Chapter 10. Signals

Section 10.1. Introduction

Section 10.2. Signal Concepts

Section 10.3. signal Function

Section 10.4. Unreliable Signals

Section 10.5. Interrupted System Calls

Section 10.6. Reentrant Functions

Section 10.7. SIGCLD Semantics

Section 10.8. Reliable-Signal Terminology and Sdiman

Section 10.9. kill and raise Functions

Section 10.10. alarm and pause Functions

Section 10.11. Signal Sets

Section 10.12. sigprocmask Function

Section 10.13. sigpending Function

Section 10.14. sigaction Function

Section 10.15. sigsetjmp and siglongjmp Functions

Section 10.16. sigsuspend Function

Section 10.17. abort Function

Section 10.18. system Function

Section 10.19. sleep Function

Section 10.20. Job-Control Signals

Section 10.21. Additional Features

Section 10.22. Summary

Exercises

10.11. Signal Sets

We need a data type to represent multiple signalsigreal set. We'll use this with such functions as
sigprocmask (in the next section) to tell the kernel not tlmal any of the signals in the set to occur. As we
mentioned earlier, the number of different sigreals exceed the number of bits in an integer, geireral, we
can't use an integer to represent the set wittbarger signal. POSIX.1 defines the data tyjgeet t to
contain a signal set and the following five funosdo manipulate signal sets.

#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

All four return: 0 if OK, =1 on error

int sigismember(const sigset_t *set, int signo);

Returns: 1 if true, O if false, —1 on erior

The functionsigemptyset initializes the signal set pointed to by set sat #ill signals are excluded. The
functionsigfillset initializes the signal set so that all signalsiacduded. All applications have to call either
sigemptyset OfF sigfillset once for each signal set, before using the siggialbecause we cannot assume
that the C initialization for external and statariables (0) corresponds to the implementatiorigsfed sets on a
given system.

Once we have initialized a signal set, we can axtidelete specific signals in the set. The functigaddset
adds a single signal to an existing set, siiiklset removes a single signal from a set. In all theetioms
that take a signal set as an argument, we alwasstha address of the signal set as the argument.

Implementation

If the implementation has fewer signals than itan integer, a signal set can be implemented wsiedit per
signal. For the remainder of this section, assuraedn implementation has 31 signals and 32-egens. The
sigemptyset ~ function zeros the integer, and Hgfillset function turns on all the bits in the integer. $ae
two functions can be implemented as macros irxélypal.h> header:

#define sigemptyset(ptr) (*(ptr) = 0)
#define sidfillset(ptr) (*(ptr) = “(sigset_t)0, 0)

Note thatsigfillset must return 0, in addition to setting all the latsin the signal set, so we use C's comma
operator, which returns the value after the comstha value of the expression.

Using this implementatiorjgaddset turns on a single bit arhdelset turns off a single bitsigismember
tests a certain bit. Since no signal is ever nuet®; we subtract 1 from the signal number to olbitaé bit to
manipulateFigure 10.12hows implementations of these functions.

Figure 10.12. An implementation cfi gaddset , si gdel set , andsi gi smenber

#include <signal.h>
#include <errno.h>

/* <signal.h> usually defines NSIG to include signa I number 0 */
#define SIGBAD(signo) ((signo) <=0 || (signo) >= NSIG)
int

sigaddset(sigset_t *set, int signo)

if (SIGBAD(signo)) { errno = EINVAL; return(-1) ;)
set |= 1 << (signo - 1); / turn bit on */
return(0);

}

int

sigdelset(sigset_t *set, int signo)

if (SIGBAD(signo)) { errno = EINVAL; return(-1) ;)
*set &= “(1 << (signo - 1)); /*turn bit off */
return(0);

int
sigismember(const sigset_t *set, int signo)

if (SIGBAD(signo)) { errno = EINVAL; return(-1); }

return((*set & (1 << (signo - 1))) '=0);

}

We might be tempted to implement these three fanstas one-line macros in thegnal.h> header, but
POSIX.1 requires us to check the signal numberraegu for validity and to seiro if it is invalid. This is
more difficult to do in a macro than in a function.

10.12.si gpr ocmask Function

Recall fromSection 10.8hat the signal mask of a process is the segofads currently blocked from delivery
to that process. A process can examine its sigaakichange its signal mask, or perform both omerain
one step by calling the following function.

#include <signal.h>

int sigprocmask(int how, const sigset_t *restrict s et,
sigset_t *restrict oset);

Returns: 0 if OK, —1 on error

First, if oset is a non-null pointer, the currelginsl mask for the process is returned through. oset
Second, if set is a non-null pointer, the how argnhindicates how the current signal mask is medifrigure

10.13describes the possible values for hews_BLOCKiIs an inclusive-OR operation, whereas_SETMASKIS
an assignment. Note thailGKILL andsSIGSTOPcan't be blocked.

Figure 10.13. Ways to change current signal maskngssi gpr ocmask

how Description

SIG_BLOCK | The new signal mask for the process is the unidtsa@urrent signal mask and the signal set
pointed to by set. That is, set contains the amluhti signals that we want to block.

SIG_UNBLOCK| The new signal mask for the process is the intémseof its current signal mask and the
complement of the signal set pointed to by sett i a&et contains the signals that we want (o
unblock.

1%

SIG_SETMASK| The new signal mask for the process is replacdtidyalue of the signal set pointed to by set.

If set is a null pointer, the signal mask of theqass is not changed, and how is ignored.

