Machine Learning

Sargur N. Srihari
Machine Learning and AI

- If an expert system—brilliantly designed, engineered and implemented—cannot learn not to repeat its mistakes, it is not as intelligent as a worm or a sea anemone or a kitten.
 - Oliver G. Selfridge, from The Gardens of Learning.

- "Find a bug in a program, and fix it, and the program will work today. Show the program how to find and fix a bug, and the program will work forever."
 - Oliver G. Selfridge, in *AI's Greatest Trends and Controversies*
Machine Learning

- How to construct computer programs that automatically improve with experience
- Examples:
 - from medical records: treatments most effective
 - houses learn to optimize energy costs
 - search engines, computer games, adaptive user interfaces, personalized assistants, web bots, and scientific applications
Machine Learning

- Opens new uses of computers
 - new levels of competence and customization
 - better understanding of human learning abilities/disabilities
The Course

- Key algorithms and theory that form the core of machine learning
- Draws heavily from concepts and results from:
 - Statistics
 - Artificial Intelligence
 - Philosophy
 - Information theory
 - Biology
 - Computational complexity
 - Control theory
Books

Text Book:
- Tom Mitchell
 - Machine Learning, 1997
 - WCB McGraw Hill

Reference:
- Tony Jebara
 - Machine Learning: Discriminative and Generative, 2004
 - Kluwer
Student Background

- For undergraduate and graduate students in CSE, statistics and social sciences
- Two guidelines
 - Accessible to undergraduates
 - Material for PhD students to have before doing doctoral research in machine learning
The Material

- Balance of theory and practice
 - How does learning performance vary with number of samples
 - Which learning algorithms are appropriate for various learning tasks
Achievements in Machine Learning

- Recognizing spoken words
- Recognizing handwritten words
- Predict recovery rates for pneumonia patients
- Detect fraudulent use of credit cards
- Drive autonomous vehicles on highways
- Play backgammon approaching human world champion
Some Successful Applications of Machine Learning

- Learning to recognize spoken words
 - Speaker-specific strategies for recognizing primitive sounds (phonemes) and words from speech signal
 - Neural networks and methods for learning HMMs for customizing to individual speakers, vocabularies and microphone characteristics
Some Successful Applications of Machine Learning

- Learning to drive an autonomous vehicle
 - Train computer-controlled vehicles to steer correctly
 - Drive at 70 mph for 90 miles on public highways
 - Associate steering commands with image sequences
Problems Too Difficult To Program by Hand

ALVINN [Pomerleau] drives 70 mph on highways
Scientific Application of Machine Learning

- Learning to classify new astronomical structures
 - Very large databases to learn general regularities implicit in the data
 - Classify celestial objects from image data
 - Decision tree algorithms are now used by NASA to classify all objects in sky survey which consists of 3 terabytes of image data
Well-Posed Learning Problems

Definition:
A computer program is said to learn from experience \(E \)
with respect to some class of tasks \(T \) and performance measure \(P \),

if its performance at tasks \(T \), as measured by \(P \), improves with experience \(E \).
Well-defined Learning Problem

- Identify three features
 - class of tasks
 - measure of performance to be improved
 - source of experience
A Robot Driving Learning Problem

- **Task** T: driving on public, 4-lane highway using vision sensors
- **Performance measure** P: average distance traveled before an error (as judged by human overseer)
- **Training experience** E: a sequence of images and steering commands recorded while observing a human driver
A Handwriting Recognition Learning Problem

- **Task** T: recognizing and classifying handwritten words within images
- **Performance measure** P: percent of words correctly classified
- **Training experience** E: a database of handwritten words with given classifications
Handwriting Recognition Learning

<table>
<thead>
<tr>
<th>alarm</th>
<th>clock</th>
<th>did</th>
<th>not</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm</td>
<td>code</td>
<td>soil</td>
<td>rout</td>
</tr>
<tr>
<td>circle</td>
<td>raid</td>
<td>hot</td>
<td></td>
</tr>
<tr>
<td>shute</td>
<td>risk</td>
<td></td>
<td>not</td>
</tr>
<tr>
<td>clock</td>
<td>visit</td>
<td>riot</td>
<td></td>
</tr>
<tr>
<td>did</td>
<td></td>
<td>most</td>
<td></td>
</tr>
</tbody>
</table>

Wake me up this morning.

thai
taxis
tie
tier
this
moving
having
morning
running
loving
Text Categorization Problem

- **Task** T: assign a document to its content category
- **Performance measure** P: Precision and Recall
- **Training experience** E: Example pre-classified documents
Broad Definition of Learning

- Include most tasks conventionally called "learning"
- Encompass computer programs that improve from experience in straightforward ways:
 - DBMS that allows users to update entries which improves answering database queries
- Goal is to:
 - Define precisely a class of problems that forms interesting forms of learning, explore algorithms to solve such problems, understand fundamental structure of learning problems and processes
Disciplines: Influence on Machine Learning

- Artificial intelligence
 - learning symbolic representations of concepts
 - machine learning as a search problem
 - learning as an approach to improving problem solving

- Pattern recognition
 - Bayes’ theorem for calculating hypothesis probabilities
 - Naïve Bayes classifier
Disciplines: Influence on Machine Learning

- Computational complexity theory
 - Theoretical bounds on complexity of different learning tasks measured in terms of no of training samples, no of mistakes
Disciplines: Influence on Machine Learning

- Control theory
 - procedures to control processes to optimize predefined objectives and predict next state of process controlled

- Information theory
 - measures of entropy, information content
 - minimum description length approaches to learning
 - optimal codes and relationship to optimal training sequences for encoding hypothesis
Disciplines: Influence on Machine Learning

- Philosophy
 - Occam’s razor--simplest hypothesis is best (decision trees)
 - justifying generalizing beyond observed data
Disciplines: Influence on Machine Learning

- Psychology and neurobiology
 - power law of practice-- human response improves with performance

- Statistics
 - characterization of errors (eg, bias and variance) that occur when estimating the accuracy of a hypothesis based on a limited sample of data
 - confidence intervals, statistical tests
Perspectives & Issues

- Machine Learning involves searching a very large space of possible hypotheses that fits observed data and any prior knowledge held by the observer.
Issues in Machine Learning

- What algorithms exist?
- How much training data is sufficient?
- When and how can prior knowledge held by the learner guide the process of generalizing from examples?
Issues in Machine Learning

- What is the best strategy for choosing a useful next training experience?
- What is the best way to reduce the learning task to one or more function approximation systems?
- How can the learner automatically alter its representation to represent and learn the target function?
Topics (Mitchell Text)

- Concept Learning: general to specific ordering of hypotheses
- Decision Tree Learning, Occam’s razor
- Artificial Neural Networks, Backpropagation Algorithm
- Statistics and Estimation Theory in evaluating hypotheses
Topics Covered

- Naïve Bayes Classifier
- Instance based learning: nearest neighbor learning
- Learning algorithms modeled after biological evolution: Genetic algorithms and Genetic programming
Summary

- Machine learning algorithms have great practical value in a variety of application domains
- Machine learning draws on ideas from a diverse set of disciplines
- A well-defined learning problem requires a well-specified task, performance metric, and source of experience
- Designing a machine learning approach involves a number of design choices
- Learning involves search