Basic Synchronization Principles

Encourage Concurrency

* No widely-accepted concurrent
programming languages

* No concurrent programming paradigm
— Each problem requires careful consideration
— There 1s no common model
— See SOR example on p 189 for one example

* OS tools to support concurrency are, of
necessity, low level

Critical Sections

shared float balance;

Code for p I

balance = balance + amount;

Code for D,

balance = balance - amount;

balance

Critical Sections

shared double balance;

Code for p 1 Code for D,

balance = balance + amount; balance = balance - amount;

Code for p,_ Code for p,

load R1, balance load R1, balance
-‘ﬁoad R2, amount load R2, amount

add R1, R2 sub R1, R2

store R1, balance store R1, balance

s

s

C

Critical Sections (cont)

There 1s a race to execute critical sections

I'he sections may be different code 1n

1fferent processes

— Cannot detect with static analysis

Results of multiple execution are not
determinate

Need an OS mechanism to resolve races

Disabling Interrupts

shared double balance;

Code for p, Code for p,
disablelInterrupts() ; disablelInterrupts() ;
balance = balance + amount; balance = balance - amount;

enablelInterrupts() ; enableInterrupts() ;

Disabling Interrupts

shared double balance;

Code for p, Code for p,
disablelInterrupts() ; disablelInterrupts() ;
balance = balance + amount; balance = balance - amount;
enablelInterrupts() ; enableInterrupts() ;

 Interrupts could be disabled arbitrarily long

* Really only want to prevent p, and p, from
interfering with one another

« Try using a shared “lock” variable

Using a Lock Variable

shared boolean lock = FALSE;

shared double balance;

Code for p,

/* Acquire the lock */
while (lock) ;
lock = TRUE;

/* Execute critical sect */

balance = balance + amount;

/* Release lock */
lock = FALSE;

Code for p,

/* Acquire the lock */
while (lock) ;
lock = TRUE;
/* Execute critical sect */
balance = balance - amount;
/* Release lock */
lock = FALSE;

Using a Lock Variable

shared boolean lock = FALSE;
shared double balance;

Code for p, Code for p,
/* Acquire the lock */ /* Acquire the lock */
while (lock) ; while (lock) ;
lock = TRUE; lock = TRUE;
/* Execute critical sect */ /* Execute critical sect */
balance = balance + amount; balance = balance - amount;
/* Release lock */ = 2 /* Release lock */
lock = FALSE; = lock = FALSE;
S =
M =
o N et
]
: :
P1 = 2 ,
TIR—.=Y F=YR S,
« E =RNVIR =
o Qg L S L
S E s 5 =

Using a Lock Variable

shared boolean lock = FALSE;

shared double balance;

Code for p,
/* Acquire the lock */
..’while(lock) ;
lock = TRUE;
/* Execute critical sect */

balance = balance + amount;

/* Release lock */
lock = FALSE;

Code for p,

/* Acquire the lock */
while (lock) ;
lock = TRUE;
/* Execute critical sect */
balance = balance - amount;
/* Release lock */
lock = FALSE;

 Worse yet ... another race condition ...

* Is 1t possible to solve the problem?

Lock Manipulation

enter (lock) { exit (lock) {
disableInterrupts () ; disableInterrupts () ;
/* Loop until lock is TRUE */ lock = FALSE;
while (lock) { enableInterrupts () ;
/* Let interrupts occur */ }

enableInterrupts() ;
disableInterrupts();
}
lock = TRUE;
enableInterrupts () ;

Transactions

* A transaction 1s a list of operations

— When the system begins to execute the list, 1t
must execute all of them without interruption,
or

— It must not execute any at all

« Example: List manipulator
— Add or delete an element from a list
— Adjust the list descriptor, e.g., length

Processing Two Transactions

shared boolean lockl

shared list L;

Code for p 1

/* Enter CS to delete elt */
enter (lockl) ;
<delete element>;
/* Exit CS */
exit (lockl) ;
<intermediate computation>;
/* Enter CS to update len */
enter (lock?2) ;
<update length>;
/* Exit CS */
exit (lock?2) ;

FALSE;
shared boolean lock?2 = FALSE;

Code for D,

/* Enter CS to update len */
enter (lock?2);
<update length>;
/* Exit CS */
exit (lock2);
<intermediate computation>
/* Enter CS to add elt */
enter (lockl);
<add element>;
/* Exit CS */
exit (lockl);

Deadlock

shared boolean lockl

shared list L;

Code for p 1

/* Enter CS to delete elt */
enter (lockl);
<delete element>;

