring, as shown in Figure 15.10. 

Figure 15.10. Result of fp = popen(cmdstring, "w") 

 

One way to remember the final argument to popen  is to remember that, like fopen , the returned file pointer is 
readable if type is "r"  or writable if type is "w" . 

The pclose  function closes the standard I/O stream, waits for the command to terminate, and returns the 
termination status of the shell. (We described the termination status in Section 8.6. The system  function, 
described in Section 8.13, also returns the termination status.) If the shell cannot be executed, the termination 
status returned by pclose  is as if the shell had executed exit(127) . 

The cmdstring is executed by the Bourne shell, as in 

sh -c cmdstring 

 

This means that the shell expands any of its special characters in cmdstring. This allows us to say, for example, 



   fp = popen("ls *.c", "r"); 
 
or 
 
   fp = popen("cmd 2>&1", "r"); 

 
 

Example 

Let's redo the program from Figure 15.6, using popen . This is shown in Figure 15.11. 

Using popen  reduces the amount of code we have to write. 

The shell command ${PAGER:-more}  says to use the value of the shell variable PAGER if it is defined 
and non-null; otherwise, use the string more . 

Figure 15.11. Copy file to pager program using popen 

#include "apue.h" 
#include <sys/wait.h> 
 
#define PAGER   "${PAGER:-more}" /* environment var iable, or default */  
 
int 
main(int argc, char *argv[]) 
{ 
    char    line[MAXLINE]; 
    FILE    *fpin, *fpout; 
 
    if (argc != 2) 
        err_quit("usage: a.out <pathname>"); 
    if ((fpin = fopen(argv[1], "r")) == NULL) 
        err_sys("can't open %s", argv[1]); 
 
    if ((fpout = popen(PAGER, "w")) == NULL) 
        err_sys("popen error"); 
 
    /* copy argv[1] to pager */ 
    while (fgets(line, MAXLINE, fpin) != NULL) { 
        if (fputs(line, fpout) == EOF) 
            err_sys("fputs error to pipe"); 
    } 
    if (ferror(fpin)) 
        err_sys("fgets error"); 
    if (pclose(fpout) == -1) 
        err_sys("pclose error"); 
 
    exit(0); 
} 
 
 
      

 

Example—popen and pclose Functions 

Figure 15.12 shows our version of popen  and pclose . 



Although the core of popen  is similar to the code we've used earlier in this chapter, there are many 
details that we need to take care of. First, each time popen  is called, we have to remember the 
process ID of the child that we create and either its file descriptor or FILE  pointer. We choose to 
save the child's process ID in the array childpid , which we index by the file descriptor. This way, 
when pclose  is called with the FILE  pointer as its argument, we call the standard I/O function 
fileno  to get the file descriptor, and then have the child process ID for the call to waitpid . Since 
it's possible for a given process to call popen  more than once, we dynamically allocate the childpid  
array (the first time popen  is called), with room for as many children as there are file descriptors. 

Calling pipe  and fork  and then duplicating the appropriate descriptors for each process is similar to 
what we did earlier in this chapter. 

POSIX.1 requires that popen  close any streams that are still open in the child from previous calls to 
popen . To do this, we go through the childpid  array in the child, closing any descriptors that are 
still open. 

What happens if the caller of pclose  has established a signal handler for SIGCHLD? The call to 
waitpid  from pclose  would return an error of EINTR. Since the caller is allowed to catch this signal 
(or any other signal that might interrupt the call to waitpid ), we simply call waitpid  again if it is 
interrupted by a caught signal. 

Note that if the application calls waitpid  and obtains the exit status of the child created by popen , 
we will call waitpid  when the application calls pclose , find that the child no longer exists, and 
return –1 with errno  set to ECHILD. This is the behavior required by POSIX.1 in this situation. 

Some early versions of pclose  returned an error of EINTR if a signal interrupted the wait . Also, 
some early versions of pclose  blocked or ignored the signals SIGINT , SIGQUIT, and SIGHUP during 
the wait . This is not allowed by POSIX.1. 

Figure 15.12. The popen and pclose functions 

#include "apue.h" 
#include <errno.h> 
#include <fcntl.h> 
#include <sys/wait.h> 
 
/* 
 * Pointer to array allocated at run-time. 
 */ 
static pid_t    *childpid = NULL; 
 
/* 
 * From our open_max(), Figure 2.16 . 
 */ 
static int      maxfd; 
 
FILE * 
popen(const char *cmdstring, const char *type) 
{ 
    int     i; 
    int     pfd[2]; 
    pid_t   pid; 
    FILE    *fp; 
 
