
Using the OS

The Basic Abstractions

¥ Processes

¥ Files

¥ Other Resources

Processes & Resources

Processes

Resources

CPU

Memory

Device
Device

Device
Device

Operating System

Hardware

Data

Program

Resources

¥ Anything that a process requests from an
OS
Ð Available => allocated

Ð Not available => process is blocked

¥ Data is a primary resource

¥ A file is a container for holding data

¥ Consequence: Processes & files are
programmers main tools

Files

¥ File: A named, linear stream of records
(e.g., bytes) stored on a device

Operating System

b0 b1 b2 bi

File descriptor

UNIX Files

open Specifies file name to be used
close Release file descriptor
read Input a block of information
write Output a block of information
lseek Position file for read/write
ioctl Device-specific operations

¥ UNIX and NT try to make every resource
(except CPU and RAM) look like a file

¥ Then can use a common interface:

Example
#include <stdio.h>
#include <fcntl.h>
int main() {
 int inFile, outFile;
 char *inFileName = Òin_testÓ;
 char *outFileName = Òout_testÓ;
 int len;
 char c;

 inFile = open(inFileName, O_RDONLY);
 outFile = open(outFileName, O_WRONLY);
/* Loop through the input file */
 while ((len = read(inFile, &c, 1)) > 0)
 write(outFile, &c, 1);
/* Close files and quite */
 close(inFile);
 close(outFile);
}

A Process

Code Data

Process Status

Resources
Resources

Resources

Abstract Machine Environment (OS)

Processes Sharing a Program

Shared Program Text

P1

P2

P3

P1 P2 P3

UNIX Process

Text

Process Status

Resources
Resources

File

UNIX kernel

Stack

Data

File

More on UNIX Processes

¥ Each process has its own address space
Ð Subdivided into text, data, & stack segment
Ð a.out file describes the address space

¥ OS creates descriptor to manage process

¥ Process identifier (PID): User handle for
the process (descriptor)

¥ Try ÒpsÓ and Òps -auxÓ (read man page)

Creating/Destroying Processes

¥ UNIX fork creates a process
Ð Creates a new address space

Ð Copies text, data, & stack into new adress space

Ð Provides child with access to open files

¥ UNIX wait allows a parent to wait for a
child to terminate

¥ UNIX exec allows a child to run a new
program

Executing a UNIX Command

Shell Process

Process
executing
command

% grep first f3

f3

read keyboard fork a process

read file

Creating a UNIX Process
int pidValue;
 ...
pidValue = fork(); /* Creates a child process */
if(pidValue == 0) {
 /* pidValue is 0 for child, nonzero for parent */
 /* The child executes this code concurrently with parent */
 childsPlay(É); /* A procedure linked into a.out */
 exit(0);
}
/* The parent executes this code concurrently with child */
parentsWork(..);
wait(É);
 ...

Executing a Different Program
int pid;
 ...
/* Set up the argv array for the child */
 ...
/* Create the child */
if((pid = fork()) == 0) {
 /* The child executes its own absolute program */
 execve(childProgram.out, argv, 0);
 /* Only return from an execve call if it fails */
 printf(ÒError in the exec É terminating the child ÉÓ);
 exit(0);
}
 ...
wait(É); /* Parent waits for child to terminate */
 ...

Example: Parent
#include <sys/wait.h>

#define NULL 0

int main (void)
{
 if (fork() == 0){ /* This is the child process */
 execve("child",NULL,NULL);
 exit(0); /* Should never get here, terminate */
 }
/* Parent code here */
 printf("Process[%d]: Parent in execution ...\n", getpid());
 sleep(2);
 if(wait(NULL) > 0) /* Child terminating */
 printf("Process[%d]: Parent detects terminating child \n",
 getpid());
 printf("Process[%d]: Parent terminating ...\n", getpid());
}

Example: Child

int main (void)
{
/* The child process's new program
 This program replaces the parent's program */

 printf("Process[%d]: child in execution ...\n", getpid());
 sleep(1);
 printf("Process[%d]: child terminating ...\n", getpid());
}

Bootstrapping

¥ Computer starts, begins executing a
bootstrap program -- initial process

¥ Loads OS from the disk (or other device)

¥ Initial process runs OS, creates other
processes

Initializing a UNIX Machine

Serial Port A

Serial Port B

Serial Port C

Serial Port Z

login

login

login

login

getty

/etc/passwd

Data

Process Status
Data

Process Status

Threads -- The NT Model

Code Data

Process Status

Resources
Resources

Resources

Abstract Machine Environment (OS)

Data

Process Status

Threads share processÕs
address space

NT Threads
#include <cthreads.h>
 ...
int main(int argv, char *argv[]) {
 t_handle = CreateThread(É, tChild, &i, É);
/* A new child thread is now executing the tChild function */
 Sleep(100) /* Let another thread execute */
}

DWPRD WINAPI tChild(LPVOID me) {
/* This function is executed by the child thread */
 ...
 SLEEP(100); /* Let another thread execute */
 ...
}

Objects

¥ A recent trend is to replace processes by
objects

¥ Objects are autonomous

¥ Objects communicate with one another
using messages

¥ Popular computing paradigm

¥ Too early to say how important it will be ...

