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S U R V E Y S
I E E E
C O M M U N I C A T I O N S

T h e  E l e c t r o n i c  M a g a z i n e  o f
O r i g i n a l  P e e r - R e v i e w e d  S u r v e y  A r t i c l e s

n the past decade, we have witnessed the evolution of IP
networks from providing a single best-effort service to
providing multiple types of services with Quality-of-Ser-

vice (QoS) guarantee, namely bounded packet delay and
loss. Although the majority of current network traffic is still
best-effort, emerging networked applications with different
QoS constraints (e.g., multimedia applications) are becoming
more popular, and may soon contribute an appreciable share
of total network traffic. In addition, users are demanding
better QoS guarantees for their traffic, or QoS differentia-
tion for their virtual private networks (VPNs). The Integrat-
ed Service (IntServ) framework is an attempt to achieve
end-to-end per-flow QoS is, whereby bandwidth along the
path is reserved for individual flows through RSVP. IntServ
was unsuccessful in large-scale networks mainly due to scala-
bility and heterogeneity concerns. In particular, the amount
of per-flow states is prohibitively large, and all nodes along
the end-to-end path must implement the same reservation
protocol. An alternate attempt to solve the challenges of
providing QoS is the Differentiated Service (DiffServ)
framework, proposed by the IETF, which delivers a coarse
level of QoS on a per-node, per-aggregate basis such that scal-
ability is preserved. DiffServ only provides relative or quali-
tative QoS differentiation such as high bandwidth, low delay,
or low loss by allocating more bandwidth to one aggregate
than another, or by implementing dropping preferences
among aggregates. DiffServ together with Multiprotocol

Label Switching (MPLS) provides a powerful and highly
scalable framework for QoS provisioning in IP networks:
MPLS controls the data path while DiffServ controls the
QoS differentiation.

A component missing from current approaches to aggre-
gate-based traffic management and control such as DiffServ is
the capability to guarantee quantitative aggregate QoS, which
provides bounded delay and packet loss. In the flow level,
quantitative QoS guarantees have typically been accomplished
by static allocation methods, which assume some stochastic
properties of the traffic arrivals (see, e.g., [1–3]). However,
such static allocation is inefficient for traffic in the aggregate
level for the following reasons:
• The underlying traffic model may not completely or accu-

rately capture the statistical behavior of the actual traffic.
For example, a heterogeneous mix of aggregates with dif-
ferent statistical properties can result in a traffic stream
whose characteristics are unknown. Furthermore, even if
the traffic characterization is known at the network
ingress, it can be altered after passing through multiplex-
ers and buffers in the network.

• The user-declared traffic parameters may not accurately
represent the actual traffic.

• Traffic parameterization is not possible when the traffic is
generated on-the-fly, e.g., from video conferencing or
sporting events.
In per-flow traffic management and control, the latter two
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issues have been partly addressed by Measurement-Based
Admission Control (MBAC), whereby the measured values of
traffic parameters, e.g., the mean arrival rate and the rate
variance, and QoS of the ongoing traffic are used respectively
in conjunction with the user-declared parameters and analyti-
cal models to improve the accuracy in estimating the required
bandwidth (see, e.g., [4]). For example, in [5, 6] the measured
statistics of the ongoing aggregate process, such as the mean
aggregate rate and variance, are adjusted when a flow arrives
or leaves the aggregate to take into account the effect of flow
arrival or departure. These adjusted statistics are then substi-
tuted into a specific equivalent bandwidth (EB) formula to
estimate the bandwidth needed to guarantee the required
QoS. Even if there is no flow arrival or departure, such input
traffic statistics can also be measured regularly to update the
required bandwidth. Using the measurement information sig-
nificantly reduces the error in bandwidth estimation due to
inaccurate user-declared traffic parameters and analytical
models. However, the per-flow traffic information within each
aggregate required by these MBAC frameworks is not avail-
able in the framework of aggregate traffic management and
control. In addition, the accuracy of MBAC is questionable
given the strong assumptions of some EB formula and traffic
models, which may be further intensified by measurement
error. An MBAC that requires no per-flow arrival information
is developed in [7], but the QoS metric is the probability that
the instantaneous bandwidth demand exceeds the link capaci-
ty in a bufferless multiplexer, not the packet loss probability in
a buffered system.

Due to the aforementioned difficulties in providing quanti-
tative QoS guarantees, many researchers have instead focused
on improving the quality of best-effort (BE) service by provid-
ing a fair share of bandwidth and preventing congestion (see
[8] for a comprehensive survey on the subject). The basic idea
is to use scheduling mechanisms and/or queue management
schemes for the following functions:
• To prevent misbehaved or aggressive UDP flows from

receiving more bandwidth than their fair share.
• To implicitly or explicitly notify the sources (end-hosts)

of TCP flows to reduce their sending rates at the onset
of congestion rather than waiting for packet loss to occur
due to queue overflows.

For example, in the Active Queue Management (AQM)
framework, the router intentionally drops packets upon arrival
with a probability that increases with the average queue
length (see, e.g., [9, 10]). The packet loss will act as an implic-
it feedback signal of congestion events to senders (end-hosts).
Improving the quality of the BE service is appealing because
the vast majority of traffic is BE and some QoS applications,
e.g., streaming multimedia and VoIP, can tolerate mild con-
gestion in the network by adapting their transmission rates.
However, during the period of transient congestion or net-
work overload, fairness obviously does not imply QoS, which
becomes worse under sustained congestion. Therefore, we
believe that there is still the need to provide quantitative QoS
because of inconsistency and unpredictability of QoS experi-
enced in the BE service.

An alternative to static bandwidth allocation for attaining
(per-node) aggregate QoS with simplicity and efficiency is
Adaptive Bandwidth Control (ABC). Under static bandwidth
allocation, the required bandwidth calculated upon each
aggregate traffic flow arrival is reserved at each node (using
some protocol such as RSVP). In contrast, ABC starts with
some initial amount of bandwidth allocation to the queue and
adjusts it over time in the packet-level time scale, e.g., on the
order of seconds, to ensure that the allocated bandwidth is
just enough to attain the specified QoS requirements. As a
result, less bandwidth will be wasted due to over-allocation,
thus improving network utilization. Because ABC algorithms
obtain information needed for the control through online

measurement of system states, they do not have the deficien-
cies found in static bandwidth allocation, particularly:
• No assumption on the input traffic model is required.
• The impact on performance of any inaccuracy in the

user-declared traffic parameters will be reduced because
the control will adapt over time to actual traffic condi-
tions.

