
1

CS591 (Spring 2001)

The Linux Kernel:
Introduction

CS591 (Spring 2001)

History

n UNIX: 1969 Thompson & Ritchie AT&T Bell Labs.
n BSD: 1978 Berkeley Software Distribution.
n Commercial Vendors: Sun, HP, IBM, SGI, DEC.
n GNU: 1984 Richard Stallman, FSF.
n POSIX: 1986 IEEE Portable Operating System unIX.
n Minix: 1987 Andy Tannenbaum.
n SVR4: 1989 AT&T and Sun.
n Linux: 1991 Linus Torvalds Intel 386 (i386).
n Open Source: GPL.

2

CS591 (Spring 2001)

Linux Features

n UNIX-like operating system.
n Features:

n Preemptive multitasking.
n Virtual memory (protected memory, paging).
n Shared libraries.
n Demand loading, dynamic kernel modules.
n Shared copy-on-write executables.
n TCP/IP networking.
n SMP support.
n Open source.

CS591 (Spring 2001)

What’s a Kernel?

n AKA: executive, system monitor.
n Controls and mediates access to hardware.
n Implements and supports fundamental abstractions:

n Processes, files, devices etc.
n Schedules / allocates system resources:

n Memory, CPU, disk, descriptors, etc.
n Enforces security and protection.
n Responds to user requests for service (system calls).
n Etc…etc…

3

CS591 (Spring 2001)

Kernel Design Goals

n Performance: efficiency, speed.
n Utilize resources to capacity with low overhead.

n Stability: robustness, resilience.
n Uptime, graceful degradation.

n Capability: features, flexibility, compatibility.
n Security, protection.

n Protect users from each other & system from bad
users.

n Portability.
n Extensibility.

CS591 (Spring 2001)

Example “Core” Kernel
Applications

System Libraries (libc)

System Call Interface

Hardware

Architecture-Dependent Code

I/O Related Process Related
Scheduler

Memory Management

IPC

File Systems

Networking

Device Drivers

M
od

ul
es

4

CS591 (Spring 2001)

Architectural Approaches

n Monolithic.
n Layered.
n Modularized.
n Micro-kernel.
n Virtual machine.

CS591 (Spring 2001)

Linux Source Tree Layout
/usr/src/linuxDocumentation

arch
fs

init kernel

include

ipc

drivers

net

mmlib

scripts

alpha
arm
i386
ia64
m68k
mips
mips64
ppc
s390
sh
sparc
sparc64

acorn
atm
block
cdrom
char
dio
fc4
i2c
i2o
ide
ieee1394
isdn
macintosh
misc
net
…

adfs
affs
autofs
autofs4
bfs
code
cramfs
devfs
devpts
efs
ext2
fat
hfs
hpfs
…

asm-alpha
asm-arm
asm-generic
asm-i386
asm-ia64
asm-m68k
asm-mips
asm-mips64
linux
math-emu
net
pcmcia
scsi
video …

adfs
affs
autofs
autofs4
bfs
code
cramfs
devfs
devpts
efs
ext2
fat
hfs
hpfs …

802
appletalk
atm
ax25
bridge
core
decnet
econet
ethernet
ipv4
ipv6
ipx
irda
khttpd
lapb
…

5

CS591 (Spring 2001)

linux/arch

n Subdirectories for each current port.
n Each contains kernel, lib, mm, boot and other

directories whose contents override code stubs in
architecture independent code.

n lib contains highly-optimized common utility routines
such as memcpy, checksums, etc.

n arch as of 2.4:
n alpha, arm, i386, ia64, m68k, mips, mips64.
n ppc, s390, sh, sparc, sparc64.

CS591 (Spring 2001)

linux/drivers
n Largest amount of code in the kernel tree (~1.5M).
n device, bus, platform and general directories.
n drivers/char – n_tty.c is the default line discipline.
n drivers/block – elevator.c, genhd.c, linear.c, ll_rw_blk.c, raidN.c.
n drivers/net –specific drivers and general routines Space.c and

net_init.c.
n drivers/scsi – scsi_*.c files are generic; sd.c (disk), sr.c (CD-

ROM), st.c (tape), sg.c (generic).
n General:

n cdrom, ide, isdn, parport, pcmcia, pnp, sound, telephony,
video.

n Buses – fc4, i2c, nubus, pci, sbus, tc, usb.
n Platforms – acorn, macintosh, s390, sgi.