After callingsigprocmask , if any unblocked signals are pending, at leastafrthese signals is delivered to the
process beforsigprocmask returns.

Thesigprocmask function is defined only for single-threaded presxs. A separate function is provided to
manipulate a thread's signal mask in a multithrégmtecess. We'll discuss this$ection 12.8

Example

Figure 10.14hows a function that prints the names of theadgyim the signal mask of the calling
process. We call this function from the progranmamin Figure 10.20andFigure 10.22

To save space, we don't test the signal mask fnyesignal that we listed iRigure 10.1 (See
Exercise 10.9

Figure 10.14. Print the signal mask for the process

#include "apue.h"
#include <errno.h>

void
pr_mask(const char *str)

{
sigset_t sigset;
int errno_save;

errno_save = errno; /* we can be called by signal handlers */
if (sigprocmask(0, NULL, &sigset) < 0)
err_sys("sigprocmask error");

printf("%s", str);

if (sigismember(&sigset, SIGINT)) printf("SIG INT ");

if (sigismember(&sigset, SIGQUIT)) printf("SIG QUIT™);

if (sigismember(&sigset, SIGUSR1)) printf("SIG USR1");
if (sigismember(&sigset, SIGALRM)) printf("SIG ALRM");

/* remaining signals can go here */

printf("\n");
errno = errno_save;

Chapter 8. Process Control

Section 8.1. Introduction

Section 8.2. Process ldentifiers

Section 8.3. fork Function

Section 8.4. vfork Function

Section 8.5. exit Functions

Section 8.6. wait and waitpid Functions

Section 8.7. waitid Function

Section 8.8. wait3 and wait4 Functions

Section 8.9. Race Conditions

Section 8.10. exec Functions

Section 8.11. Changing User IDs and Group IDs

Section 8.12. Interpreter Files

Section 8.13. system Function

Section 8.14. Process Accounting

Section 8.15. User Identification

Section 8.16. Process Times

Section 8.17. Summary

8.1. Introduction

We now turn to the process control provided byuh#X System. This includes the creation of new pisses,
program execution, and process termination. Welaldoat the various IDs that are the propertyhef t
process—real, effective, and saved; user and dgidsip-and how they're affected by the process control
primitives. Interpreter files and thgstem function are also covered. We conclude the chdptdéooking at the
process accounting provided by most UNIX systerhss Tets us look at the process control functionafa
different perspective.

8.2. Process ldentifiers

Every process has a unique process ID, a non-wegateger. Because the process ID is the only-kvedivn
identifier of a process that is always uniques ibften used as a piece of other identifiers, traputee
unigueness. For example, applications sometimésdadhe process ID as part of a filename in agngit to
generate unique filenames.

Although unique, process IDs are reused. As presagsminate, their IDs become candidates for révest
UNIX systems implement algorithms to delay reusmydwver, so that newly created processes are aslsiDse
different from those used by processes that teteihaecently. This prevents a new process fromgbein
mistaken for the previous process to have useddire ID.

There are some special processes, but the deifééisfcom implementation to implementation. Progéd O is
usually the scheduler process and is often knovtheaswapper. No program on disk corresponds $o thi
process, which is part of the kernel and is know/a aystem process. Process ID 1 is usuallinithe process
and is invoked by the kernel at the end of the &toap procedure. The program file for this proceas

letc/init in older versions of the UNIX System andsisin/init in newer versions. This process is
responsible for bringing up a UNIX system after kieenel has been bootstrapped. usually reads the
system-dependent initialization files—tlee/rc* files or/etcrinittab and the files iretc/init.d —and
brings the system to a certain state, such asumsalti Thenit process never dies. It is a normal user process,
not a system process within the kernel, like thaggyer, although it does run with superuser prieted ater in
this chapter, we'll see hawit becomes the parent process of any orphaned aloitegs.

Each UNIX System implementation has its own sétewhel processes that provide operating systenicesty
For example, on some virtual memory implementatifrthie UNIX System, process ID 2 is the pagedaemon
This process is responsible for supporting themgagf the virtual memory system.

In addition to the process ID, there are othertidiers for every process. The following functioreturn these
identifiers.

#include <unistd.h>

pid_t getpid(void);

Returns: process ID of calling process

pid_t getppid(void);

Returns: parent process ID of calling process

uid_t getuid(void);

Returns: real user ID of calling process

uid_t geteuid(void);

Returns: effective user ID of calling process

gid_t getgid(void);

#include <unistd.h>

pid_t getpid(void);

Returns: real group ID of calling process

gid_t getegid(void);

Returns: effective group ID of calling process

Note that none of these functions has an errormeWe'll return to the parent process ID in thgtreection
when we discuss thferk function. The real and effective user and group Werre discussed Bection 4.4

8.3.1ork Function

An existing process can create a new one by cattiatprk function.

#include <unistd.h>

pid_t fork(void);

Returns: 0 in child, process ID of child in parefit,on errol

The new process creatediik is called the child process. This function is@albnce but returns twice. The
only difference in the returns is that the retuafue in the child is 0, whereas the return valughéparent is
the process ID of the new child. The reason thiel'shprocess ID is returned to the parent is thabaess can
have more than one child, and there is no fundtiahallows a process to obtain the process DS a@hildren.
The reasoiork returns 0 to the child is that a process can lbalga single parent, and the child can always
call getppid to obtain the process ID of its parent. (ProcEs8 Is reserved for use by the kernel, so it's not
possible for 0 to be the process ID of a child.)