• Since the traffic model is not required, there is no need
for a priori traffic parameterization.
ABC is the way we envision how quantitative QoS should

be guaranteed: users simply supply their QoS requirements
(and possibly very minimal traffic information such as the
aggregate average rate) without having to know which traffic
model to use.

The objective of this survey paper is twofold. First, we pro-
vide a literature review of existing ABC algorithms that guar-
antee packet-level QoS of aggregate traffic, including the
average queue length, the packet loss, and the packet delay.
Although there is extensive literature on ABC in ATM net-
works that adapts the bandwidth of virtual paths at a connec-
tion-level time scale to satisfy the connection-blocking
probability (see, e.g., [11]), our focus here is on the packet-
level ABC, where the bandwidth allocated to a traffic aggre-
gate is adapted at a packet-level time scale to satisfy packet
delay or loss requirements. Therefore, ABC to guarantee the
connection blocking probability QoS metric, mostly developed
in the ATM related literature, is not in the scope of this
paper.

The second objective is to discuss the performance trade-
off of ABC algorithms as well as open issues related to the
practical deployment of ABC in networks. The next section
describes the system model considered in the operating con-
text of ABC, and then classifies ABC algorithms. Then vari-
ous ABC algorithms proposed in the literature are presented
in order according to the type of QoS metrics guaranteed.
Their advantages and drawbacks are identified. Issues that are
unaddressed by the previous research in ABC will be dis-
cussed later, including the control time scale, admission con-
trol, and control in multiple queues. The paper concludes with
a summary and perspectives on different ABC algorithms.

PRELIMINARIES

MODEL

Consider the output port of an output-queued switch, where
the port has an outgoing link capacity of C b/s. The port is
assumed to support K QoS traffic classes and one BE traffic
class, each of which has its own logical queue, as shown in
Fig. 1. We consider the problem of QoS guarantee for traffic
in each QoS queue by properly allocating the amount of
bandwidth Ci (t), i = 1, 2, … , K, with the constraint that

Any unallocated bandwidth

is consumed by the BE traffic. This model describes the Diff-
Serv/MPLS network framework, in which QoS is differentiat-
ed on a per-node, per-class basis. It can also be used to
describe a Virtual Private Network (VPN) environment, in
which each queue is dedicated to aggregate traffic belonging
to a particular VPN user. For a more complicated scenario,
each VPN user may be assigned a fixed bandwidth pool which
supports multiple traffic classes to provide service differentia-
tion to traffic within the same VPN user. According to the
model, the QoS guarantee by means of ABC can be achieved
independently in each queue, with the constraint on the out-

C C ti
K
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i
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put link capacity as mentioned before. Therefore, we focus
our discussion of ABC on the case of a single queue, and then
later describe issues that arise due to the limited link capacity
and multiple queues.

CLASSIFICATION

A model of ABC for a single queue is depicted in Fig. 2. The
bandwidth controller adjusts the allocated bandwidth (service
rate) on a time scale between a packet level and a connection
level (e.g., one tenth of a second to seconds) based on online
measurement of the system state and measured traffic infor-
mation and possibly traffic prediction, such that the QoS
requirement is achieved while maintaining a high bandwidth
utilization. Existing ABC algorithms can be classified accord-
ing to the underlying control technique used, or according to
the QoS metrics guaranteed, as shown in Fig. 3. Since the
classification based on the QoS metric is straightforward, only
the discussion on the underlying control technique will be pro-
vided.

Regarding the underlying control technique, ABC schemes
can roughly be classified as being either closed-loop or open-
loop. The closed-loop, or feedback control, approach arises
naturally in this context where the packet loss, average queue
length, or other system states, are regularly observed to pro-
vide the feedback to adjust the allocated bandwidth. The
closed-loop control approach can be further categorized based
on the guaranteed QoS metrics, including the average queue
length [12, 13], loss [14–17], and delay [18, 19]. The open-loop
control approach involves predicting the input traffic rate
using the past history. The service rate is then adjusted to
match the predicted rate to attain zero packet loss or low
queuing delay. Although effective, using open-loop control to
achieve a given target QoS is difficult due to the lack of
explicit relationship between the predicted traffic rate and the
target QoS. Consequently, most of the existing work for open-
loop ABC only attempts to deliver very low or zero packet
loss rather than guarantee it quantitatively [20–22]. The
hybrid of feedback control and open-loop control is also pos-
sible to eliminate the drawbacks found in both approaches

[23]. Since it is the QoS metrics that are of
interest, in the following five sections we
describe ABC algorithms in terms of their
guaranteed QoS metrics. A summary and com-
parison of the ABC algorithms discussed are
provided in Table 1 toward the end of the
article.

QUEUE LENGTH CONTROL

A great deal of work has focused on using
ABC to maintain the average queue length at
some desired target value so that the packet
loss and the average queuing delay are kept
low. Many researchers have investigated the
control based on a fluid-flow model of a queu-
ing [12, 13, 24, 25]. In the fluid-flow model,
the ensemble average queue length Q(t) in a
single server queue is described by a non-lin-
ear differential equation