<intermediate computation>;

/* Enter CS to update len */
enter (lock?2) ;
<update length>;
/* Exit both CS */
exit (lockl);
exit (lock?2) ;

FALSE;
shared boolean lock?2 = FALSE;

Code for D,

/* Enter CS to update len */
enter (lock?2);
<update length>;
<intermediate computation>
/* Enter CS to add elt */
enter (lockl);
<add element>;
/* Exit both CS */
exit (lock?2);
exit (lockl);

Coordinating Processes

* Can synchronize with Forx, 701N & QUIT
— Terminate processes with ouiT to synchronize

— Create processes whenever critical section 1s
complete

— See Figure 8.7

« Alternative 1s to create OS primitives
similar to the enter/exit primitives

Some Constraints

Processes p, & p, enter critical sections

Mutual exclusion: Only one process at a
time 1n the CS

Only processes competing for a CS are
involved 1n resolving who enters the CS

Once a process attempts to enter 1ts CS, 1t
cannot be postponed indefinitely

After requesting entry, only a bounded
number of other processes may enter before
the requesting process

Some Language

 Let fork (proc, N, arg,, arg,, .., arg,)be
a command to create a process, and to have
it execute using the given N arguments

* Canonical problem:

Proc 0() {
while (TRUE) {
<compute section>;
<critical section>;
}
}

<shared global declarations>
<lnitial processing>
fork(proc 0, 0);
fork(proc 1, 0);

proc_1() {
while (TRUE {

}

<compute section>;
<critical section>;

Assumptions About Solutions

Memory read/writes are indivisible
(simultaneous attempts result in some
arbitrary order of access)

There 1s no priority among the processes

Relative speeds of the processes/processors
1S unknown

Processes are cyclic and sequential

Diyjkstra Semaphore

 Classic paper describes several software
attempts to solve the problem (see problem
4, Chapter 8)

 Found a software solution, but then
proposed a simpler hardware-based solution

* A semaphore, s, 1s a nonnegative integer
variable that can only be changed or tested
by these two indivisible functions:

V(s): [s = s + 1]
P(s): [while(s == 0) {wait}; s = s - 1]

Using Semaphores to Solve the
Canonical Problem

Proc 0() { proc_1()
while (TRUE) { while (TRUE {
<compute section>; <compute section>;
P (mutex) ; P (mutex) ;
<critical section>; <critical section>;
V (mutex) ; V (mutex) ;
} }
} }
semaphore mutex = 1;

fork(proc 0, 0);
fork(proc 1, 0);

Shared Account Problem

Proc 0() { proc_1()
/* Enter the CS */ /* Enter the CS */
P (mutex) ; P (mutex) ;
balance += amount; balance —-= amount;
V (mutex) ; V (mutex) ;
} }
semaphore mutex = 1;

fork(proc 0, 0);
fork(proc 1, 0);

Two Shared Variables

proc A() | proc B() {
while (TRUE) { while (TRUE) {
<compute section Al>; /* Wait for proc A */
update (x) ; P(sl);
/* Signal proc B */ retrieve (x) ;
V(sl); <compute section B1>;
<compute section A2>; update (y) ;
/* Wait for proc B */ /* Signal proc A */
P(s2); V(s2);
retrieve (y); <compute section B2>;
} }
} }
semaphore sl1 = 0;
semaphore s2 = 0;

fork(proc A, 0);
fork(proc B, 0);

The Driver-Controller Interface

The semaphore principle 1s logically used
with the busy and done flags in a controller

Driver signals controller with a v (busy) ,
then waits for completion with P (done)

Controller waits for work with P (busy),
then announces completion with v (done)

See In the Cockpit, page 204

Bounded Butfter

Empty Pool

@ i))

rSK

Full Pool

Bounded Butfter

producer () { consumer () {
buf type *next, *here; buf type *next, *here;
while (TRUE) { while (TRUE) {
produce item(next); /* Claim full buffer */
/* Claim an empty */ P (mutex) ;
P (empty) ; P(full);
P (mutex) ; here = obtain (full);
here = obtain (empty) ; V (mutex) ;
V (mutex) ; copy buffer (here, next);
copy buffer (next, here); P (mutex) ;
P (mutex) ; release (here, emptyPool);
release (here, fullPool); V (mutex) ;
V (mutex) ; /* Signal an empty buffer */
/* Signal a full buffer */ V (empty) ;
V(full); consume item(next);
} }
} }
semaphore mutex = 1;
semaphore full = 0; /* A general (counting) semaphore */
semaphore empty = N; /* A general (counting) semaphore */

buf type buffer[N];
fork (producer, 0);
fork (consumer, 0);

