
TEN GOLDEN RULES FOR TEACHING
COMPUTER SCIENCE

Andrew S. Tanenbaum

Dept. of Computer Science

Vrije Universiteit

Amsterdam, The Netherlands

http://www.cs.vu.nl/~ast/

0

GOLDEN RULE #1:

THINK LONG TERM

1

CURRENT STUDENTS MAY WORK UNTIL 2040

2000 2020 2040

1a

COMPARISON OF TWO ELDERLY OS BOOKS

Per Brinch Hansen
 1. Overview of Oper. Sys.
 2. Sequential Processes
 3. Concurrent Processes
 4. Process Management
 5. Store Management
 6. Scheduling Algorithms
 7. Resource Protection
 8. A Case Study: RC4000

William S. Davis
 1-4. Introductory Material
 5. Single Program Systems
 6. Multiprogramming
 7. Job Control on the 360
 8. The JOB and EXEC cards
 9. The DD card
 10. Function of an Op. Sys.
 11. Principles of the 360
 12. IBM 360 Disk Oper. Sys.
 13. System 360 MFT
 ...

1b

COMPARISON OF 2 OLDER ARCHITECTURE BOOKS

John P. Hayes
 1. The evolution of computers
 2. Design Methodology
 (register level)
 3. Processor Design
 (instructions, arithmetic)
 4. Control Design
 (sequencing, microcode)
 5. Memory Organization
 (virtual memory, caching)
 6. System Organization
 (I/O, communication)

Ivan Flores
 1. Introduction
 2. The Channel Controller
 3. Interrupts
 4. System 360 Interrupts
 5. The PDP-8
 6. SDS-92, SCC 650
 7. IBM 1401
 8. Honeywell 200
 9. System 360
 10. Spectra 70
 11. Univac 9000

1c

THE YEAR 2000 PROBLEM

• In the 1970s and 1980s, COBOL programmers used

two decimal digits to represent the year

• Get it right this time, or the mess in 9999 will be

unbelievable (8000 years of old COBOL to fix)
1d

GOLDEN RULE #2:

EMPHASIZE PRINCIPLES, NOT FACTS

2

SOME EXAMPLE PRINCIPLES

• Iteration vs. recursion

• Compilation vs. interpretation

• Caching

• Use of hints

• Hashing

• Locality in space and time

• Delayed binding

BUT: Illustrate each principle with at least two examples

2a

PRINCIPLES FOR A FEW SELECTED COURSES

Course Some principles

Architecture Data paths, memory hierarchies, buses

Compilers Grammars, parsing, code generation

Networks Layering, protocols, routing

Operating systems IPC, memory management, file system

Programming langs Paradigms, data types, syntax, semantics

2b

GOLDEN RULE #3

EXPECT PARADIGM SHIFTS

1965 1995

3

EXAMPLES OF PARADIGM SHIFTS

• Assembly language to high-level languages

• Batch systems to timesharing to personal computers

• Spaghetti programming to structured programming

• Imperative programming to object-based programming

• Text-based interfaces to icon-based interfaces

• Isolated machines to LANs

• Local computing to the Internet

• Computers for computing vs. communication

3a

HOW DO YOU DEAL WITH CONSTANT CHANGE?

Teach the students to

• Be critical

• Learn on their own

• Constantly examine their own assumptions

3b

GOLDEN RULE #4:

EXPLAIN HOW THINGS WORK INSIDE

4

EXAMPLE: THE WORLD WIDE WEB

To many students, operation of the web is a mystery.

Try typing:

telnet www.cs.univ.edu

GET filename HTTP/1.0

to establish a TCP connection to the server. Then type:

Presto! A web page appears as an HTML file. No more mystery. 4a4a

SIMULATORS GIVE STUDENTS INSIGHT

Examples where simulators can be useful

• CPU cache behavior as a function of size and strategy

• Performance of network protocols when packets get lost

• Paging algorithms in a virtual memory system

4b

GOLDEN RULE #5:

SHOW STUDENTS HOW TO MASTER COMPLEXITY

5

PREVENT IT IN THE FIRST PLACEPREVENT IT IN THE FIRST PLACE

 KISS: KEEP IT SIMPLE, STUPID

5a

TOOLS FOR MASTERING COMPLEXITY

• Abstraction

• Information hiding (ADTs, modules, objects)

