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The Linux Kernel: 
Introduction
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History

n UNIX: 1969 Thompson & Ritchie AT&T Bell Labs.
n BSD: 1978 Berkeley Software Distribution.
n Commercial Vendors: Sun, HP, IBM, SGI, DEC.
n GNU: 1984 Richard Stallman, FSF.
n POSIX: 1986 IEEE Portable Operating System unIX.
n Minix: 1987 Andy Tannenbaum.
n SVR4:  1989 AT&T and Sun.
n Linux: 1991 Linus Torvalds Intel 386 (i386).
n Open Source: GPL.



2

CS591 (Spring 2001)

Linux Features

n UNIX-like operating system.
n Features:

n Preemptive multitasking.
n Virtual memory (protected memory, paging).
n Shared libraries.
n Demand loading, dynamic kernel modules.
n Shared copy-on-write executables.
n TCP/IP networking.
n SMP support.
n Open source.
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What’s a Kernel?

n AKA: executive, system monitor.
n Controls and mediates access to hardware.
n Implements and supports fundamental abstractions:

n Processes, files, devices etc.
n Schedules / allocates system resources:

n Memory, CPU, disk, descriptors, etc.
n Enforces security and protection.
n Responds to user requests for service (system calls).
n Etc…etc…
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Kernel Design Goals

n Performance: efficiency, speed.
n Utilize resources to capacity with low overhead.

n Stability: robustness, resilience.
n Uptime, graceful degradation.

n Capability: features, flexibility, compatibility.
n Security, protection.

n Protect users from each other & system from bad 
users.

n Portability.
n Extensibility.
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Architectural Approaches

n Monolithic.
n Layered.
n Modularized.
n Micro-kernel.
n Virtual machine.
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Linux Source Tree Layout
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linux/arch

n Subdirectories for each current port.
n Each contains kernel, lib, mm, boot and other 

directories whose contents override code stubs in 
architecture independent code.

n lib contains highly-optimized common utility routines 
such as memcpy, checksums, etc.

n arch as of 2.4:
n alpha, arm, i386, ia64, m68k, mips, mips64.
n ppc, s390, sh, sparc, sparc64.

CS591 (Spring 2001)

linux/drivers
n Largest amount of code in the kernel tree (~1.5M).
n device, bus, platform and general directories.
n drivers/char – n_tty.c is the default line discipline.
n drivers/block – elevator.c, genhd.c, linear.c, ll_rw_blk.c, raidN.c.
n drivers/net –specific drivers and general routines Space.c and 

net_init.c.
n drivers/scsi – scsi_*.c files are generic; sd.c (disk), sr.c (CD-

ROM), st.c (tape), sg.c (generic).
n General: 

n cdrom, ide, isdn, parport, pcmcia, pnp, sound, telephony, 
video.

n Buses – fc4, i2c, nubus, pci, sbus, tc, usb.
n Platforms – acorn, macintosh, s390, sgi.
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linux/fs
n Contains:

n virtual filesystem (VFS) framework.
n subdirectories for actual filesystems.

n vfs-related files:
n exec.c, binfmt_*.c - files for mapping new process images.
n devices.c, blk_dev.c – device registration, block device 

support.
n super.c, filesystems.c.
n inode.c, dcache.c, namei.c, buffer.c, file_table.c.
n open.c, read_write.c, select.c, pipe.c, fifo.c.
n fcntl.c, ioctl.c, locks.c, dquot.c, stat.c.
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linux/include
n include/asm-*:

n Architecture-dependent include subdirectories.
n include/linux:

n Header info needed both by the kernel and user apps.
n Usually linked to /usr/include/linux.
n Kernel-only portions guarded by #ifdefs

n #ifdef __KERNEL__
n /* kernel stuff */
n #endif

n Other directories:
n math-emu, net, pcmcia, scsi, video.
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linux/init

n Just two files: version.c, main.c.
n version.c – contains the version banner that prints at 