4

Bounded Butfter

producer () { consumer () {
buf type *next, *here; buf type *next, *here;
while (TRUE) { while (TRUE) {
produce item(next); /* Claim full buffer */
/* Claim an empty */ P(full); >
P (empty) ; CP(muteX);
P (mutex) ; here = obtain (full);
here = obtain (empty) ; V (mutex) ;
V (mutex) ; copy buffer (here, next);
copy buffer (next, here); P (mutex) ;
P (mutex) ; release (here, emptyPool);
release (here, fullPool); V (mutex) ;
V (mutex) ; /* Signal an empty buffer */
/* Signal a full buffer */ V (empty) ;
V(full); consume item(next);
} }
} }
semaphore mutex = 1;
semaphore full = 0; /* A general (counting) semaphore */
semaphore empty = N; /* A general (counting) semaphore */

buf type buffer[N];
fork (producer, 0);
fork (consumer, 0);

4

Readers-Writers Problem

Shared Resource

Readers-Writers Problem

e

Shared Resource

Readers-Writers Problem

Shared Resource

First Solution

reader () |
while (TRUE) {
<other computing>;
P (mutex) ;
readCount++;
1f (readCount ==
P(writeBlock) ;
V (mutex) ;
/* Critical section
access (resource) ;
P (mutex) ;
readCount—--;
1f (readCount ==
V(writeBlock) ;
V (mutex) ;

}

0)

resourceType *resource;

int readCount = 0;
semaphore mutex = 1;

semaphore writeBlock =

fork (reader, 0);
fork(writer, 0);

1;

writer () |
while (TRUE) {

<other computing>;

P(writeBlock) ;

/* Critical section */
access (resource) ;

V(writeBlock) ;

First Solution

reader () |
while (TRUE) {
<other computing>;
P (mutex) ;
readCount++;
1f (readCount == 1)
P(writeBlock) ;
V (mutex) ;
/* Critical section */
access (resource) ;
P (mutex) ;
readCount--;
1f (readCount == 0)
V(writeBlock) ;
V (mutex) ;

}

resourceType *resource;
int readCount = 0;
semaphore mutex = 1;

semaphore writeBlock = 1;

fork (reader, 0);
fork(writer, 0);

writer () |
while (TRUE) {
<other computing>;
P(writeBlock) ;
/* Critical section */
access (resource) ;
V(writeBlock) ;

First reader competes with writers
Last reader signals writers

First Solution

reader () {
while (TRUE) {
<other computing>;
P (mutex) ;
readCount++;
1f (readCount == 1)
P(writeBlock) ;
V (mutex) ;
/* Critical section */
access (resource) ;
P (mutex) ;
readCount--;
1f (readCount == 0)
V(writeBlock) ;
V (mutex) ;

}
}

resourceType *resource;
int readCount = 0;
semaphore mutex = 1;

semaphore writeBlock = 1;

fork (reader, 0);
fork(writer, 0);

writer () |
while (TRUE) {
<other computing>;
P(writeBlock) ;
/* Critical section */
access (resource) ;
V(writeBlock) ;

}

First reader competes with writers
Last reader signals writers

*Any writer must wait for all readers
*Readers can starve writers
«“Updates” can be delayed forever
*May not be what we want

Writer Takes Precedence

reader () { writer ()
while (TRUE) { whlle(TRUE) {
<other computing>; <other computing>;
P (mutex?) ;
P (readBlock) ; writeCount++;

P (mutexl) ; if (writeCount == 1)
readCount++; P (readBlock) ;
1f (readCount == 1) V (mutex?2) ;

P(writeBlock) ; P(writeBlock) ;
V (mutexl) ; access (resource) ;
V (readBlock) ; V(writeBlock) ;
P (mutex?2)
access (resource) ; writeCount--;

P (mutexl) ; if (writeCount == 0)
readCount—--; V (readBlock) ;
if (readCount == 0) V (mutex?2) ;

V(writeBlock) ; }

V (mutexl) ; }

}
}
int readCount = 0, writeCount = 0;
semaphore mutex = 1, mutex2 = 1;
semaphore readBlock = 1, writeBlock = 1, writePending = 1;

fork (reader, 0);
fork(writer, 0);

Writer Takes Precedence

reader () { writer ()
while (TRUE) { whlle(TRUE) {
<other computing>; <other computing>;
P (mutex?) ;
<:> P (readBlock) ; writeCount++;