Both the child and the parent continue executing #ie instruction that follows the callftok . The child is a
copy of the parent. For example, the child getspy ©f the parent's data space, heap, and stac¢&.thiat this
is a copy for the child; the parent and the chddhdt share these portions of memory. The parahtiachild
share the text segmer@dction 7.5

Current implementations don't perform a complefgyaaf the parent's data, stack, and heap, simae ais

often followed by arxec . Instead, a technique called copy-on-write (CO8Wsed. These regions are shared
by the parent and the child and have their praiaathanged by the kernel to read-only. If eithercpss tries to
modify these regions, the kernel then makes a obflyat piece of memory only, typically a "page'arvirtual
memory systenSection 9.2f Bach [1986] an&ections 5.&nd5.7 of McKusick et al. 1994 provide more
detail on this feature.

Variations of thegork function are provided by some platforms. All f@latforms discussed in this book
support therfork (2) variant discussed in the next section.

Linux 2.4.22 also provides new process creatioougin theclone (2) system call. This is a generalized form of
fork that allows the caller to control what is sharetineen parent and child.

FreeBSD 5.2.1 provides thierk (2) system call, which is similar to the Linakne system call. Théork
call is derived from the Plan 9 operating systeikgRt al. 1995).

Solaris 9 provides two threads libraries: one fOISPX threads (pthreads) and one for Solaris threHus
behavior ofork differs between the two thread libraries. For PO®ireadsjork creates a process containing
only the calling thread, but for Solaris threadss creates a process containing copies of all thréradsthe
process of the calling thread. To provide similmantics as POSIX threads, Solaris providesothe

function, which can be used to create a processitigicates only the calling thread, regardlesthefthread
library used. Threads are discussed in detalliapters 1 nd12.

Example

The program irFigure 8.1demonstrates thferk function, showing how changes to variables ini&dgirocess

do not affect the value of the variables in theepaprocess.

If we execute this program, we get

$.Ja.out

a write to stdout

before fork

pid =430, glob=7,var=89 child's variable s were changed
pid =429, glob =6, var=88 parent's copy wa s not changed
$./a.out > temp.out

$ cat temp.out

a write to stdout

before fork

pid =432, glob =7, var = 89

before fork

pid = 431, glob = 6, var = 88

In general, we never know whether the child staxecuting before the parent or vice versa. Thigddg on
the scheduling algorithm used by the kernel. dfri¢quired that the child and parent synchroniagesform of
interprocess communication is required. In the mogshown irFigure 8.1 we simply have the parent put
itself to sleep for 2 seconds, to let the childaeste. There is no guarantee that this is adeqaatewe talk
about this and other types of synchronizatioB8déation 8.9vhen we discuss race conditionsSkaction 10.16
we show how to use signals to synchronize a pamhia child after &rk .

When we write to standard output, we subtract inftbe size obuf to avoid writing the terminating null byte.
Althoughstrlen will calculate the length of a string not includithe terminating null bytajzeof calculates
the size of the buffer, which does include the teating null byte. Another difference is that uskuagen
requires a function call, wheregigeof calculates the buffer length at compile time feshiuffer is initialized
with a known string, and its size is fixed.

Note the interaction gbrk with the 1/O functions in the program igure 8.1 Recall fromChapter 3hat the
write function is not buffered. Becausete is called before thiark , its data is written once to standard
output. The standard /O library, however, is brgte Recall fronBection 5.12hat standard output is line
buffered if it's connected to a terminal devicdiestise, it's fully buffered. When we run the pramr
interactively, we get only a single copy of ghatf line, because the standard output buffer is fldghethe
newline. But when we redirect standard output fiteawe get two copies of theintt line. In this second
case, therintt before theork is called once, but the line remains in the buffeenfork is called. This
buffer is then copied into the child when the p#isethata space is copied to the child. Both themtaand the
child now have a standard I/O buffer with this lingt. The secondrintf , right before thexit , just appends
its data to the existing buffer. When each protessinates, its copy of the buffer is finally flesh

Figure 8.1. Example of or k function

#include "apue.h"

int glob =6; [* external variable in ini tialized data */
char buf[] = "a write to stdout\n";

int

main(void)

{
int var, /* automatic variable on th e stack */
pid_t pid;

var = 88;

if (write(STDOUT_FILENO, buf, sizeof(buf)-1) != sizeof(buf)-1)
err_sys("write error");
printf("before fork\n"); /* we don't flush s tdout */

if ((pid = fork()) < 0) {
err_sys("fork error");
}elseif (pid==0){ /*child*/

glob++; [* modify variables */

var++;
}else {

sleep(2); [* parent */
printf("pid = %d, glob = %d, var = %d\n", getpi d(), glob, var);
exit(0);

File Sharing

When we redirect the standard output of the pdrem the program ifrigure 8.1 the child's standard output is
also redirected. Indeed, one characteristioraf is that all file descriptors that are open in plagent are
duplicated in the child. We say "duplicated" beeaitls as if thelup function had been called for each
descriptor. The parent and the child share adiietentry for every open descriptor (re¢aure 3.8.