(1)

where C(t) is the service rate, G(·) is a func-
tion obtained from matching the average uti-
lization as a function of the average queue
length at steady-state, and λ(t) is the ensem-
ble average packet arrival rate. A closed

form of G(·) is generally not easy to determine unless for a
simple Markovian model, or using a function fitting from
measurement data. In [12], the desired trajectory of Q(t) is
first specified as a function of λ(t), and the control objective
is to determine C(t) that minimizes the tracking error. C(t)
is derived from a Lyapunov-based control and is shown to
be directly proportional to the tracking error. A series of
work by Pitsillides et al. [13, 24, 25] considers bandwidth
control of an M/M/1 queue modeled by Eq. 1 in various
contexts. A multilevel optimal control approach is devel-
oped to coordinate the decentralized nodal bandwidth con-
trol to improve the global network performance and
robustness [24]. In [25], the proportional control, C(t) =
α(1 + Q(t)), in the context of an ATM Available Bit Rate
(ABR) service is derived to handle a finite buffer and finite
capacity case, where α is chosen based on the buffer size
and capacity limit, assuming the bound on λ(t) is known.
Also based on Eq. 1, feedback linearization and robust
adaptive control is applied to derive the bandwidth control
law to maintain a low average queue length (and hence low

dQ t
dt

C t G Q t t
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( ) ( ( )) ( )= − + λ

� FIGURE 1. The transmission link system model.
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delay), in the context of a DiffServ Premium service class
[13]. There are disadvantages to using the control based on
Eq. 1:
• The control is performed in continuous time.
• λ(t) may not be measurable.
• The form of G(·) changes from one queuing system and

configuration to another.
Hybrid control that combines the input traffic information

and the measured average queue size has recently been devel-
oped in [23]. Specifically, the wavelet-energy approach is used
to separate the short-term and long-term fluctuations in the
arrival rate time series data into different frequency bands.
The energy content in each sub-band frequency as well as the
measured average queue length are then used to calculate the
bandwidth to be allocated in the next time interval. The simu-
lation results in [23] show that the queue length can be main-
tained at some constant level with the above wavelet-energy
approach, but one has no control over the value at which the
queue length is to be maintained.

NON-ZERO LOSS GUARANTEE

DIRECT FEEDBACK

Guaranteeing non-zero packet loss with ABC is to ensure that
the cumulative loss converges to the desired (non-zero) target
packet loss rate and stays at that value. ABC algorithms based
on integral control are considered in [14, 15]. In those algo-
rithms, the allocated bandwidth is adjusted in proportion to the
difference between the measured loss and the target loss, and
finally reaches some constant value. In [14], the discrete-time
bandwidth adjustment at time instant tk follows the equation

Ck+1 = Ck + Gk ln(Pk /ε) (2)

where Ck is the service rate, Gk is the feedback gain, Pk is the
measured packet loss rate over [tk–1, tk), and ε is a target
packet loss rate. The error feedback term ln(Pk / ε) governs
how much Ck should be adjusted; the amount of adjustment
becomes smaller as Pk gets closer to ε.1 The parameter Gk
amplifies the feedback and controls how quickly the algorithm
converges. A heuristic procedure to dynamically adjust Gk is
also proposed in [14], which basically makes Gk smaller as Pk
gets closer to ε. The performance of a slightly modified ver-
sion of this algorithm for MPEG video traces and a multihop
network setting are investigated in [26]. Hsu and Walrand [15]
propose a similar bandwidth adaptation algorithm:

Ck+1 = Ck + (G/k)(Lk – ε Ak) (3)

where G is a positive constant, and L k and
ε A k are, respectively, the number of lost
packets and the expected number of losses
during the time interval [t k–1, t k]. The algo-
rithm is proved to converge to the minimum
bandwidth almost surely for a Markov modu-
lated fluid source. However, no performance
evaluation is presented therein. Observe that
in both Eq. 2 and Eq. 3 the feedback gain Gk
keeps decreasing over time so that smaller
bandwidth adjustment is made as time
increases and the allocated bandwidth will
eventually reach some constant value. While
Eq. 2 and Eq. 3 intend to make the allocated
bandwidth converge to some minimum
steady-state value, in a typical dynamic net-
work load environment, one needs regular
bandwidth adjustment.

To acquire some key insights on the performance of ABC
with integral control of loss feedback, we show the perfor-
mance of Eq. 3 using a simulation model coded in CSIM,2 a
process-oriented simulation language based on C. The model
is a single queue with a finite buffer as shown in Fig. 2. The
controller has two main parameters including the initial gain
(G) and the control time scale Tc, the length of time interval at
which the bandwidth adjustment is made. The input traffic
used in the simulation is fractional Gaussian noise (fGn),
which has three parameters including the mean rate (λ), vari-
ance coefficient (a), and Hurst parameter (H). The values λ =
5,000 packets/s , a = 1, and H = 0.85 are used. Unless stated
otherwise, this input traffic will be used in the simulation study
through the rest of the paper. The buffer size is 200 packets.
As shown in Fig. 4, the cumulative loss under the integral con-
trol may or may not reach the target loss rate ε = 10–3 depend-
ing on G and Tc. Furthermore, we found that when either G is
increased to 10000, or Tc to 2 seconds, there is no loss and the
utilization significantly reduces (0.394 and 0.706, respectively).
This is because the bandwidth assigned becomes very large as
a result of packet loss at early steps but decreases very slowly
afterward due to the decreasing feedback gain.

INDIRECT FEEDBACK

Another approach to guarantee packet loss is to translate a
loss requirement to some other performance measure; the
control then attempts to maintain that performance measure
to indirectly achieve the target loss requirement. This
approach is adopted in [16, 17], where the control does not
necessarily make the allocated bandwidth reach a constant
value as in [14, 15]. We define the utilization as the fraction
of time the server is busy. In [16], a target loss rate (ε) is
translated to the target average queue length (

—
Q) as well as

the target utilization (—ρ) through an M/M/1/K queue assump-
tion, and the control attempts to maintain the utilization at —ρ
by observing changes in the average queue length. The mea-
sured average queue length (Q̂), packet loss rate (̂ ε), packet
arrival rate ( λ̂), and packet departure rate ( r̂ ) are used to
estimate the utilization ( ρ̂) according to the expression
derived from an M/M/1/K queue. In particular,

(4)
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� FIGURE 3. Classification of ABC algorithms that guarantee packet-level QoS met-
rics
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1 The behavior of the algorithm when Pk = 0 is not discussed in [14].
From Eq. 2, the control goes into an invalid state when no packet loss is
observed during the measurement period. 2 http:\\www.mesquite.com
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The control action, invoked when ^Q deviates from 
—
Q

beyond some thresholds, is used to adjust the service rate in
such a way that the difference between ρ̂ and —ρ is mini-
mized by multiplying the current service rate with —ρ / ρ̂. In
real networks, however, the input traffic usually has com-
plex (e.g.,  non-stationary, long-range dependent) and
unknown characteristics, and thus the queuing process can
have radically different characteristics from that of the
M/M/1/K queue. As shown in Fig. 5, the resulting loss is far
from the desired target loss with the same fGn traffic input
used earlier.