P (mutexl) ; if (writeCount == 1)
readCount++; P (readBlock) ;
1f (readCount == 1) V (mutex?2) ;

P(writeBlock) ; P(writeBlock) ;
V (mutexl) ; access (resource) ;
V (readBlock) ; V(writeBlock) ;
P (mutex?2)
<:> access (resource) ; writeCount--;

P (mutexl) ; if (writeCount == 0)
readCount—--; V (readBlock) ;
if (readCount == 0) V (mutex?2) ;

V(writeBlock) ; }

V (mutexl) ; }

}
}
int readCount = 0, writeCount = 0;
semaphore mutex = 1, mutex2 = 1;
semaphore readBlock = 1, writeBlock = 1, writePending = 1;

fork (reader, 0);
fork(writer, 0);

Writer Takes Precedence

reader () { writer ()
while (TRUE) { whlle(TRUE) {
<other computing>; <other computing>;
P (mutex?) ;
P (readBlock) ; writeCount++;
<:> P (mutexl) ; if (writeCount == 1)
readCount++; . P (readBlock) ;
1f (readCount == 1) V (mutex?2) ;
P(writeBlock) ; P(writeBlock) ;
V (mutexl) ; access (resource) ;
V (readBlock) ; V(writeBlock) ;
P (mutex?2)
<:> access (resource) ; writeCount--;

P (mutexl) ; if (writeCount == 0)
readCount—--; V (readBlock) ;
if (readCount == 0) V (mutex?2) ;

V(writeBlock) ; }
V (mutexl) ; }
}
}
int readCount = 0, writeCount = 0;
semaphore mutex = 1, mutex2 = 1;
semaphore readBlock = 1, writeBlock = 1, writePending = 1;

fork (reader, 0);
fork(writer, 0);

Writer Takes Precedence

reader () { writer ()
while (TRUE) { whlle(TRUE) {
<other computing>; <other computing>;
P (mutex?) ;
<:> P (readBlock) ; writeCount++;

P (mutexl) ; if (writeCount == 1)
readCount++; . P (readBlock) ;
1f (readCount == 1) V (mutex?2) ;

P(writeBlock) ; P(writeBlock) ;
V (mutexl) ; access (resource) ;
V (readBlock) ; V(writeBlock) ;
P (mutex?2)
<:> access (resource) ; writeCount--;

P (mutexl) ; if (writeCount == 0)
readCount—--; V (readBlock) ;
if (readCount == 0) V (mutex?2) ;

V(writeBlock) ; }

V (mutexl) ; }

}
}
int readCount = 0, writeCount = 0;
semaphore mutex = 1, mutex2 = 1;
semaphore readBlock = 1, writeBlock = 1, writePending = 1;

fork (reader, 0);
fork(writer, 0);

Writer Takes Precedence

reader () { writer ()
while (TRUE) { whlle(TRUE) {
<other computing>; <other computing>;
P (mutex?) ;
<:> P (readBlock) ; writeCount++;

P (mutexl) ; if (writeCount == 1)
readCount++; . P (readBlock) ;
1f (readCount == 1) V (mutex?2) ;

P(writeBlock) ; P(writeBlock) ;
V (mutexl) ; access (resource) ;
V (readBlock) ; V(writeBlock) ;
P (mutex?2)
<:> access (resource) ; writeCount--;

P (mutexl) ; if (writeCount == 0)
readCount—--; V (readBlock) ;
if (readCount == 0) V (mutex?2) ;

V(writeBlock) ; }

V (mutexl) ; }

}
}
int readCount = 0, writeCount = 0;
semaphore mutex = 1, mutex2 = 1;
semaphore readBlock = 1, writeBlock = 1, writePending = 1;

fork (reader, 0);
fork(writer, 0);

Readers-Writers

reader () { writer () {
while (TRUE) { while (TRUE) {

<other computing>; <other computing>;

<:> P(writePending) ; P (mutex?) ;
P (readBlock) ; writeCount++;

P (mutexl) ; if (writeCount == 1)
readCount++; . P (readBlock) ;
if (readCount == 1) V (mutex?2) ;

P(writeBlock) ; P(writeBlock) ;

V (mutexl) ; access (resource) ;

<:> V (readBlock) ; V(writeBlock) ;

V(writePending) ; P (mutex?2)

<:> access (resource) ; writeCount--;

P (mutexl) ; if (writeCount == 0)
readCount—--; V (readBlock) ;
if (readCount == 0) V (mutex?2) ;