Consider a process that has three different filshed for standard input, standard output, andlatdrerror.
On return fronfork , we have the arrangement showrrigure 8.2

Figure 8.2. Sharing of open files between parentcachild afterf or k

parent process table entry file table v-node table
file status flags venode
TR information
current file offset -
|t . i-node
fil file v-node pointer ——— information
Mags poanter R e === === == o
fd o — current file size
id1
id 2

file status flags

current file offset v-node
I YT information

v-node pointer —_ -
—F‘ i-node

information
child process tableentry /N F---—=o--—o

current file size
[|ll.‘ status th.;-
i LLJIKLI'I|.i||1. offset
M= o nntl, r e
id 0 S V- nndl pmnh [" e
id 1- information

id 2

i-node
information

current file size

It is important that the parent and the child shiheesame file offset. Consider a processfthats a child, then
wait s for the child to complete. Assume that both psees write to standard output as part of their abrm
processing. If the parent has its standard ougalitected (by a shell, perhaps) it is essentidlttt@parent's

file offset be updated by the child when the chilites to standard output. In this case, the ateld write to
standard output while the parentvsit ing for it; on completion of the child, the pare@in continue writing to
standard output, knowing that its output will b@papded to whatever the child wrote. If the paremwt the
child did not share the same file offset, this tg@nteraction would be more difficult to accongtliand would
require explicit actions by the parent.

If both parent and child write to the same desoripwithout any form of synchronization, such asihg the
parentwait for the child, their output will be intermixed &sning it's a descriptor that was open before the
fork). Although this is possible—we saw itkiigure 8.2—it's not the normal mode of operation.

There are two normal cases for handling the detscs@fter dork .

1. The parent waits for the child to complete. In #tase, the parent does not need to do anythingitsith
descriptors. When the child terminates, any ofstiered descriptors that the child read from or evtot
will have their file offsets updated accordingly.

2. Both the parent and the child go their own wayseHafter théork , the parent closes the descriptors
that it doesn't need, and the child does the shing.tThis way, neither interferes with the othepen
descriptors. This scenario is often the case wetivark servers.

Besides the open files, there are numerous otlopepties of the parent that are inherited by thiech

« Real user ID, real group ID, effective user IDgeffve group ID
« Supplementary group IDs

« Process group ID

+ Session ID

« Controlling terminal

« The set-user-1D and set-group-ID flags

« Current working directory

« Root directory

» File mode creation mask

« Signal mask and dispositions

« The close-on-exec flag for any open file descriptor
- Environment

« Attached shared memory segments

« Memory mappings

+ Resource limits

The differences between the parent and child are

« The return value frorfork

« The process IDs are different

« The two processes have different parent processth®sparent process ID of the child is the partdm;
parent process ID of the parent doesn't change

« The child'sms_utime ,tms_stime ,tms_cutime , andims_cstime values are setto 0

» File locks set by the parent are not inheritedhsydhild

« Pending alarms are cleared for the child

« The set of pending signals for the child is se¢htempty set

Many of these features haven't been discussed yeti-eaver them in later chapters.

The two main reasons fark to fail are (a) if too many processes are alréadle system, which usually
means that something else is wrong, or (b) if thal ihumber of processes for this real user ID edsdhe
system's limit. Recall frorigure 2.10thatCHILD_MAXspecifies the maximum number of simultaneous
processes per real user ID.

There are two uses fairk :

1. When a process wants to duplicate itself so treaptrent and child can each execute differentaesti
of code at the same time. This is common for ndtwgervers—the parent waits for a service request
from a client. When the request arrives, the pateltsfork and lets the child handle the request. The
parent goes back to waiting for the next servicgiest to arrive.

2. When a process wants to execute a different pragraims is common for shells. In this case, thecthil
does arexec (which we describe iBection 8.1pright after it returns from thierk .

Some operating systems combine the operations$tepn2—dork followed by arexec —into a single
operation called a spawn. The UNIX System sepath&etvo, as there are numerous cases wheresefsluo
fork without doing arexec . Also, separating the two allows the child to dethe per-process attributes
between théork and thesxec , such as I/O redirection, user ID, signal disposijtand so on. We'll see
numerous examples of this@hapter 15

The Single UNIX Specification does inclusteawn interfaces in the advanced real-time option grdlese
interfaces are not intended to be replacementsrfor andexec , however. They are intended to support
systems that have difficulty implementifegk efficiently, especially systems without hardwaungsort for
memory management.

Chapter 15. Interprocess Communication

Section 15.1. Introduction

Section 15.2. Pipes

Section 15.3. popen and pclose Functions

Section 15.4. Coprocesses

Section 15.5. FIFOs

Section 15.6. XSI IPC

Section 15.7. Message Queues

Section 15.8. Semaphores

Section 15.9. Shared Memory

Section 15.10. Client=Server Properties

Section 15.11. Summary

15.1. Introduction

In Chapter 8we described the process control primitives awvd Isow to invoke multiple processes. But the
only way for these processes to exchange informagidy passing open files acrossra or anexec or
through the file system. We'll now describe otlhniques for processes to communicate with edwr:afPC,
or interprocess communication.

In the past, UNIX System IPC was a hodgepodge nwbwa approaches, few of which were portable acatiss
UNIX system implementations. Through the POSIX @hd Open Group (formerly X/Open) standardization
efforts, the situation has improved, but differensgll exist.Figure 15.1summarizes the various forms of IPC
that are supported by the four implementationsudised in this text.

Figure 15.1. Summary of UNIX System IPC
| IPC type SUS FreeBSD 5.2.‘ﬁLinux 2.4.22| Mac OS X 10.3| Solaris 9
| half-duplex pipes . (full) . . (full)
I FIFOs
' full-duplex pipes allowed .,UDS opt, UDS UDS ., UD
| named full-duplex pipesXSl option ubSs opt, UDS uDS -, UDS
| message queues XSI . . .
| semaphores XSI
| shared memory XSl
'sockets
' STREAMS XS| option opt .