In [17], we take a different approach by applying fuzzy
control to maintain the average queue length between a
queue threshold pair uth and l th that depends on the target
loss rate. For a system that cannot be adequately described by
detailed mathematical equations, fuzzy control is a convenient

approach to synthesize a non-linear controller whose control
laws are heuristically derived through some key insights of the
process under control. Basically, two feedbacks — the average
queue length (Qk) determined over [t k –1, tk) and its changes
(∆Qk) — are translated through the membership functions to
linguistic values associated with the degree of certainty rang-
ing between 0 and 1. Fig. 6 shows the membership function
for Qk. We then define a set of rules, called a rule-base, which
represents heuristic descriptions of how to achieve good con-
trol. In our case, each rule is associated with some amount of
bandwidth adjustment which depends on the behavior of Qk
and ∆Qk. For instance,

IF Q̂k is low and ∆Q̂k is high THEN decrease the
bandwidth by 2.5 percent of the average input arrival rate.

From the rule-base, we determine the amount of band-

� FIGURE 4. Loss performance of direct loss feedback [15] (target loss rate = 10 –3 ).
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� FIGURE 5. Loss performance using control based on the M/M/1/K model [16].
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width adjustment ∆Ci due to rule i by weighting
the amount of bandwidth adjustment specified
in rule i by the product of the membership
function values of Qk and ∆Qk. The total
amount of bandwidth adjustment is then the
sum of ∆Ci .

Figure 7 shows the packet loss perfor-
mance of the fuzzy controller, with the con-
trol time scale varying from 1 second to 20
seconds, under the same queue configura-
tion and input traffic used earlier. Currently,
the mapping between the target loss rate
and the target queue length is based on the
G/M/1 queuing model with trial and error
tuning. The results indicate that with the
right target queue length, the target loss rate
can be achieved with high utilization and the performance
appears  to  be robust  against  the control  t ime scale ,
although the utilization decreases as the control time
scale increases. Compared to Fig. 4b, at ε = 10 – 3, the
fuzzy control can achieve the target loss with higher uti-
lization (0.855 versus 0.828). Also note that although the
utilization due to the control shown in Fig. 5 is higher, it
yields the loss rate that is more than an order of magni-
tude higher than the target value.

Two issues that need to be resolved for the fuzzy controller
are the choice of the control time scale and the mapping
between the target queue length and the target loss rate. We
expect that an appropriate choice of the control time scale
would change with the network parameters such as the buffer
size and the input average rate. We also found that the packet
loss and queue length translation based on the G/M/1 queuing
model performs poorly at a large buffer size. These two issues
are being investigated in our ongoing research.

ZERO LOSS GUARANTEE

Specifying quantitative loss guarantee with ABC is appealing
if the target loss rate is not too low, e.g., greater than 10 – 4.
The control techniques discussed in the previous section tend
to perform poorly when dealing with low packet loss rates.
With direct loss feedback, we found that the feedback term
Lk – ε Ak in Eq. 3 becomes so small that the resulting cumula-
tive loss is slow to converge due to very small bandwidth
adjustment steps. With the indirect feedback based on the
average queue length, the target queue length used in [17] can
also become so small at low target loss rates that the control
to keep the average queue length at the target is ineffective.
At low target loss rates, we therefore argue that it is better to
provide zero loss guarantee.

Zero loss guarantee is attained by allocating the band-
width that matches the arrival rate, which is best implement-
ed with the open loop control. That is, if the service rate is
sufficiently greater than the arrival rate in every time inter-
val, zero loss can be expected. Zero loss guarantee with
open-loop ABC is particularly appealing to video traffic, the
characteristic of which is that the data rate can vary signifi-
cantly from one frame to another. Effective open-loop ABC
requires prediction of the input traffic to determine the
amount of allocated bandwidth in subsequent time intervals.
The prediction can be done either directly in a time domain,
or by incorporating the knowledge of traffic in the frequency
domain. More precisely, the time-domain prediction directly
calculates the required bandwidth only from traffic rates
measured in the past. The frequency-domain prediction first
uses the knowledge of traffic in a frequency domain to prop-
erly filter the traffic; then a time-domain prediction is
applied to the filtered traffic. These two approaches are
described below.

TIME DOMAIN

Let xk be the input traffic rate measured over time interval
[tk – 1, tk]. In simple forms of time-domain prediction, the
bandwidth Ck + 1 allocated during the next interval [tk, tk + 1)
can be set to one of the following:
• The measured traffic rate over the kth interval, Ck+1 =

xk .
• The average of the measured rate of past M intervals;

.

• The weighted sum between –xk(M) and xk; Ck+1 = (1 – α)
–xk(M) + α xk .

It is apparent that these kinds of allocation are unlikely to
yield good performance for bursty traffic due to poor traffic
prediction, as confirmed by results in prior work [23, 27].

Better t ime-domain prediction methods have been
developed in [21, 28]. In [28], the D-BIND deterministic
traffic model proposed in [29] is fitted to M successive
frames of the video sequence in real-time, and the band-
width is adjusted accordingly to match the worst case traffic
arrivals to guarantee zero loss. However, the fitting process
is computationally intensive, and the deterministic traffic
model can result in underutilization. Adas [21] uses the
Least Mean Square (LMS) error linear predictor to predict
the bandwidth requirement of future frames in MPEG
video sequences. In particular, a pth-order linear predictor
has the form

C x M M xk k i
M

k i+ =
−

−= ≡ ∑1 0
11( ) ( / )