V(writeBlock) ; }

V (mutexl) ; }

}
}
int readCount = 0, writeCount = 0;
semaphore mutex = 1, mutex2 = 1;
semaphore readBlock = 1, writeBlock = 1, writePending = 1;

fork (reader, 0);
fork(writer, 0);

Sleepy Barber Problem

* Barber can cut one person’s hair at a time

* Other customers wait 1n a waiting room

Barber’s Chair

Entrance O/

OO Exit
Waiting Room
OO

Sleepy Barber Problem
(Bounded Buffer Problem)

customer () { barber () A
while (TRUE) { while (TRUE) {
customer = nextCustomer () ; P (waitingCustomer) ;
if (emptyChairs == 0) P (mutex) ;
continue; emptyChairs++;
P (chair) ; takeCustomer () ;
P (mutex) ; V (mutex) ;

emptyChairs—--; V(chair);

takeChair (customer) ; }
V (mutex) ; }
V(waitingCustomer) ;

N, waitingCustomer = 0;

I
|_\
0
o
Q
|_|.
H

Il

semaphore mutex =
int emptyChairs = N;
fork (customer, 0);
fork (barber, 0);

Dining Philosophers

while (TRUE)
Qy <? think () ;

eat (),

{

Cigarette Smokers’ Problem

* Three smokers (processes)

* Each wish to use tobacco, papers, &
matches
— Only need the three resources periodically

— Must have all at once

e 3 processes sharing 3 resources
— Solvable, but difficult

Implementing Semaphores

 Minimize effect on the I/O system

* Processes are only blocked on their own
critical sections (not critical sections that
they should not care about)

* If disabling interrupts, be sure to bound the
time they are disabled

Implementing Semaphores:
Disabling Interrupts

class semaphore {
int value;

public:
semaphore (int v = 1) { value = v;};
P(){
disableInterrupts();

)

while (value == 0) {
enableInterrupts() ;
disableInterrupts ()

}

value--;

enableInterrupts() ;

V() {
disableInterrupts();

value++;
enableInterrupts() ;
by
by

Implementing Semaphores:
Test and Set Instruction
« TS(m): [Reg 1 =memory[m]; memory[m] = TRUE;]

boolean s = FALSE; semaphore s = 1;
while (TS (s)) ; P(s) >
<critical section> <critical section>

s = FALSE; V(s);

General Semaphore

struct semaphore {
int value = <initial value>;
boolean mutex = FALSE;
boolean hold = TRUE;

s

shared struct semaphore s;

P (struct semaphore s) { V (struct semaphore s) {
while (TS (s.mutex)) while (TS (s.mutex))
s.value—--; s.value++;
if(s.value < 0) (if(s.value <= 0) (

s.mutex = FALSE; while (!s.hold) ;
while (TS (s.hold)) ; s.hold = FALSE;
} }
else s.mutex = FALSE;

s.mutex = FALSE; }

General Semaphore

struct semaphore | *Block at arrow
int value = <initial value>; °Busy wait
boolean mutex = FALSE;
boolean hold = TRUE;

s

shared struct semaphore s;

P (struct semaphore s) { V (struct semaphore s) {
while (TS (s.mutex)) while (TS (s.mutex))
s.value—--; s.value++;
if(s.value < 0) (if(s.value <= 0) (

s.mutex = FALSE; while (!s.hold) ;
while (TS (s.hold)) ; s.hold = FALSE;
} }
else s.mutex = FALSE;

s.mutex = FALSE; }

General Semaphore

struct semaphore | *Block at arrow
kl)ntlvalue z <1n1§;iéEvalue>; °Busy wait
oolean mutex = ; . : :
boolean hold = TRUE; ‘QUIZ. Why is this
}; statement necessary?

shared struct semaphore s;

P (struct semaphore s) { V (struct semaphore s) {
while (TS (s.mutex)) while (TS (s.mutex))
s.value—--; s.value++;
if(s.value < 0) (if(s.value <= 0) (

s.mutex = FALSE; ..’» while (!s.hold) ;
while (TS (s.hold)) ; s.hold = FALSE;
} }
else s.mutex = FALSE;

s.mutex = FALSE; }

Active vs Passive Semaphores

* A process can dominate the semaphore
— Performs V operation, but continues to execute

— Performs another P operation before releasing
the CPU

— Called a passive implementation of V

* Active implementation calls scheduler as
part of the V operation.

— Changes semantics of semaphore!
— Cause people to rethink solutions