Note that the Single UNIX Specification (the "SUSilumn) allows an implementation to support fulptix
pipes, but requires only half-duplex pipes. An iempéentation that supports full-duplex pipes willl stiork
with correctly written applications that assume tha underlying operating system supports onl{-thaplex
pipes. We use "(full)" instead of a bullet to shiomplementations that support half-duplex pipes sing full-
duplex pipes.

In Figure 15.1we show a bullet where basic functionality isgaped. For full-duplex pipes, if the feature can
be provided through UNIX domain sockeBegtion 17.8 we show "UDS" in the column. Some
implementations support the feature with pipes@NdX domain sockets, so these entries have bothSUD
and a bullet.

As we mentioned isection 14.4support for STREAMS is optional in the Single WN\$pecification. Named
full-duplex pipes are provided as mounted STREAMSHdu pipes and so are also optional in the SinlylikxXU
Specification. On Linux, support for STREAMS is dahle in a separate, optional package called "I(f&"
Linux STREAMS). We show "opt" where the platfornopides support for the feature through an optional
package—one that is not usually installed by defaul

The first seven forms of IPC Igure 15.1are usually restricted to IPC between processdélaaame host.
The final two rows—sockets and STREAMS—are the dwly that are generally supported for IPC between
processes on different hosts.

We have divided the discussion of IPC into thregptérs. In this chapter, we examine classical [ixs,
FIFOs, message queues, semaphores, and sharedynbntbe next chapter, we take a look at netw®® |
using the sockets mechanismQhapter 17we take a look at some advanced features of IPC.

15.2. Pipes

Pipes are the oldest form of UNIX System IPC aredmovided by all UNIX systems. Pipes have two
limitations.

1. Historically, they have been half duplex (i.e.,adfidows in only one direction). Some systems now
provide full-duplex pipes, but for maximum portatyil we should never assume that this is the case.

2. Pipes can be used only between processes thatl@mmon ancestor. Normally, a pipe is created by a
process, that process call , and the pipe is used between the parent anchtltk ¢

We'll see that FIFOsSection 15.5get around the second limitation, and that UNB@in sockets3ection
17.3 and named STREAMS-based pip8g¢tion 17.2.Pget around both limitations.

Despite these limitations, half-duplex pipes ailetee most commonly used form of IPC. Every tigou type
a sequence of commands in a pipeline for the shetkecute, the shell creates a separate proaesadh
command and links the standard output of one tatdedard input of the next using a pipe.

A pipe is created by calling thwipe function.

#include <unistd.h>

int pipe(int filedes[2]);

Returns: 0 if OK, =1 on errc

=

Two file descriptors are returned through the fle@drgument: filedes[0] is open for reading, aletiéis[1] is
open for writing. The output of filedes[1] is theput for filedes[0].

Pipes are implemented using UNIX domain socke&s3BSD, 4.4BSD, and Mac OS X 10.3. Even though
UNIX domain sockets are full duplex by default,sb@perating systems hobble the sockets used ipitls po
that they operate in half-duplex mode only.

POSIX.1 allows for an implementation to support-tiplex pipes. For these implementations, file@eahd
filedes[1] are open for both reading and writing.

Two ways to picture a half-duplex pipe are showhigure 15.2 The left half of the figure shows the two ends
of the pipe connected in a single process. Thd figh of the figure emphasizes that the data énpipe flows
through the kernel.

Figure 15.2. Two ways to view a half-duplex pipe

USET PriCess USET Process

or

f4[0] fd[1]

N\,

fd[0] fdll]

—| pipe }--—

kernel

Thefstat function Gection 4.2returns a file type of FIFO for the file descdpbf either end of a pipe. We
can test for a pipe with th& ISFIFO macro.

POSIX.1 states that the size member of thetat structure is undefined for pipes. But when
function is applied to the file descriptor for tead end of the pipe, many systems stoee Bze the number
of bytes available for reading in the pipe. Thishiswever, nonportable.

A pipe in a single process is next to useless. Mdbynthe process that calbpe then callgork , creating an
IPC channel from the parent to the child or vicesad=igure 15.3hows this scenario.

Figure 15.3. Half-duplex pipe after aor k

parent child

fork

£d [0] fd[1] £d [0] fd[1]

C_

pipe

kernel

What happens after thek depends on which direction of data flow we wawt. & pipe from the parent to the

child, the parent closes the read end of the pijp@ (), and the child closes the write emdf1]). Figure 15.4
shows the resulting arrangement of descriptors.

Figure 15.4. Pipe from parent to child

parent child

£d[1] £d[0]

O

— pipe

kernel
For a pipe from the child to the parent, the pacbrdesd[1] , and the child closes[0]
When one end of a pipe is closed, the following tules apply.

1. Ifweread from a pipe whose write end has been closed, returns 0O to indicate an end of file after
all the data has been read. (Technically, we sheaydhat this end of file is not generated uhtre are
no more writers for the pipe. It's possible to degik a pipe descriptor so that multiple procebse®
the pipe open for writing. Normally, however, th&se single reader and a single writer for a pipe.
When we get to FIFOs in the next section, we'lltbe¢ often there are multiple writers for a single
FIFO.)

2. If wewrite to a pipe whose read end has been closed, thal SigPIPE is generated. If we either
ignore the signal or catch it and return from tigmal handlerwrite returns —1 witkerro set toEPIPE.