boot.
n main.c – architecture-independent boot code.
n start_kernel is the primary entry point.
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linux/ipc

n System V IPC facilities.
n If disabled at compile-time, util.c exports stubs that 

simply return –ENOSYS.
n One file for each facility:

n sem.c – semaphores.
n shm.c – shared memory.
n msg.c – message queues.
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linux/kernel
n The core kernel code.
n sched.c – “the main kernel file”:

n scheduler, wait queues, timers, alarms, task queues.
n Process control:

n fork.c, exec.c, signal.c, exit.c etc…
n Kernel module support:

n kmod.c, ksyms.c, module.c.
n Other operations:

n time.c, resource.c, dma.c, softirq.c, itimer.c.
n printk.c, info.c, panic.c, sysctl.c, sys.c.
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linux/lib

n kernel code cannot call standard C library routines.
n Files:

n brlock.c – “Big Reader” spinlocks.
n cmdline.c – kernel command line parsing routines.
n errno.c – global definition of errno.
n inflate.c – “gunzip” part of gzip.c used during boot.
n string.c – portable string code.

n Usually replaced by optimized, architecture-
dependent routines.

n vsprintf.c – libc replacement.
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linux/mm
n Paging and swapping:

n swap.c, swapfile.c (paging devices), swap_state.c (cache).
n vmscan.c – paging policies, kswapd.
n page_io.c – low-level page transfer.

n Allocation and deallocation:
n slab.c – slab allocator.
n page_alloc.c – page-based allocator.
n vmalloc.c – kernel virtual-memory allocator.

n Memory mapping:
n memory.c – paging, fault-handling, page table code.
n filemap.c – file mapping.
n mmap.c, mremap.c, mlock.c, mprotect.c.
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linux/scripts 

n Scripts for:
n Menu-based kernel configuration.
n Kernel patching.
n Generating kernel documentation.
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Summary

n Linux is a modular, UNIX-like monolithic kernel.
n Kernel is the heart of the OS that executes with 

special hardware permission (kernel mode).
n “Core kernel” provides framework, data structures, 

support for drivers, modules, subsystems.
n Architecture dependent source sub-trees live in /arch.
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Booting and Kernel 
Initialization
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System Lifecycle: Ups & Downs
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Boot Terminology

n Loader:
n Program that moves bits from disk (usually) 
to memory and then transfers CPU control to the newly
“loaded” bits (executable).

n Bootloader / Bootstrap:
n Program that loads the “first program” (the kernel).

n Boot PROM / PROM Monitor / BIOS:
n Persistent code that is “already loaded” on power-up.

n Boot Manager:
n Program that lets you choose the “first program” to load.
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LILO: LInux LOader
n A versatile boot manager that supports:

n Choice of Linux kernels.
n Boot time kernel parameters.
n Booting non-Linux kernels.
n A variety of configurations.

n Characteristics:
n Lives in MBR or partition boot sector.
n Has no knowledge of filesystem structure so…
n Builds a sector “map file” (block map) to find kernel.

n /sbin/lilo – “map installer”.
n /etc/lilo.conf is lilo configuration file.
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Example lilo.conf File

boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt
timeout=50
default=linux

image=/boot/vmlinuz-2.2.12-20
label=linux
initrd=/boot/initrd-2.2.12-20.img
read-only
root=/dev/hda1
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/sbin/init

n Ancestor of all processes (except idle/swapper 
process).

n Controls transitions between “runlevels”:
n 0: shutdown  
n 1: single-user    
n 2: multi-user (no NFS)
n 3: full multi-user  
n 5: X11   
n 6: reboot

n Executes startup/shutdown scripts for each runlevel.
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Shutdown

n Use /bin/shutdown to avoid data loss and filesystem
corruption.

n Shutdown inhibits login, asks init to send SIGTERM 
to all processes, then SIGKILL.

n Low-level commands: halt, reboot, poweroff.
n Use -h, -r or -p options to shutdown instead.

