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Specialized Data Network

¥WANs, MANs, and LANs
¥Specialized communication protocols
¥Multidrop
¥Packet oriented
¥Looks like other devicesÉ make it look like a file ...



Multidrop Packet Network

¥ Need a cost-effective Òswitch fabricÓ --
cheaper/better than the telephone network

¥ To transmit/receive:
Ð Sender convert data packet into form suitable

for physical transmission

Ð Deliver packets to destination host

Ð Receiver converts physical signal back into a
data packet

¥ Need a widely-agreed upon set of protocols



Protocol Tasks
¥ Control information delivery rates

¥ Pass info across networks

¥ Provide fast/reliable IPC-like communication

¥ Support logical byte streams

¥ Create other models for communication
Ð File transfer

Ð Procedure call paradigm

Ð Shared memory paradigm

¥ Translate machine-dependent data representations

¥ É and more É



Standardizing Protocols
¥ ANSI X.25

¥ ARPAnet

¥ ISO Open Systems Interconnect (OSI)
model
Ð Now widely used as a reference architecture

Ð 7-layer model

Ð Provides framework for specific protocols (such
as IP, TCP, FTP, RPC, RSVP, É)
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¥Physical/Data Link layer networks: Ethernet, Token Ring, ATM
¥Network layer net: The Internet
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¥Physical/Data Link layer networks: Ethernet, Token Ring, ATM
¥Network layer net: The Internet
¥Transport layer net: TCP-based network
¥Presentation/Session layer net: http/html, RPC, PVM, MPI
¥Applications, e.g., WWW, window system, numerical algorithm

Examples
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Low Level Protocols

¥ Physical layer: Signaling technology

¥ Data link layer: Frame management

¥ All done in hardware

¥ Examples
Ð Ethernet

Ð Token ring

Ð X.25

Ð ATM

¥ Read pages 463-471



Network Layer
¥ Primary purpose is to combine networks

¥ Internet protocol (IP) is dominant protocol

¥ Creates an internet address space

¥ Implements packet routing across networks

Host X

Host R Host S Host Y

Network B Network CNetwork A



Addressing & Routing
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¥Host X does not know how to send to Host Y
¥Can send a frame to Host R for forwarding
¥What should it tell Host R?



Addressing & Routing

Host X

Host R Host Y

Network CNetwork A

¥Host X does not know how to send to Host Y
¥Can send a frame to Host R for forwarding
¥What should it tell Host R?
¥Internet address spans all machines
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Network Layer data



Addressing & Routing
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¥Host X does not know how to send to Host Y
¥Can send a frame to Host R for forwarding 
¥What should it tell Host R?
¥Internet address spans all machines
¥Send encapsulated packet to Host R with Host Y
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Network Layer data
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Addressing & Routing

Host X

Host R Host Y

Network CNetwork A

¥Host X does not know how to send to Host Y
¥Can send a frame to Host R for forwarding
¥What should it tell Host R?
¥Internet address spans all machines
¥Send encapsulated packet to Host R with Host Y
¥Data Link frame is received by Host Y

3b4e87

3b4e62 3b4e55 3b621a

3b6209

128.123.234.033

128.123.234.188 128.229.244.006

128.229.244.109

128.123.234.063

To: 3b621a
From: ...

To: 128.229.244.006
From: 128.123.234.033
Network Layer data

Network B



More on the Network Layer
¥ Implements internet addressing & routing

¥ ARPAnet IP protocol is dominant --
underlies the Internet

¥ Intermediate hosts are called gateways
Ð Connected to two or more networks

Ð Runs IP routing software
Ð nag is a gateway for the teaching lab

Ð Read pages 471-477



Transport Layer
¥ Provides yet another address extension

Ð IP references onlyu networks and hosts

Ð Transport layer adds ports --  logical endpoints
Ð Address form is <net, host, port>

¥ Two primary protocols (both from ARPAnet)
Ð User Datagram Protocol (UDP)

¥ User-space interface to IP packets

¥ No guarantee that packet will be delivered

Ð Transmission Control Protocol (TCP)
¥ Provides a stream-oriented interface to the network

¥ Reliable delivery



Communication Ports
¥ Global name for a ÒmailboxÓ

¥ Will be many ports at one <net, host>

P P P P
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Machine X <net, host>