When we're writing to a pipe (or FIFO), the constaRE_BUF specifies the kernel's pipe buffer sizewke

of PIPE_BUF bytes or less will not be interleaved with tivee s from other processes to the same pipe (or
FIFO). But if multiple processes are writing toipg(or FIFO), and if wevwrite more tharPIPE_BUF bytes,
the data might be interleaved with the data froendther writers. We can determine the valueiPE_BUF by
usingpathconf orfpathconf (recallFigure 2.1]}.

Example

Figure 15.5shows the code to create a pipe between a paréritsachild and to send data down t’we
pipe.

Figure 15.5. Send data from parent to child ovepgpe

#include "apue.h”

int
main(void)

int n;

int fd[2];

pid_t pid;

char line[MAXLINE];

if (pipe(fd) < 0)
err_sys("pipe error");

if ((pid = fork()) < 0) {
err_sys("fork error");

} else if (pid > 0) { [* parent */

close(fd[0]);

write(fd[1], "hello world\n", 12);
}else { [* child */

close(fd[1]);

n = read(fd[0], line, MAXLINE);
write(STDOUT_FILENO, line, n);

}
exit(0);

In the previous example, we calledd andwrite directly on the pipe descriptors. What is morerfiesting is
to duplicate the pipe descriptors onto standardtiop standard output. Often, the child then rwree other
program, and that program can either read frorst&sdard input (the pipe that we created) or wotiés
standard output (the pipe).

Example

Consider a program that displays some output thets created, one page at a time. Rather than
reinvent the pagination done by several UNIX systgilities, we want to invoke the user's favorite
pager. To avoid writing all the data to a temporfdeyand callingsystem to display that file, we
want to pipe the output directly to the pager. Bahis, we create a pipeeyk a child process, set
up the child's standard input to be the read ertdeopipe, andxec the user's pager program.
Figure 15.6shows how to do this. (This example takes a conaitiae argument to specify the
name of a file to display. Often, a program of tlyjze would already have the data to display to the
terminal in memory.)

Before callingiork , we create a pipe. After th@k , the parent closes its read end, and the child
closes its write end. The child then callg2 to have its standard input be the read end opiihe
When the pager program is executed, its standard imill be the read end of the pipe.

When we duplicate a descriptor onto anoth#0](onto standard input in the child), we have to|be
careful that the descriptor doesn't already hagedtfsired value. If the descriptor already had the
desired value and we calledp2 andclose , the single copy of the descriptor would be closed
(Recall the operation afup2 when its two arguments are equal, discuss&gution 3.1% In this
program, if standard input had not been openedéghell, théopen at the beginning of the
program should have used descriptor 0, the lowassed descriptor, $0[0] should never equal
standard input. Nevertheless, whenever wedoall andclose to duplicate a descriptor onto
another, we'll always compare the descriptors, firssta defensive programming measure.

%

Note how we try to use the environment variglA6ERto obtain the name of the user's pager
program. If this doesn't work, we use a defaulisT©ia common usage of environment variables.

Figure 15.6. Copy file to pager program

#include "apue.h”
#include <sys/wait.h>

#define DEF_PAGER "/bin/more" /* default page r program */

int
main(int argc, char *argv[])
{
int n;
int fd[2];
pid_t pid,;
char *pager, *argvo0;
char line[MAXLINE];
FILE *fp;

if (argc 1= 2)
err_quit("usage: a.out <pathname>");

if ((fp = fopen(argv[1], "r")) == NULL)
err_sys("can't open %s", argv[1]);
if (pipe(fd) < 0)
err_sys("pipe error");

if ((pid = fork()) < 0) {
err_sys("fork error");
} else if (pid > 0) {
close(fd[0]); /* close read end */

/* parent copies argv[1] to pipe */
while (fgets(line, MAXLINE, fp) != NULL) {
n = strlen(line);
if (write(fd[1], line, n) = n)
err_sys("write error to pipe");

}
if (ferror(fp))
err_sys("fgets error");

close(fd[1]); /* close write end of pipe

if (waitpid(pid, NULL, 0) < 0)
err_sys("waitpid error");

exit(0);

}else {

close(fd[1]); /* close write end */

if (fd[0] '= STDIN_FILENO) {
if (dup2(fd[0], STDIN_FILENO) != STDIN_

err_sys("dup2 error to stdin");

close(fd[0]); /* don't need this afte

}

/* get arguments for execl() */

if ((pager = getenv("PAGER")) == NULL)
pager = DEF_PAGER;

if ((argv0 = strrchr(pager, /")) = NULL)
argvO++; [* step past rightmost

else
argv0 = pager; /* no slash in pager */

if (execl(pager, argvO0, (char *)0) < 0)
err_sys("execl error for %s", pager);

}
exit(0);
}

[* parent */

for reader */

* child */

FILENO)

r dup2 */

slash */

Example

Recall the five functionSELL_WAIT, TELL_PARENT TELL_CHILD, WAIT_PARENT andwAIT_CHILD
from Section 8.91In Figure 10.24we showed an implementation using signiigure 15.7shows
an implementation using pipes.

We create two pipes before tloek , as shown ifrigure 15.8 The parent writes the character "p"
across the top pipe whagLL_CHILD is called, and the child writes the characterdctoss the
bottom pipe whemELL_PARENTis called. The correspondingalT_xxx functions do a blocking
read for the single character.