6

CS591 (Spring 2001)

linux/fs
n Contains:

n virtual filesystem (VFS) framework.
n subdirectories for actual filesystems.

n vfs-related files:
n exec.c, binfmt_*.c - files for mapping new process images.
n devices.c, blk_dev.c – device registration, block device

support.
n super.c, filesystems.c.
n inode.c, dcache.c, namei.c, buffer.c, file_table.c.
n open.c, read_write.c, select.c, pipe.c, fifo.c.
n fcntl.c, ioctl.c, locks.c, dquot.c, stat.c.

CS591 (Spring 2001)

linux/include
n include/asm-*:

n Architecture-dependent include subdirectories.
n include/linux:

n Header info needed both by the kernel and user apps.
n Usually linked to /usr/include/linux.
n Kernel-only portions guarded by #ifdefs

n #ifdef __KERNEL__
n /* kernel stuff */
n #endif

n Other directories:
n math-emu, net, pcmcia, scsi, video.

7

CS591 (Spring 2001)

linux/init

n Just two files: version.c, main.c.
n version.c – contains the version banner that prints at

boot.
n main.c – architecture-independent boot code.
n start_kernel is the primary entry point.

CS591 (Spring 2001)

linux/ipc

n System V IPC facilities.
n If disabled at compile-time, util.c exports stubs that

simply return –ENOSYS.
n One file for each facility:

n sem.c – semaphores.
n shm.c – shared memory.
n msg.c – message queues.

8

CS591 (Spring 2001)

linux/kernel
n The core kernel code.
n sched.c – “the main kernel file”:

n scheduler, wait queues, timers, alarms, task queues.
n Process control:

n fork.c, exec.c, signal.c, exit.c etc…
n Kernel module support:

n kmod.c, ksyms.c, module.c.
n Other operations:

n time.c, resource.c, dma.c, softirq.c, itimer.c.
n printk.c, info.c, panic.c, sysctl.c, sys.c.

CS591 (Spring 2001)

linux/lib

n kernel code cannot call standard C library routines.
n Files:

n brlock.c – “Big Reader” spinlocks.
n cmdline.c – kernel command line parsing routines.
n errno.c – global definition of errno.
n inflate.c – “gunzip” part of gzip.c used during boot.
n string.c – portable string code.

n Usually replaced by optimized, architecture-
dependent routines.

n vsprintf.c – libc replacement.

9

CS591 (Spring 2001)

linux/mm
n Paging and swapping:

n swap.c, swapfile.c (paging devices), swap_state.c (cache).
n vmscan.c – paging policies, kswapd.
n page_io.c – low-level page transfer.

n Allocation and deallocation:
n slab.c – slab allocator.
n page_alloc.c – page-based allocator.
n vmalloc.c – kernel virtual-memory allocator.

n Memory mapping:
n memory.c – paging, fault-handling, page table code.
n filemap.c – file mapping.
n mmap.c, mremap.c, mlock.c, mprotect.c.

CS591 (Spring 2001)

linux/scripts

n Scripts for:
n Menu-based kernel configuration.
n Kernel patching.
n Generating kernel documentation.

10

CS591 (Spring 2001)

Summary

n Linux is a modular, UNIX-like monolithic kernel.
n Kernel is the heart of the OS that executes with

special hardware permission (kernel mode).
n “Core kernel” provides framework, data structures,

support for drivers, modules, subsystems.
n Architecture dependent source sub-trees live in /arch.

CS591 (Spring 2001)

Booting and Kernel
Initialization

11

CS591 (Spring 2001)

System Lifecycle: Ups & Downs

Power
on

Power
off

Boot Kernel
Init

OS
Init

RUN! Shut
down

CS591 (Spring 2001)

Boot Terminology

n Loader:
n Program that moves bits from disk (usually)
to memory and then transfers CPU control to the newly
“loaded” bits (executable).

n Bootloader / Bootstrap:
n Program that loads the “first program” (the kernel).

n Boot PROM / PROM Monitor / BIOS:
n Persistent code that is “already loaded” on power-up.

n Boot Manager:
n Program that lets you choose the “first program” to load.

12

CS591 (Spring 2001)

LILO: LInux LOader
n A versatile boot manager that supports:

n Choice of Linux kernels.
n Boot time kernel parameters.
n Booting non-Linux kernels.
n A variety of configurations.

n Characteristics:
n Lives in MBR or partition boot sector.
n Has no knowledge of filesystem structure so…
n Builds a sector “map file” (block map) to find kernel.

n /sbin/lilo – “map installer”.
n /etc/lilo.conf is lilo configuration file.