� FIGURE 6. Membership functions for the average queue length.
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(5)

where xk represents the frame rate at time step k, and wl
are the prediction filter coefficients. Note that previous p
values are used in the prediction. In an LMS approach, wl
are time-varying and determined from the prediction error
x k + n – x̂ k + n and previous values of xk. In this case, the
prior knowledge of traffic statistics and stationarity assump-
tion are not needed. At n = 1 and p = 12, it is shown that
the bandwidth allocated according to the predicted values
results in less delay and fewer buffers needed. The number
of reallocations is reduced by introducing an allocation
threshold, whereby the bandwidth is adjusted according to
the predicted rate only if the predicted rate differs from the
currently allocated rate by more than some threshold value.
This same prediction technique is adopted in [30] for the
dynamic bandwidth allocation of self-similar video confer-
encing traffic. The performance of the LMS prediction on
LRD traffic is shown in Fig. 8, where we apply the predic-
tion with p = 20 to the fGn traffic used in the simulation
study in the previous section. We can see that prediction
error as high as 10 percent is typical, which can lead to
excessive loss in some time intervals. Gallardo et al. [31]
propose the α-stable self-similar process to model aggregate
traffic. They go on to develop a prediction method for the
above traffic process based on an autoregressive model. The
predicted traffic information is used to control the token
rate of a leaky bucket regulator at the edge node to reduce
packet loss.

In [22] Duffield et al. consider ABC in the context of VPN
bandwidth allocation. They suggest dynamically resizing a
VPN link capacity in their hose VPN model to attain better
bandwidth sharing among traffic aggregates in a sink tree
VPN. In the hose model, a VPN customer specifies a set of
end points to be connected to, as well as a rough estimate of
incoming and outgoing aggregate traffic from and to those
end points, comprising the required bandwidth on the access
link to the network. From initial bandwidth assignments, the
bandwidth on both the access link (at hose interface) and
internal links are dynamically resized. The bandwidth resizing
is done from the ingress node, which in turn signals the reallo-
cation along the path to the egress node.

Two prediction methods to obtain the required bandwidth
from the sampled traffic rate measured over a fixed measure-
ment window are proposed in [22] to achieve the bandwidth

resizing. Although their work does not explicitly state the
objective of bandwidth resizing to guarantee zero loss, these
two methods are discussed here because the required band-
width, which is calculated from the time-domain prediction of
past traffic arrivals, is intended to match the input traffic.
With the measurement window of size Tc and the sampling
interval Ts , n ≡ Tc / Ts sampled rates are available for the
estimation. The first method is called the local maximum pre-
dictor, whereby the maximum of the sampled rates over the
measurement window is used. The other one is called the
local Gaussian predictor. It sets the allocated rate in the next
measurement window to m + α √ υ , where m and υ are,
respectively, the mean and variance of the sampled rates over
the measurement window. The multiplicative factor α is
selected such that the arrival rate will exceed the allocated
bandwidth m + α √ υ with probability ζ = 1 – Φ(α), where
Φ (α) is a standard normal CDF. That is, α = Φ – 1 (1 – ζ).
The paper also discusses the robustness of the predictors with
respect to traffic non-stationarity, measurement errors, and
short time-scale burstiness. It is argued that the predictors are
robust with respect to non-stationarity provided that the mea-
surement time scale is less than the non-stationary time scale.
Regarding the measurement errors, they prove that for the
local Gaussian predictor, the error from n samples can be
avoided by modifying α to

To deal with burstiness in multiple time scales, which results
in underestimating the required bandwidth, it is suggested
that a priori knowledge of the rate variance at different time
scales be used to correct α.

Figure 9 shows sample paths of the allocated bandwidth
due to the local Gaussian predictor at a different measure-
ment window Tc under the same queue configuration and the
fGn input traffic used previously with ζ = 0.95. Zero loss is
achieved in both cases. In these cases, we expect the predic-
tion to perform well because the underlying traffic rate is
Gaussian. However, as the input traffic has been changed to
an aggregate of Pareto on-off sources (with the same Hurst
parameter) as shown in Fig. 10, the performance of the local
Gaussian predictor degrades, resulting in some packet loss.
This suggests the modification of ζ to increase the allocated
bandwidth. Therefore, getting the right α can be difficult
because it requires manual tuning. Note also that the band-
width allocation totally ignores the presence of buffers. The
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� FIGURE 8. Performance of LMS prediction on fGn traffic.
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utilization can be improved if the buffer is taken into account,
especially when a large buffer exists.

FREQUENCY DOMAIN

Another approach to open-loop ABC is to analyze the input
traffic in the frequency domain to obtain a proper cutoff fre-
quency for traffic filtering. A time-domain prediction based
on the filtered traffic is then applied for the bandwidth alloca-
tion. In [20, 32], by considering the rate of an MPEG video
trace as a signal, frequency domain analysis shows that the
bandwidth requirement to guarantee no packet loss is essen-
tially captured by the low-frequency traffic filtered at a prop-
erly selected cutoff frequency ω L. In particular, if x̂ t is the
filtered traffic of the input traffic x(t) at ω L, the minimum
static bandwidth requirement is max t x̂(t), which must be
obtained only through an off-line process. The cutoff frequen-
cy ω L depends on the buffer size. At low buffer size, ω L will
be high because the link capacity has to accommodate high-
frequency components, i.e., burstiness, of the input traffic. At
zero buffer space, we basically need to allocate the minimum

bandwidth at the peak input rate to prevent packet loss, cor-
responding to ω L = 2 π / T where T is the minimum packet
interarrival time. As the buffer size increases, the high fre-
quency components can be absorbed by the buffer such that
ωL can be reduced, and higher utilization can be obtained. At
infinite buffer space, one can set ω L to zero and the peak fil-
ter rate is simply the average input rate because we obtain the
DC term with ω L = 0.