Communication Ports
¥ Global name for a ÒmailboxÓ

¥ Will be many ports at one <net, host>

¥ Each port can be bound to an address

P P P P

Transport Layer

Network Layer

Low Layers
Machine X <net, host>



BSD Sockets
¥ Sockets are comm ports in BSD UNIX

¥ Semantics resemble pipes (files)

¥ Bidirectional



BSD Sockets
¥ Sockets are comm ports in BSD UNIX

¥ Semantics resemble pipes (files)

¥ Bidirectional

int socket(int addressFamily, int socketType, int protocolNo)

s
s = socket(É)



BSD Sockets (cont)
¥ Once a socket has been created, it can be

bound to an internet port

P

s



BSD Sockets (cont)
¥ Once a socket has been created, it can be

bound to an internet port

int bind(int skt, struct sockadrr *addr, int addrLength)

¥ Example code available on the web page

P

s



UDP

¥ Datagram (ÒconnectionlessÓ) service
Ð Similar to disk I/O level of service

¥ Logically associated with an IP packet &
Data Link frame (but not physically)

¥ Best-effort delivery of datagrams, but:
Ð Datagram may be dropped (lost)

Ð Datagrams may be delivered out of order

¥ Efficient, relative to TCP



Using UDP
/* Set up a socket to talk to the server */
    skt = socket(AF_INET, SOCK_DGRAM, 0);
    host = gethostbyname(remoteHostName);
    bzero(&remote, sizeof(remote));
    remote.sin_family = host->h_addrtype;
    remote.sin_port = htons(remotePort);
    bcopy(host->h_addr, &remote.sin_addr, host->h_length);
/* Export the socket to a port (and IP address) */
    host = gethostbyname(localHostName);
    bzero(&local, sizeof(local));
    local.sin_family = host->h_addrtype;
    local.sin_port = htons(localPort);
    bcopy(host->h_addr, &local.sin_addr, host->h_length);
    if(bind(skt, &local, sizeof(local))) {
        printf("Bind error ... restart\n");
        exit(1);
    }
    . . .
    sendto(s, outBuf, strlen(outBuf), 0, remote, sizeof(remote));
    if((len = recv(s, inBuf, BUFLEN, 0)) > 0) {. . .}



TCP
¥ Connected (or virtual circuit) protocol

¥ Interface allows programmer to read/write a
byte stream over the network

¥ Byte stream is mapped into a series of
packets
Ð Reliable delivery

Ð Each packet must be acknowledged

Ð Effectively 2 packets per transmission

¥ Must open/close a connection before use



Using TCP -- Client

skt = socket(AF_INET, SOCK_STREAM, 0);
host = gethostbyname(serverHostName);
bzero(&listener, sizeof(listener));
listener.sin_family = host->h_addrtype;
listener.sin_port = htons(port);
bcopy(host->h_addr, &listener.sin_addr, host->h_length);
if(connect(skt, &listener, sizeof(listener))) {
    printf("Connect error ... restart\n");
    printf("(Must start Server end first)\n");
    exit(1);
};
. . .
write(s, outBuf, BUFLEN);
if((len = read(s, inBuf, BUFLEN)) > 0) {. . .}

 



Using TCP -- Server
skt = socket(AF_INET, SOCK_STREAM, 0);  /* Produce an inet address */
host = gethostbyname(serverHostName);
bzero(&listener, sizeof(listener));
listener.sin_family = host->h_addrtype;
listener.sin_port = htons(port);
bcopy(host->h_addr, &listener.sin_addr, host->h_length);
if(bind(skt, &listener, sizeof(listener))) {
    printf("Bind error ... restart\n");
    exit(1);
}
listen(skt, BACKLOG);    /* Listen for a request */
newSkt = accept(skt, &client, &clientLen);
if (fork() == 0) {
    close(skt);     /* Child doesn't need listener socket */
    . . .
}
close(newSkt);          /* Parent doesn't need the new socket */

if((len = read(s, inBuf, BUFLEN)) > 0) { . . .}
write(s, outBuf, BUFLEN);



Client-Server Paradigm
¥ Making a connection in TCP is an example

of the client-server paradigm for distributed
computing
Ð Active component is the client

¥ Runs autonomously

¥ Decides when it wants to use server

Ð Passive component is the server
¥ Persistent

¥ Always waiting for a client to request service

¥ Not a machine -- just software