Note that each pipe has an extra reader, whichndamatter. That is, in addition to the child reay
from pfd1[0] , the parent also has this end of the top pipe émereading. This doesn't affect us,
since the parent doesn't try to read from this.pipe

Figure 15.7. Routines to let a parent and child ymonize

#include "apue.h”
static int pfd1[2], pfd2[2];

void
TELL_WAIT(void)

if (pipe(pfdl) <0 || pipe(pfd2) < 0)
err_sys("pipe error");

}

void
TELL_PARENT(pid_t pid)

if (write(pfd2[1], "c", 1) I=1)
err_sys("write error");

}
void
WAIT_PARENT (void)
{
char ¢;

if (read(pfd1[0], &c, 1) '=1)
err_sys("read error");

if (c!="p")
err_quit("WAIT_PARENT: incorrect data");

}

void
TELL_CHILD(pid_t pid)

if (write(pfd1[1], "p", 1) '=1)
err_sys("write error");

void
WAIT_CHILD(void)
{

char c;

if (read(pfd2[0], &c, 1) != 1)

err_sys("read error");

if (c!="c")
err_quit("WAIT_CHILD: incorrect data");

Figure 15.8. Using two pipes for parent—child syrromization

parent child
pEd1[1] P > pE1 [0]
pfdz (0] | = p£d2[1]

15.3.popen and pcl ose Functions

Since a common operation is to create a pipe tthanprocess, to either read its output or sempiit, the
standard /O library has historically provided tlogen andpclose functions. These two functions handle all
the dirty work that we've been doing ourselvesating a pipefork ing a child, closing the unused ends of the
pipe, executing a shell to run the command, andinggior the command to terminate.

#include <stdio.h>

FILE *popen(const char *cmdstring, const char *type);

Returns: file pointer if OKNULL on error‘

int pclose(FILE *fp);

Returns: termination status of cmdstring, or —]emor‘

The functionpopen does dork andexec to execute the cmdstring, and returns a stand@rélié pointer. If
type is"r" , the file pointer is connected to the standargwiudf cmdstring igure 15.9.

Figure 15.9. Result of p = popen(cmdstring,"r")

parent crdstring {child)

fp |- stdonl

If type is"w" , the file pointer is connected to the standardiirgd cmdstring, as shown Figure 15.10
Figure 15.10. Result of p = popen(cmdstring,”w')

parent cmdstring (child)

fp = sidin

One way to remember the final argumenpdpen is to remember that, likepen , the returned file pointer is
readable if type ig" or writable if type isw" .

Thepclose function closes the standard I/O stream, waitsifercommand to terminate, and returns the
termination status of the shell. (We described¢nmination status iSection 8.6 Thesystem function,
described irBection 8.13also returns the termination status.) If the Isteahnot be executed, the termination
status returned hytlose is as if the shell had executedi(127)

The cmdstring is executed by the Bourne shellpnas i

sh -c cmdstring

This means that the shell expands any of its speltgaacters in cmdstring. This allows us to saygikample,

fp = popen('ls *.c", "r");
or

fp = popen(“cmd 2>&1", "r");

Example

Let's redo the program frofigure 15.6 usingpopen . This is shown irFigure 15.11
Usingpopen reduces the amount of code we have to write.

The shell comman${PAGER:-more} says to use the value of the shell vari®@aeER(it is defined
and non-null; otherwise, use the stringre.

Figure 15.11. Copy file to pager program usipgpen

#include "apue.h”
#include <sys/wait.h>

#define PAGER "${PAGER:-more}" /* environment var iable, or default */

int
main(int argc, char *argv[])

char line[MAXLINE];
FILE *fpin, *fpout;

if (argc '=2)
err_quit("usage: a.out <pathname>");
if ((fpin = fopen(argv[1], "r")) == NULL)
err_sys("can't open %s", argv[1]);

if ((fpout = popen(PAGER, "w")) == NULL)
err_sys("popen error");

[* copy argv[1] to pager */
while (fgets(line, MAXLINE, fpin) = NULL) {
if (fputs(line, fpout) == EOF)
err_sys("fputs error to pipe");

}

if (ferror(fpin))
err_sys("fgets error");

if (pclose(fpout) == -1)
err_sys("pclose error");

exit(0);

Example—popen andpcl ose Functions

Figure 15.1hows our version glopen andpclose .

Although the core ofopen is similar to the code we've used earlier in thiapter, there are many
details that we need to take care of. First, emctfopen is called, we have to remember the
process ID of the child that we create and eittsefile descriptor oFILE pointer. We choose to
save the child's process ID in the areaiyipid , which we index by the file descriptor. This way
whenpclose is called with theFILE pointer as its argument, we call the standarduf@tion

fileno to get the file descriptor, and then have thedchibcess ID for the call t@aitpid . Since
it's possible for a given process to galben more than once, we dynamically allocate dhieipid
array (the first timeopen is called), with room for as many children as éhare file descriptors.

Callingpipe andfork and then duplicating the appropriate descriptorgch process is similar {
what we did earlier in this chapter.

POSIX.1 requires thabpen close any streams that are still open in the dhilch previous calls to
popen . To do this, we go through tleildpid array in the child, closing any descriptors that a
still open.

What happens if the caller pélose has established a signal handlerd@cHLD? The call to
waitpid frompclose would return an error INTR. Since the caller is allowed to catch this sig
(or any other signal that might interrupt the ¢alvaitpid), we simply callaitpid again if it is
interrupted by a caught signal.