Statically assigning the bandwidth at max t x̂(t) is inefficient
because most of the time x̂(t) stays much below its maximum.
It is suggested in [32] that since x̂ (t) has slow time variation
and hence is predictable, dynamic bandwidth allocation based
on the online observation and prediction of x̂(t) can be imple-
mented. To implement the above approach in real time,
Recursive Least Square (RLS) and Time-Delay Neural Net-
work (TDNN) predictors are used to predict the low-frequen-
cy variation, given that the traffic is passed through a low-pass
filter with appropriate cutoff frequency [20]. The filtered
input rate is predicted M steps (sampling intervals) in advance
and the bandwidth is periodically adapted every M-step win-
dow. The allocated bandwidth is the maximum of these M

� FIGURE 9. Allocated bandwidth with local Gaussian predictor [22] under fGn traffic (sampling interval = 5 ms).
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� FIGURE 10. Allocated bandwidth with local Gaussian predictor [22] under an aggregate of Pareto on/off sources (sampling interval 
= 5 ms).
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predicted values multiplied by some safety factor. The number
of adjustments can be reduced by introducing a hysteresis
threshold.

Although ωL can be determined analytically for some special
class of input processes such as MMPP or Gaussian [32], this is
not the case in general and ωL must be determined on an off-
line trial and error basis. For a prerecorded or stored video, the
off-line analysis can be accomplished by fitting the traffic to one
of the traffic models above, in which ωL can be obtained analyt-
ically. However, for traffic generated on the fly or from live
sources, determining ωL in real time is not possible.

Despite the fact that the appropriate cutoff frequency to
filter the traffic for open-loop ABC may not be obtained ana-
lytically under traffic models other than MMPP or Gaussian,
the lower and upper bounds on the cutoff frequency related
to the bandwidth allocation has been identified for a queue
with finite buffer K and fixed link capacity C, subject to a
deterministic maximum delay constraint dmax = KC [33]. Note
that this delay constraint is equivalent to zero loss guarantee.
For a given d max, it is shown in [33] that if most of the 
frequency components of the input traffic is lower than 
ω L = 2π / (200d max), the bandwidth to guarantee zero loss is
approximately max t x( t). In this case, buffering becomes inef-
fective because the allocated bandwidth must be assigned at
the peak input rate. On the other hand, if most of the fre-
quency components are higher than ωH = 2π /dmax , the band-
width to guarantee zero loss is approximately the average
input rate because the frequency components are absorbed by
the buffer. For input traffic whose frequency components are
in [ωL , ωH ] , the required bandwidth is between the peak rate
and the average rate, which is consistent with the results in
[32]. For the same input traffic, if the buffer size increases,
ω L and ω H will decrease, therefore reducing the bandwidth
requirement. These results also imply that the traffic correla-
tion and statistics at time scales beyond 200 dmax and less than
dmax are negligible.

DELAY GUARANTEE

Bandwidth adjustment to guarantee a probabilistic delay
bound is considered in [18]. For a single server with service
rate C, the probabilistic delay bound QoS requirement is that
the probability that a packet queuing delay d will be greater
than D is less than ε, i.e., PP{d > D} < ε. The delay bound
requirement is translated to the bound on the queue tail dis-
tribution PP{Q ≥ θ} < ε, where θ = D × C. The problem is to
estimate PP{Q ≥ θ }through online measurement and adjust C
from its initial allocation (found from an effective bandwidth
formula) so that the QoS requirement is met.

The problem is solved in two steps. In the first step, 
the queue length distribution is derived from the measured
statistics of packet arrivals. Basically, the tail distribution 
of the queue occupancy Q must be assumed to follow some
specific distribution. For example, the Weibull distribution,
PP{Q ≥ x} = Ae – I x b, can be used if the traffic is known to be
long-range dependent. The exponential tail distribution, 
PP{Q ≥ x} = Ae– I b, can also be used for a large class of traffic
models provided that b is small [2, 34]. For the Weibull distri-
bution, measuring PP{Q ≥ x} at three different queue thresh-
olds x are sufficient to parameterize the distribution and
extrapolate PP{Q ≥ θ}. In the second step, the change in the
queue threshold violation probability ∆ε as the bandwidth
changes from C to C + ∆C must be determined, which is
derived in [18] only for the case of an exponential tail distribu-
tion. This information is then used to adjust the allocated band-
width to bring ε to the target value. The primary drawbacks of
the above method is that the assumption of a specific queue
length distribution may not hold, and the relationship between
∆ε and ∆C may not be easily determined for other probability
distributions. Furthermore, the measurement error may seri-
ously affect the accuracy of the queue length extrapolation.

GUARANTEEING MULTIPLE QOS METRICS

Recently, Christin et al. [19] developed a class-level ABC for a
quantitative Assured Forwarding (AF) DiffServ service class
with absolute and relative differentiation of delay and rate
guarantees over the duration of a busy period.3 By keeping
track of every arrival and departure in a given busy period,
the performance measures of interest are determined directly
from the arrival curve (from cumulative packet arrivals), the
input curve (from cumulative packets entering the queue),
and the output curve (from cumulative packet departures). As
illustrated in Fig. 11, the delay of the departing traffic at the
kth event (at time tk), denoted by Dk, is the horizontal dis-
tance between the input curve and the output curve, the back-
log (Bk) is the vertical distance between the input curve and
the output curve, and the amount of traffic dropped is equal
to the shaded tan area. Given the delay and rate constraints
(both absolute and relative), the service rate is adjusted for
every packet arrival instant to the queue such that all the con-
straints are satisfied. The absolute delay is guaranteed by
ensuring that all backlogged traffic must be sent within its
delay bound. Namely, the required bandwidth at the kth event
to achieve the delay bound guarantee d is given by

(6)

Given the minimum guaranteed rate requirement, the mini-
mum required bandwidth for both rate and delay guarantees
is the maximum between the two.

For a proportional delay differentiation among N traffic
classes, we want to have Dk ( i) = τ i – 1 D k (i – 1), where τ i is
the differentiation ratio between class i and i + 1, and Dk (i)
is the class i delay at the kth event, i = 1, 2, … , N – 1. Let 
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� FIGURE 11. Delay and backlog in a busy period.
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It is shown that the delay differentiation is achieved if Dk
*(i)

can be maintained at Dk
* ≡ N – 1 Σ i=1

N D k
*(i). So the error 

ek (i) = Dk
* – Dk

*(i) is used to adjust the service rate of class i
at the kth event. The amount of adjustment is Gk ek(i) , where
Gk is a feedback gain. With some simplified assumptions to
model the system as a discrete-time linear control system, the
range of Gk to ensure stability has also been given. Under a
certain condition shown in [19], the absolute/proportional
delay differentiation and rate guarantees are not achievable
simultaneously. We believe that this shortcoming is insignifi-
cant because guaranteeing such multiple QoS metrics simulta-
neously is rarely needed. However, attempting to guarantee
different metrics at every arrival/departure instant requires
computationally expensive processing and leads to an imple-
mentation that is not scalable for high-speed links. As shown
in [19], a 1-GHz PC router can achieve less than 200 Mb/s
throughput for a few number of QoS constraints.

