Using the OS

The Basic Abstractions

* Processes
e Files

e Other Resources

Processes & Resources

- Resources
@ s » | |
Processes

l ;

(Operating System)

Ceru i

Data

Program / .
Memory Device J

Hardware

Resources

Anything that a process requests from an
OS

— Available => allocated

— Not available => process 1s blocked
Data 1s a primary resource
A file 1s a container for holding data

Consequence: Processes & files are
programmers main tools

Files

e File: A named, linear stream of records
(e.g., bytes) stored on a device

Operating System)
File descriptor

UNIX Files

 UNIX and NT try to make every resource
(except CPU and RAM) look like a file

* Then can use a common interface:

open
close
read

write
lseek
1octl

Specifies file name to be used
Release file descriptor

Input a block of information
Output a block of information
Position file for read/write
Device-specific operations

Example

#include <stdio.h>

#include <fcntl.h>

int main() {
int inFile, outFile;
char *inFileName = “in test”;
char *outFileName = “out test”;
int len;
char c;

inFile = open(inFileName, O RDONLY) ;
outFile = open (outFileName, O WRONLY) ;
/* Loop through the input file */
while ((len = read(inFile, &c, 1)) > 0)
write (outFile, &c, 1);
/* Close files and quite */
close (inFile) ;
close (outFile) ;

A Process

Data
——
Process Status

Abstract Machine Environment (OS)

Processes Sharing a Program

LN e I
I = A==

........ V | P2
N— T]
]

P3

Shared Program Text [| | '

UNIX Process

. Stack

Process Status

.
Resources

UNIX kernel

More on UNIX Processes

Each process has 1ts own address space

— Subdivided 1nto text, data, & stack segment
— a.out file describes the address space

OS creates descriptor to manage process

Process identifier (PID): User handle for
the process (descriptor)

Try “ps” and “ps -aux’ (read man page)

Creating/Destroying Processes

 UNIX fork creates a process
— Creates a new address space
— Copies text, data, & stack into new adress space
— Provides child with access to open files

« UNIX wait allows a parent to wait for a
child to terminate

e UNIX exec allows a child to run a new
program

Executing a UNIX Command

©)

% grep first £3

read keyboard fork a process

Process
executing

ﬂ file

>

Creating a UNIX Process

int pidValue;
pidvalue = fork(); /* Creates a child process */

1f (pidValue == 0) {

/* pidValue is 0 for child, nonzero for parent */

/* The child executes this code concurrently with parent */
childsPlay(..); /* A procedure linked into a.out */

exit (0) ;

}
/* The parent executes this code concurrently with child */

parentsWork(..);
walt (..);

Executing a Different Program

int pid;
/* Set up the argv array for the child */

/* Create the child */
if ((pid = fork()) == 0) f{
/* The child executes its own absolute program */
execve (childProgram.out, argv, 0);
/* Only return from an execve call if it fails */
printf ("Error in the exec .. terminating the child ..”);
exit (0) ;

walit (...); /* Parent waits for child to terminate */

Example: Parent

#include <sys/wait.h>
#define NULL 0

int main (void)

{

if (fork() == 0){ /* This is the child process */
execve ("child",NULL, NULL) ;
exit (0) ; /* Should never get here, terminate */

}

/* Parent code here */

printf ("Process[%d]: Parent in execution ...\n", getpid());
sleep (2);
if (wait (NULL) > 0) /* Child terminating */
printf ("Process[%d]: Parent detects terminating child \n",
getpid());

printf ("Process[%d]: Parent terminating ...\n", getpid()):

Example: Child

int main (void)
{
/* The child process's new program
This program replaces the parent's program */

printf ("Process[%d]: child in execution ...\n", getpid()):
sleep(1l);

printf ("Process[%d]: child terminating ...\n", getpid()):;

Bootstrapping

« Computer starts, begins executing a
bootstrap program -- initial process

* Loads OS from the disk (or other device)

 Initial process runs OS, creates other
Processes

. —=1|Serial Port A
= =|Serial Port B
.~ =1|Serial Port C

. = =1|Serial Port Z

Initializing a UNIX Machine

/etc/passwd

Threads -- The NT Model

7

Process Status

Threads share process’s
address space

Code

Data

Process Status

Resources

Abstract Machine Environment (OS)

NT Threads

#include <cthreads.h>

int main(int argv, char *argv[]) {
t handle = CreateThread(.., tChild, &1, ..);

/* A new child thread is now executing the tChild function */
Sleep (100) /* Let another thread execute */

DWPRD WINAPI tChild (LPVOID me) {
/* This function 1s executed by the child thread */

SLEEP (100) ; /* Let another thread execute */

Objects

A recent trend 1s to replace processes by
objects

Objects are autonomous

Objects communicate with one another
using messages

Popular computing paradigm

Too early to say how important 1t will be ...