    /* only allow "r" or "w" */ 



    if ((type[0] != 'r' && type[0] != 'w') || type[ 1] != 0) { 
        errno = EINVAL;     /* required by POSIX */  
        return(NULL); 
    } 
 
    if (childpid == NULL) {     /* first time throu gh */ 
        /* allocate zeroed out array for child pids  */ 
        maxfd = open_max(); 
        if ((childpid = calloc(maxfd, sizeof(pid_t) )) == NULL) 
            return(NULL); 
    } 
 
    if (pipe(pfd) < 0) 
        return(NULL);   /* errno set by pipe() */ 
 
    if ((pid = fork()) < 0) { 
        return(NULL);   /* errno set by fork() */ 
    } else if (pid == 0) {                           /* child */ 
        if (*type == 'r') { 
            close(pfd[0]); 
            if (pfd[1] != STDOUT_FILENO) { 
                dup2(pfd[1], STDOUT_FILENO); 
                close(pfd[1]); 
            } 
        } else { 
            close(pfd[1]); 
            if (pfd[0] != STDIN_FILENO) { 
                dup2(pfd[0], STDIN_FILENO); 
                close(pfd[0]); 
            } 
        } 
 
        /* close all descriptors in childpid[] */ 
        for (i = 0; i < maxfd; i++) 
            if (childpid[i] > 0) 
                close(i); 
 
        execl("/bin/sh", "sh", "-c", cmdstring, (ch ar *)0); 
        _exit(127); 
    } 
 
    /* parent continues... */ 
    if (*type == 'r') { 
        close(pfd[1]); 
        if ((fp = fdopen(pfd[0], type)) == NULL) 
            return(NULL); 
    } else { 
        close(pfd[0]); 
        if ((fp = fdopen(pfd[1], type)) == NULL) 
            return(NULL); 
    } 
 
    childpid[fileno(fp)] = pid; /* remember child p id for this fd */  
    return(fp); 
} 
 
 
int 
pclose(FILE *fp) 
{ 
    int     fd, stat; 
    pid_t   pid; 



 
    if (childpid == NULL) { 
        errno = EINVAL; 
        return(-1);     /* popen() has never been c alled */ 
    } 
 
    fd = fileno(fp); 
    if ((pid = childpid[fd]) == 0) { 
        errno = EINVAL; 
        return(-1);     /* fp wasn't opened by pope n() */ 
    } 
 
    childpid[fd] = 0; 
    if (fclose(fp) == EOF) 
        return(-1); 
 
    while (waitpid(pid, &stat, 0) < 0) 
        if (errno != EINTR) 
            return(-1); /* error other than EINTR f rom waitpid() */ 
 
    return(stat);   /* return child's termination s tatus */ 
} 

Note that popen  should never be called by a set-user-ID or set-group-ID program. When it executes the 
command, popen  does the equivalent of 

    execl("/bin/sh", "sh", "-c", command, NULL); 

 

which executes the shell and command with the environment inherited by the caller. A malicious user can 
manipulate the environment so that the shell executes commands other than those intended, with the elevated 
permissions granted by the set-ID file mode. 

One thing that popen  is especially well suited for is executing simple filters to transform the input or output of 
the running command. Such is the case when a command wants to build its own pipeline. 

Example 

Consider an application that writes a prompt to standard output and reads a line from standard input. 
With popen , we can interpose a program between the application and its input to transform the 
input. Figure 15.13 shows the arrangement of processes. 

The transformation could be pathname expansion, for example, or providing a history mechanism 
(remembering previously entered commands). 

Figure 15.14 shows a simple filter to demonstrate this operation. The filter copies standard input to 
standard output, converting any uppercase character to lowercase. The reason we're careful to 
fflush  standard output after writing a newline is discussed in the next section when we talk about 
coprocesses. 

We compile this filter into the executable file myuclc , which we then invoke from the program in 
Figure 15.15 using popen . 

We need to call fflush  after writing the prompt, because the standard output is normally line 
buffered, and the prompt does not contain a newline. 



Figure 15.13. Transforming input using popen 

 

Figure 15.14. Filter to convert uppercase characters to lowercase 

#include "apue.h" 
#include <ctype.h> 
 
int 
main(void) 
{ 
    int     c; 
 
    while ((c = getchar()) != EOF) {  
        if (isupper(c)) 
            c = tolower(c); 
        if (putchar(c) == EOF) 
            err_sys("output error");  
        if (c == '\n') 
            fflush(stdout); 
    } 
    exit(0); 
} 

 

Figure 15.15. Invoke uppercase/lowercase filter to read commands 

#include "apue.h" 
#include <sys/wait.h> 
 
int 
main(void) 
{ 
    char    line[MAXLINE]; 
    FILE    *fpin; 
 
    if ((fpin = popen("myuclc", "r")) == NULL) 
        err_sys("popen error"); 
    for ( ; ; ) { 
        fputs("prompt> ", stdout); 
        fflush(stdout); 
        if (fgets(line, MAXLINE, fpin) == NULL) /* read from pipe */  
            break; 
        if (fputs(line, stdout) == EOF) 
            err_sys("fputs error to pipe"); 
    } 
    if (pclose(fpin) == -1) 
        err_sys("pclose error"); 
    putchar('\n'); 
    exit(0); 