Note that if the application calsitpid and obtains the exit status of the child creaiepopen ,
we will call waitpid when the application caliglose , find that the child no longer exists, and
return —1 witherrno set toECHILD. This is the behavior required by POSIX.1 in #itsation.

Some early versions @tlose returned an error @NTR if a signal interrupted theait . Also,
some early versions gtlose blocked or ignored the sighassINT , SIGQUIT, andSIGHUPduring
thewait . This is not allowed by POSIX.1.

nal

Figure 15.12. Thepopen andpcl ose functions

#include "apue.h"
#include <errno.h>
#include <fcntl.h>
#include <sys/wait.h>

/*

* Pointer to array allocated at run-time.
*/

static pid_t *childpid = NULL;

/*

* From our open_max(), Figure 2.16 .
*/

static int ~ maxfd,;

FILE *

popen(const char *cmdstring, const char *type)

{
int i
int pfd[2];
pid_t pid;
FILE *fp;

[* only allow "r" or "w" */

if ((type[O] !='r" && type[0] != 'W') || type[
errno = EINVAL; /* required by POSIX */
return(NULL);

if (childpid == NULL) { /* first time throu
/* allocate zeroed out array for child pids
maxfd = open_max();
if ((childpid = calloc(maxfd, sizeof(pid_t)
return(NULL);
}

if (pipe(pfd) < 0)
return(NULL); /* errno set by pipe() */

if ((pid = fork()) < 0) {
return(NULL); /* errno set by fork() */
} else if (pid == 0) {
if (*type =="r) {
close(pfd[0]);
if (pfd[1] = STDOUT_FILENO) {
dup2(pfd[1], STDOUT_FILENO);
close(pfd[1]);

}else {
close(pfd[1]);
if (pfd[0] != STDIN_FILENO) {
dup2(pfd[0], STDIN_FILENO);
close(pfd[0]);
}
}

/* close all descriptors in childpid[] */
for (i = 0; i < maxfd; i++)
if (childpid[i] > 0)
close(i);

execl("/bin/sh", "sh", "-¢", cmdstring, (ch
_exit(127);
}

[* parent continues... */
it (type =='1) {
close(pfd[1]);
if (fp = fdopen(pfd[0], type)) == NULL)
return(NULL);
}else {
close(pfd[0]);
if (fp = fdopen(pfd[1], type)) == NULL)
return(NULL);
}

childpid[fileno(fp)] = pid; /* remember child p
return(fp);

int
pclose(FILE *fp)

int fd, stat;
pid_t pid;

1]1=0){

gh*/

)) == NULL)

* child */

ar *)0);

id for this fd */

if (childpid == NULL) {
errno = EINVAL,;
return(-1); /* popen() has never been c alled */

fd = fileno(fp);
if ((pid = childpid[fd]) == 0) {
errno = EINVAL;
return(-1); /* fp wasn't opened by pope n() */

childpid[fd] = 0;
if (fclose(fp) == EOF)
return(-1);

while (waitpid(pid, &stat, 0) < 0)
if (errno != EINTR)
return(-1); /* error other than EINTR f rom waitpid() */

return(stat); /* return child's termination s tatus */

Note thatpopen should never be called by a set-user-ID or setyghl® program. When it executes the

commandpopen does the equivalent of

execl("/bin/sh", "sh", "-c", command, NULL);

which executes the shell and command with the enwient inherited by the caller. A malicious user ca

manipulate the environment so that the shell exesccommands other than those intended, with
permissions granted by the set-ID file mode.

One thing thapopen is especially well suited for is executing simfilers to transform the input o
the running command. Such is the case when a cothmants to build its own pipeline.

Example

Consider an application that writes a prompt todéad output and reads a line from standard in
With popen, we can interpose a program between the applicatidl its input to transform the
input. Figure 15.13hows the arrangement of processes.

The transformation could be pathname expansioreXample, or providing a history mechanism
(remembering previously entered commands).

Figure 15.14hows a simple filter to demonstrate this operatidhe filter copies standard input tc
standard output, converting any uppercase chargctewercase. The reason we're careful to
fflush ~ standard output after writing a newline is diseukm the next section when we talk abou
COprocesses.

We compile this filter into the executable fitgucic , which we then invoke from the program in
Figure 15.151singpopen .

We need to calflush after writing the prompt, because the standarguius normally line
buffered, and the prompt does not contain a newline

thvateld

r output of

out.

Figure 15.13. Transforming input usingopen

parent

stdout

—

popen pipe

filter program

stdout

stdin

Figure 15.14. Filter to convert uppercase characteo lowercase

#include "apue.h"
#include <ctype.h>

int
main(void)
t

int c;

while ((c = getchar()) != EOF) {
if (isupper(c))
¢ = tolower(c);
if (putchar(c) == EOF)
err_sys("output error");

if (c=="\n")
fflush(stdout);
exit(0);

}

Figure 15.15. Invoke uppercase/lowercase filterremd commands

#include "apue.h”
#include <sys/wait.h>

int
main(void)

char line[MAXLINE];
FILE *fpin;

if ((fpin = popen("myuclc”, "r")) == NULL)
err_sys("popen error");
for (;5){
fputs("prompt> ", stdout);
fflush(stdout);
if (fgets(line, MAXLINE, fpin) == NULL) /*
break;
if (fputs(line, stdout) == EOF)
err_sys("fputs error to pipe");

}

if (pclose(fpin) == -1)
err_sys("pclose error");

putchar(\n');

exit(0);

read from pipe */