CS591 (Spring 2001)

Example lilo.conf File

boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt
timeout=50
default=linux

image=/boot/vmlinuz-2.2.12-20
label=linux
initrd=/boot/initrd-2.2.12-20.img
read-only
root=/dev/hda1

13

CS591 (Spring 2001)

/sbin/init

n Ancestor of all processes (except idle/swapper
process).

n Controls transitions between “runlevels”:
n 0: shutdown
n 1: single-user
n 2: multi-user (no NFS)
n 3: full multi-user
n 5: X11
n 6: reboot

n Executes startup/shutdown scripts for each runlevel.

CS591 (Spring 2001)

Shutdown

n Use /bin/shutdown to avoid data loss and filesystem
corruption.

n Shutdown inhibits login, asks init to send SIGTERM
to all processes, then SIGKILL.

n Low-level commands: halt, reboot, poweroff.
n Use -h, -r or -p options to shutdown instead.

n Ctrl-Alt-Delete “Vulcan neck pinch”:
n defined by a line in /etc/inittab.
n ca::ctrlaltdel:/sbin/shutdown -t3 -r now.

14

CS591 (Spring 2001)

Advanced Boot Concepts
n Initial ramdisk (initrd) – two-stage boot for flexibility:

n First mount “initial” ramdisk as root.
n Execute linuxrc to perform additional setup, configuration.
n Finally mount “real” root and continue.
n See Documentation/initrd.txt for details.
n Also see “man initrd”.

n Net booting:
n Remote root (Diskless-root-HOWTO).
n Diskless boot (Diskless-HOWTO).

CS591 (Spring 2001)

Summary
n Bootstrapping a system is a complex, device-dependent

process that involves transition from hardware, to firmware, to
software.

n Booting within the constraints of the Intel architecture is
especially complex and usually involves firmware support
(BIOS) and a boot manager (LILO).

n /sbin/lilo is a “map installer” that reads configuration information
and writes a boot sector and block map files used during boot.

n start_kernel is Linux “main” and sets up process context before
spawning process 0 (idle) and process 1 (init).

n The init() function performs high-level initialization before
exec’ing the user-level init process.

15

CS591 (Spring 2001)

System Calls

CS591 (Spring 2001)

System Calls

n Interface between user-level processes and
hardware devices.
n CPU, memory, disks etc.

n Make programming easier:
n Let kernel take care of hardware-specific issues.

n Increase system security:
n Let kernel check requested service via syscall.

n Provide portability:
n Maintain interface but change functional

implementation.

16

CS591 (Spring 2001)

POSIX APIs
n API = Application Programmer Interface.

n Function defn specifying how to obtain service.
n By contrast, a system call is an explicit request to kernel

made via a software interrupt.
n Standard C library (libc) contains wrapper routines that make

system calls.
n e.g., malloc, free are libc routines that use the brk system

call.
n POSIX-compliant = having a standard set of APIs.
n Non-UNIX systems can be POSIX-compliant if they offer the

required set of APIs.

CS591 (Spring 2001)

Linux System Calls (1)
Invoked by executing int $0x80.

n Programmed exception vector number 128.
n CPU switches to kernel mode & executes a kernel

function.
n Calling process passes syscall number identifying

system call in eax register (on Intel processors).
n Syscall handler responsible for:

n Saving registers on kernel mode stack.
n Invoking syscall service routine.
n Exiting by calling ret_from_sys_call().

17

CS591 (Spring 2001)

Linux System Calls (2)

n System call dispatch table:
n Associates syscall number with corresponding

service routine.
n Stored in sys_call_table array having up to
NR_syscall entries (usually 256 maximum).

n nth entry contains service routine address of
syscall n.

CS591 (Spring 2001)

Initializing System Calls

n trap_init() called during kernel initialization sets
up the IDT (interrupt descriptor table) entry
corresponding to vector 128:
n set_system_gate(0x80, &system_call);

n A system gate descriptor is placed in the IDT,
identifying address of system_call routine.

n Does not disable maskable interrupts.
n Sets the descriptor privilege level (DPL) to 3:

n Allows User Mode processes to invoke
exception handlers (i.e. syscall routines).

18

CS591 (Spring 2001)

The system_call() Function

n Saves syscall number & CPU registers used by
exception handler on the stack, except those
automatically saved by control unit.

n Checks for valid system call.
n Invokes specific service routine associated with

syscall number (contained in eax):
n call *sys_call_table(0, %eax, 4)

n Return code of system call is stored in eax.