n Ctrl-Alt-Delete “Vulcan neck pinch”:
n defined by a line in /etc/inittab.
n ca::ctrlaltdel:/sbin/shutdown -t3 -r now.
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Advanced Boot Concepts
n Initial ramdisk (initrd) – two-stage boot for flexibility:

n First mount “initial” ramdisk as root.
n Execute linuxrc to perform additional setup, configuration.
n Finally mount “real” root and continue.
n See Documentation/initrd.txt for details.
n Also see “man initrd”.

n Net booting:
n Remote root (Diskless-root-HOWTO).
n Diskless boot (Diskless-HOWTO).
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Summary
n Bootstrapping a system is a complex, device-dependent 

process that involves transition from hardware, to firmware, to 
software.

n Booting within the constraints of the Intel architecture is 
especially complex and usually involves firmware support 
(BIOS) and a boot manager (LILO).

n /sbin/lilo is a “map installer” that reads configuration information 
and writes a boot sector and block map files used during boot.

n start_kernel is Linux “main” and sets up process context before 
spawning process 0 (idle) and process 1 (init).

n The init() function performs high-level initialization before
exec’ing the user-level init process.
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System Calls
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System Calls

n Interface between user-level processes and 
hardware devices.
n CPU, memory, disks etc.

n Make programming easier:
n Let kernel take care of hardware-specific issues.

n Increase system security:
n Let kernel check requested service via syscall.

n Provide portability:
n Maintain interface but change functional 

implementation.
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POSIX APIs
n API = Application Programmer Interface.

n Function defn specifying how to obtain service.
n By contrast, a system call is an explicit request to kernel 

made via a software interrupt.
n Standard C library (libc) contains wrapper routines that make 

system calls.
n e.g., malloc, free are libc routines that use the brk system 

call.
n POSIX-compliant = having a standard set of APIs.
n Non-UNIX systems can be POSIX-compliant if they offer the 

required set of APIs.
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Linux System Calls (1)
Invoked by executing int $0x80.

n Programmed exception vector number 128.
n CPU switches to kernel mode & executes a kernel 

function.
n Calling process passes syscall number identifying 

system call in eax register (on Intel processors).
n Syscall handler responsible for:

n Saving registers on kernel mode stack.
n Invoking syscall service routine.
n Exiting by calling ret_from_sys_call().
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Linux System Calls (2)

n System call dispatch table:
n Associates syscall number with corresponding 

service routine.
n Stored in sys_call_table array having up to 
NR_syscall entries (usually 256 maximum).

n nth entry contains service routine address of
syscall n.

CS591 (Spring 2001)

Initializing System Calls

n trap_init() called during kernel initialization sets 
up the IDT (interrupt descriptor table) entry 
corresponding to vector 128:
n set_system_gate(0x80, &system_call);

n A system gate descriptor is placed in the IDT, 
identifying address of system_call routine. 

n Does not disable maskable interrupts.
n Sets the descriptor privilege level (DPL) to 3:

n Allows User Mode processes to invoke 
exception handlers (i.e. syscall routines).
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The system_call() Function

n Saves syscall number & CPU registers used by 
exception handler on the stack, except those 
automatically saved by control unit.

n Checks for valid system call.
n Invokes specific service routine associated with 

syscall number (contained in eax):
n call *sys_call_table(0, %eax, 4)

n Return code of system call is stored in eax.
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Parameter Passing

n On the 32-bit Intel 80x86:
n 6 registers are used to store syscall parameters.

n eax (syscall number).
n ebx, ecx, edx, esi, edi store parameters to 

syscall service routine, identified by syscall 
number.  
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Wrapper Routines

n Kernel code (e.g., kernel threads) cannot use library 
routines.

n _syscall0 … _syscall5 macros define wrapper 
routines for system calls with up to 5 parameters.

n e.g., _syscall3(int,write,int,fd,
const char *,buf,unsigned int,count)
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Example: “Hello, world!”
 .data                                   # section declaration 
 
 msg: 
         .string "Hello, world!\n"       # our dear string 
         len = . - msg                   # length of our dear string 
 
 .text                                   # section declaration 
 
                         # we must export the entry point to the ELF linker or 
     .global _start      # loader. They conventionally recognize _start as their 
                         # entry point. Use ld -e foo to override the default. 
 