• Hierarchies and layering

• Separation of data from their description

5b

INTERFACE DESIGN IS THE KEY ELEMENT

• Interfaces are contracts between implementers and users

• They should be designed very carefully to be stable in time

• Interfaces should be minimal but complete

5c

ON PERFECTION

 Perfection is reached not
when there is no longer
anything to add, but when
there is no longer anything
to take away

 - Antoine de Saint Exupery

5d

GOLDEN RULE #6:

COMPUTER SCIENCE IS NOT SCIENCE

6

SCIENCE

 When God created the universe, like many
implementers who came later, he did not

 bother writing any documentation

6a

ENGINEERINGENGINEERING

 Computer science is really the engineering of abstract objects• Computer science is really the engineering of abstract objects
• An engineer is someone who can do for a dime what any fool
 can do for a dollar

6b

ENGINEERING ISSUES

• The design process (use tools)

• Tradeoffs (space/time, cost/performance, design time/quality)

• Good heuristics (e.g. 10% of the code = 90% of the time)

• Prototyping and measurement (lab courses are essential)

• Standards (don’t reinvent the wheel)

• Maintainability (by someone other than the programmer)

• Working in teams (software hut)

• Quality control (design for testability)

6c

GOLDEN RULE #7:

THINK IN TERMS OF SYSTEMS

7

AN EXAMPLE OF NOT THINKING ‘SYSTEMS’

• BART trains originally had drum brakes

• After the system was operational, they replaced all the
drum brakes by disk brakes

• Trains suddenly began vanishing at random from the
computers that controlled the system

7a

ANOTHER EXAMPLE OF NOT THINKING ‘SYSTEMS’

• One of my students wrote the MINIX mkfs (make file
system) program with elaborate block caching

• This program normally runs for about 30 sec per year

• How much time could the block caching save?

• The block caching was so hairy, debugging took 6 months
7b

NEVER FORGET: THE USER IS PART OF THE SYSTEM

If the user hates your system, you have not done your

job well
7c

GOLDEN RULE #8:

KEEP THEORY UNDER CONTROL

8

NONPROPOSAL TO NSF (PHYSICS DIVISION)

 We propose to investigate the consequences

 to the entire universe of assuming:

Budget required: $1,000,000 (first year)

8a8a

‹date/time›

CS THEORISTS OFTEN IGNORE REALITY

• The banker’s algorithm for deadlock avoidance assumes
that all resource demands are known in advance

• Most CPU scheduling algorithms ignore the time required
to switch between processes

• Some distributed algorithms assume that sending n 1-byte
messages takes the same time as 1 n-byte message

8b

PROPER GOAL OF THEORY

The proper goal of theory in any field is to make
models that accurately describe real systems. These
models should help system builders do their jobs better

8c

‹date/time›

GOLDEN RULE #9:

IGNORE HYPE

9

EXAMPLES OF HIGHLY HYPED TOPICS

All of the following were once hyped as the solution
to all your problems:

• Program correctness proofs
• Fifth generation computers
• Automatic program generators
• The paperless office

• PL/I
• Structured COBOL
• Ada
• Josephson junctions

9a

‹footer›

GOLDEN RULE #10:

DON’T FORGET THE PAST

10

AN OLD IDEA: VIRTUAL MACHINES (VM/370)

• VM/370 made it possible to separate multiprogramming
from the user OS, provide excellent protection, etc.

Virtual machine monitor
running on the real hardware
simulates three virtual 370sReal 370

Virtual
370s

10a

A NEW OLD IDEA: PENTIUM VIRTUAL 8086 MODE

• Virtual 8086 mode on the Pentium makes it possible to
run old 16-bit DOS applications on a virtual machine

Real Pentium

Virtual 8086 Virtual 8086 Virtual 8086

10b

TIMESHARING REVISITEDTIMESHARING REVISITED

• Timesharing was killed by the PC, but it is coming back
10c

ANOTHER OLD IDEA: INTERPRETATION

• In the days of yore, interpretive systems were
common, for example, FORTH.

• As compilers got better, they passed out of fashion

• Now Java is making them popular again

10d

SUMMARY

• Think long term

• Emphasize principles, not facts

• Expect paradigm shifts

• Explain how things work inside

• Show students how to master complexity

• Computer science is not science

• Think in terms of systems

• Keep theory under control

• Ignore hype

• Don’t forget the past
11