ISSUES IN ABC
CONTROL TIME SCALE

Of particular importance in ABC is the issue of which time
scale should be used to adjust the bandwidth, which we here
refer to as a control time scale. Presently, most of the work in
ABC selects the time scale to adapt the bandwidth based on a
trial and error basis, and there has been relatively little work in
the literature that provides insights into how to properly select
it.4 Adjusting the bandwidth too frequent can lead to high
overheads, highly fluctuated bandwidth, and potentially poor
control performance due to inaccurate feedback obtained from
a too short measurement period. On the other hand, if the
bandwidth is not being adjusted frequently enough, poor con-
trol performance may result under traffic non-stationarity.
Also, the packet loss can be excessive because the time period
during which the allocated bandwidth mismatches the arrival
traffic becomes larger. Nevertheless, although the control time
scale for ABC algorithms that are based on feedback control is
still not well understood, some insights are available into the
time scale of those ABC algorithms based on open-loop con-
trol of traffic rate. Previous work in [32] shows that the traffic
low-frequency component (which is filtered at a cutoff fre-
quency that depends on the buffer size) dominates the average
queue length performance. As such, the control time scale
should also be able to react to the low-frequency variation of
the input traffic filtered at an appropriate cutoff frequency.

Fu and Knightly [35] investigate dynamic traffic rate con-
trol whereby the bandwidth is allocated to match the request-
ed aggregate traffic rate by using step allocation with
hysteresis. They model the aggregate rate fluctuation with a
random-phase sinusoidal signal superimposed with a random
white noise and analytically evaluate the performance metrics,
including the overload probability, the reserved resource uti-
lization, and the normalized residual bandwidth. The pro-
posed sinusoidal model fits real traces well and is able to
predict fairly accurately performance metrics when the vari-
ance of the traffic is small, but becomes inaccurate otherwise.
The study reveals that the effectiveness of such a control
mechanism strongly depends on the relative time scale
between the control and the traffic, as well as the variance of
the traffic rate itself. When the bandwidth adjustment time
period is of shorter duration than the long-term traffic fluctu-
ation, i.e., the traffic low-frequency component, and when the

variance of the traffic rate is not high, the reserved resource
utilization is close to unity.

ADMISSION CONTROL

Under ABC, the allocated bandwidth will dynamically change
over time. As such, admission control becomes a problem
because it is unclear when new aggregates can be admitted to
the queue. If too much traffic is admitted, there will be a time
period over which the bandwidth cannot be allocated as
required by the ABC algorithm in use, leading to QoS degra-
dation in those bandwidth violation periods. The problem of
admission control under ABC can be divided into two sub-
problems. The first one is to investigate the relationship
between the degree of QoS degradation and the bandwidth
violation. With such knowledge available, we can quantify how
much bandwidth violation can be tolerated while retaining an
acceptable level of QoS. The second one is to discover the
impact of admitting new aggregates with respect to the band-
width violation. By combining the solutions of these two sub-
problems, admission control in ABC can be exercised
successfully. Exactly how to obtain those solutions requires
further investigation.

CONTROL IN MULTIPLE QUEUES

When multiple traffic classes share the same link or band-
width pool, the single-queue control must be extended to deal
with fair bandwidth access as well as other issues, as discussed
in the following. Palazzo [12] extends the Lyapunov-based
control discussed previously to a hybrid Lyapunov and optimal
control to deal with the multiple queues. In particular, each
queue will receive the bandwidth proportional to its tracking
error according to the Lyapunov-based control when the sum
of allocated bandwidth is below the link capacity. Otherwise,
the expression derived from the optimal control that mini-
mizes the sum of the tracking errors from each queue is used.
Likewise, the work by Chong et al. [20], also described earlier,
consider the case of multiple ATM virtual circuits (VCs) by
allocating the link bandwidth at time t in proportion to the
VC bandwidth requirements derived from the control algo-
rithm.

ABC for multiqueues must also deal with additional issues
that have not been addressed elsewhere in the literature. The
interaction among traffic classes complicates the control by
introducing the fairness constraint that must be met in addi-
tion to the packet-level QoS. Since the link capacity is finite,
the bandwidth request due to the control is not always grant-
ed. The question is then how to devise the control that allows
each queue to equally access the resource in a long run.
Apparently, the control must incorporate some mechanisms to
prevent the bandwidth hogging of one class or aggregate over
the others. In a more general case, priority access has to be
considered. The QoS violation of one class may result in high-
er loss in the revenue or service integrity than the others. As
an example, for an equal length of the QoS violation period,
users may find it more irritating in voice traffic than video
traffic or WWW traffic. Given that class A has higher priority
than class B, the request for bandwidth allocation for class A
due to the bandwidth control should be rejected less often
than that of class B, and the fraction of the QoS violation
period of class A should be lower than that of class B in the
long run.

SUMMARY AND CONCLUDING REMARKS

In this paper, we have presented a survey of adaptive band-
width control (ABC) mechanisms and made the case that
ABC can be a viable alternative to static bandwidth allocation

4 Our notion of control time scale is different from the critical time scale or
dominant time scale discussed in the context of LRD traffic, which states
that the amount of traffic correlation beyond the above time scale, which
basically increases with the buffer size, has no impact on the steady-state
loss performance.
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for attaining QoS at high utilization. Static bandwidth alloca-
tion techniques are typically based on some specific traffic
models, and therefore are subject to errors in the underlying
model as well as in the parameterization. ABC, on the other
hand, requires minimal prior information on the traffic model.
This is the major appeal of the ABC concept. At the same
time, the choice of the control time scale is a critical issue in
ABC schemes. Further, admission control and multi-queue
control in the context of ABC are fertile research areas. In
this section, a critical comparison of the various ABC schemes
is presented with the pros and cons of each mechanism and
directions for future research.