 _start: 
 
 # write our string to stdout 
 
         movl    $len,%edx       # third argument: message length 
         movl    $msg,%ecx       # second argument: pointer to message to write 
         movl    $1,%ebx         # first argument: file handle (stdout) 
         movl    $4,%eax         # system call number (sys_write) 
         int     $0x80           # call kernel 
 
 # and exit 
 
         movl    $0,%ebx         # first argument: exit code 
         movl    $1,%eax         # system call number (sys_exit) 
         int     $0x80           # call kernel 
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Linux Files Relating to Syscalls

n Main files:
n arch/i386/kernel/entry.S

n System call and low-level fault handling 
routines.

n include/asm-i386/unistd.h
n System call numbers and macros.

n kernel/sys.c
n System call service routines.
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arch/i386/kernel/entry.S

.data 
ENTRY(sys_call_table) 
.long SYMBOL_NAME(sys_ni_syscall) /* 0  -  old "setup()" system 

call*/ 
 .long SYMBOL_NAME(sys_exit) 
 .long SYMBOL_NAME(sys_fork) 
 .long SYMBOL_NAME(sys_read) 
 .long SYMBOL_NAME(sys_write) 
 

n Add system calls by appending entry to 
sys_call_table:

.long SYMBOL_NAME(sys_my_system_call)
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include/asm-i386/unistd.h

n Each system call needs a number in the system call 
table:
n e.g., #define __NR_write 4
n #define __NR_my_system_call nnn, where 
nnn is next free entry in system call table.
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kernel/sys.c

n Service routine bodies are defined here:
n e.g., asmlinkage retval 

sys_my_system_call (parameters) {

body of service routine;

return retval;

}
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Kernel Modules
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Kernel Modules

n See A. Rubini, “Device Drivers”, Chapter 2.
n Modules can be compiled and dynamically linked into 

kernel address space.
n Useful for device drivers that need not always be 

resident until needed.
n Keeps core kernel “footprint” small.

n Can be used to “extend” functionality of kernel too!



23

CS591 (Spring 2001)

Example: “Hello, world!”

#define MODULE

#include <linux/module.h>

int init_module(void) {

printk(“<1>Hello, world!\n”);

return 0;

}

void cleanup_module(void) {

printk(“<1>Goodbye cruel world LL\n”); 

}
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Using Modules

n Module object file is installed in running kernel using 
insmod module_name.

n Loads module into kernel address space and links 
unresolved symbols in module to symbol table of 
running kernel.
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The Kernel Symbol Table

n Symbols accessible to kernel-loadable modules 
appear in /proc/ksyms.
n register_symtab registers a symbol table in 

the kernel’s main table.
n Real hackers export symbols from the kernel by 

modifying kernel/ksyms.c ☺
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Project Suggestions (1)

n Real-Time thread library.
n Scheduler activations in Linux.
n A Linux “upcall” mechanism.
n Real-Time memory allocator / garbage collector.
n A distributed shared memory system.
n A QoS-based socket library.
n An event-based mechanism for implementing 

adaptive systems.
n DWCS packet scheduling.
n A heap-based priority scheduler for Linux.
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Project Suggestions (2)

n µS resolution timers for Linux.
n Porting the Bandwidth-Broker to Linux.
n A QoS Management framework like QuO or Dionisys.
n A Real-Time communications protocol.
n A feedback-control system for 

flow/error/rate/congestion control.
n “Active Messages” for Linux.
n A thread continuation mechanism.
n A thread migration / load-balancing system.