CS591 (Spring 2001)

Parameter Passing

n On the 32-bit Intel 80x86:
n 6 registers are used to store syscall parameters.

n eax (syscall number).
n ebx, ecx, edx, esi, edi store parameters to

syscall service routine, identified by syscall
number.

19

CS591 (Spring 2001)

Wrapper Routines

n Kernel code (e.g., kernel threads) cannot use library
routines.

n _syscall0 … _syscall5 macros define wrapper
routines for system calls with up to 5 parameters.

n e.g., _syscall3(int,write,int,fd,
const char *,buf,unsigned int,count)

CS591 (Spring 2001)

Example: “Hello, world!”
 .data # section declaration

 msg:
 .string "Hello, world!\n" # our dear string
 len = . - msg # length of our dear string

 .text # section declaration

 # we must export the entry point to the ELF linker or
 .global _start # loader. They conventionally recognize _start as their
 # entry point. Use ld -e foo to override the default.

 _start:

 # write our string to stdout

 movl $len,%edx # third argument: message length
 movl $msg,%ecx # second argument: pointer to message to write
 movl $1,%ebx # first argument: file handle (stdout)
 movl $4,%eax # system call number (sys_write)
 int $0x80 # call kernel

 # and exit

 movl $0,%ebx # first argument: exit code
 movl $1,%eax # system call number (sys_exit)
 int $0x80 # call kernel

20

CS591 (Spring 2001)

Linux Files Relating to Syscalls

n Main files:
n arch/i386/kernel/entry.S

n System call and low-level fault handling
routines.

n include/asm-i386/unistd.h
n System call numbers and macros.

n kernel/sys.c
n System call service routines.

CS591 (Spring 2001)

arch/i386/kernel/entry.S

.data
ENTRY(sys_call_table)
.long SYMBOL_NAME(sys_ni_syscall) /* 0 - old "setup()" system

call*/
 .long SYMBOL_NAME(sys_exit)
 .long SYMBOL_NAME(sys_fork)
 .long SYMBOL_NAME(sys_read)
 .long SYMBOL_NAME(sys_write)

n Add system calls by appending entry to
sys_call_table:

.long SYMBOL_NAME(sys_my_system_call)

21

CS591 (Spring 2001)

include/asm-i386/unistd.h

n Each system call needs a number in the system call
table:
n e.g., #define __NR_write 4
n #define __NR_my_system_call nnn, where
nnn is next free entry in system call table.

CS591 (Spring 2001)

kernel/sys.c

n Service routine bodies are defined here:
n e.g., asmlinkage retval

sys_my_system_call (parameters) {

body of service routine;

return retval;

}

22

CS591 (Spring 2001)

Kernel Modules

CS591 (Spring 2001)

Kernel Modules

n See A. Rubini, “Device Drivers”, Chapter 2.
n Modules can be compiled and dynamically linked into

kernel address space.
n Useful for device drivers that need not always be

resident until needed.
n Keeps core kernel “footprint” small.

n Can be used to “extend” functionality of kernel too!

23

CS591 (Spring 2001)

Example: “Hello, world!”

#define MODULE

#include <linux/module.h>

int init_module(void) {

printk(“<1>Hello, world!\n”);

return 0;

}

void cleanup_module(void) {

printk(“<1>Goodbye cruel world LL\n”);

}

CS591 (Spring 2001)

Using Modules

n Module object file is installed in running kernel using
insmod module_name.

n Loads module into kernel address space and links
unresolved symbols in module to symbol table of
running kernel.

24

CS591 (Spring 2001)

The Kernel Symbol Table

n Symbols accessible to kernel-loadable modules
appear in /proc/ksyms.
n register_symtab registers a symbol table in

the kernel’s main table.
n Real hackers export symbols from the kernel by

modifying kernel/ksyms.c ☺

CS591 (Spring 2001)

Project Suggestions (1)

n Real-Time thread library.
n Scheduler activations in Linux.
n A Linux “upcall” mechanism.
n Real-Time memory allocator / garbage collector.
n A distributed shared memory system.
n A QoS-based socket library.
n An event-based mechanism for implementing

adaptive systems.
n DWCS packet scheduling.
n A heap-based priority scheduler for Linux.

25

CS591 (Spring 2001)

Project Suggestions (2)

n µS resolution timers for Linux.
n Porting the Bandwidth-Broker to Linux.
n A QoS Management framework like QuO or Dionisys.
n A Real-Time communications protocol.
n A feedback-control system for

flow/error/rate/congestion control.
n “Active Messages” for Linux.
n A thread continuation mechanism.
n A thread migration / load-balancing system.