Table 1 summarizes the ABC algorithms discussed in this
survey according to their QoS metrics guarantees, which fol-
lows the classification in Fig. 3. It may be noted that the bulk
of the existing literature has focused on the loss QoS metric,
with the remaining schemes focusing on the control of the
queue length or the delay QoS metric. The queue length con-
trol mechanisms are developed with the intention to qualita-
tively achieve low packet loss rate and queuing delay. If
quantitative guarantees on the loss or delay metrics are need-
ed, then the ABC scheme must explicitly control the respec-
tive QoS metric. Due to the attention paid to the control of
the loss QoS metric, these schemes are the most well devel-
oped, and understanding these schemes can provide insights

into the control of other parameters as well. Thus, the rest of
the section is spent comparing the ABC techniques to control
loss and identifying the shortcomings that still need to be
overcome.

The control techniques for loss are classified into those
that target arbitrary non-zero loss values and those that target
zero loss. The goal of the non-zero loss mechanisms is to
maintain the cumulative, or long-term loss metric as close to
the target as possible. However, maintaining the short-term
loss QoS is very important for real-time audio and video
applications. While the long-term loss is kept constant (and
close to target), there may be periods of large burst losses
occurring in between. The effectiveness of the ABC schemes
on the short-term loss QoS needs to be studied. The second
issue is the convergence rate, namely, how fast does the
cumulative loss converge to the target value. The convergence
rate depends on the choice of the different control parame-
ters, and their relationship should be well understood. Also,
there is limited work on the performance of ABC algorithms
under non-stationary traffic, and traffic traces from real pro-
duction networks need to be used.

The non-zero packet loss QoS schemes based on direct
loss feedback control use an integral controller in adjusting
the service rate. In this case, the control performance strongly
depends on the choice of feedback gain and the control time

� Table 1. ABC algorithms comparison.

Palazzo [12], Queue length Derive the control expression based on an Unrealistic model assumptions.
Pitsillides [13] M/M/1 queue. Analytically tractable.

Sahinoglu [23] Queue length Use the wavelet-decomposition approach. Possibly high complexity in wavelet
Both energy content in each sub-band decomposition algorithms. No control
frequency and queue length feedback are over the target queue length.
then used to determine the bandwidth
allocation. Yield good performance.

Rampal [14], Hsu [15] Loss Proportional loss controller. Simple to Performance strongly depends on the
implement. feedback gain and can perform poorly.

Liao [16] Loss Map target loss to target utilization and Require measurement of many queue
control the target utilization. The estimated statistics. Control derived from unrealistic
utilization is derived through an M/M/1/K model, leading to poor performance.
queue assumption.

Siripong [17] Loss Map target loss to target average queue Difficult control parameter tuning. Need
length and use fuzzy control to keep the accurate target queue length/loss mapping.
queue length. Robust against input traffic
conditions and control parameters.

Adas [21] Zero loss Allocate bandwidth equal to the predicted LMS could give large prediction error.
rate from an LMS predictor. Simple to implement.

Duffield [22] Zero loss Allocate bandwidth equal to the predicted Ignore the presence of buffers, which may
rate from a local Gaussian predictor. Simple result in overallocation. Require some
to implement. parameter tuning.

Chong [20] Zero loss Allocate bandwidth equal to the peak rate Require off-line work to determine proper
of low-pass filtered traffic. Yield good cut-off frequency for filtering.
utilization because buffer is considered.

Kesidis [18] Delay Fit measured queue statistics to pre- Assume a priori knowledge of queue length
specified queue length distribution, and distribution. Subject to inaccuracy in
then derive the changes in queue length as extrapolation due to measurement error.
a function of bandwidth adjustment.

Christin [19] Delay/rate Guarantee QoS over a busy period, both Computationally expensive.
absolute and relative manners, whereby
the control is derived through the relation
between arrival curve and output curve.
Multiple QoS metrics can be guaranteed.

Algorithms Guaranteed metric Descriptions/advantages Disadvantages
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scale. A single choice of the feedback gain and control time
scale parameters will not work well in every configuration,
and the selection of those parameters needs further analysis.
The desired packet loss guarantee can also be achieved by
maintaining the average queue length at some target value
through the use of fuzzy control, which is shown to yield bet-
ter results than direct loss feedback ABC. However, an effec-
tive method to translate a given loss requirement to the target
average queue length in the control system is still an outstand-
ing issue. If this issue is resolved, this would be a very promis-
ing approach to deploy.

When the target loss rate is very small, most non-zero loss
guarantee schemes with feedback control become ineffective,
and it is better to provide zero loss guarantee by allocating
the bandwidth to match the input traffic rate that is obtained
from online prediction. This comes at the expense of lower
utilization. For traffic with widely varying bit rates over time
such as MPEG-coded video or VBR traffic, ABC based on
traffic prediction, or open-loop ABC, has been shown to satis-
factorily improve the network utilization as compared to static
allocation mechanisms. However, the online prediction of
input traffic is a challenging problem and may incur inaccura-
cies that affect its performance. For the purposes of predic-
tion, the incoming traffic may first be filtered. If the incoming
traffic is left unfiltered, the prediction relies on simple linear
predictors but the allocated bandwidth does not consider the
buffer size, which could have increased the utilization. The
prediction of filtered traffic at a properly selected cutoff fre-
quency can yield higher utilization because it considers the
buffer size. However, the cutoff frequency in most cases must
be predetermined off-line, which incurs more complexity, and
also requires some prior knowledge on the input traffic such
as the range of its power spectrum. Consequently, the trade-
off must be made between simplicity of control and bandwidth
utilization. A simple linear predictor such as the local Gaus-
sian predictor is appealing because it requires no prior traffic
information, although the Gaussian assumption is made in
deriving the predictor. In our opinion, it has the best perfor-
mance trade-off overall. However, under non-Gaussian traffic,
such a predictor requires some (manual) parameter tuning to
increase the safety margin in allocating the bandwidth for a
zero loss guarantee.
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