
Networks

Computer-Computer Comm

DeviceMemory

CPU

Device Memory

CPU

Computer-Computer Comm

Comm
Device

Memory

CPU

Modem

Phone

Comm
Device

Memory

CPU

Modem

Phone

Switched Telephone Network

Data Networks

Network
Device

Memory

CPU

Network
Device

Memory

CPU

Specialized Data Network

¥WANs, MANs, and LANs
¥Specialized communication protocols
¥Multidrop
¥Packet oriented
¥Looks like other devicesÉ make it look like a file ...

Multidrop Packet Network

¥ Need a cost-effective Òswitch fabricÓ --
cheaper/better than the telephone network

¥ To transmit/receive:
Ð Sender convert data packet into form suitable

for physical transmission

Ð Deliver packets to destination host

Ð Receiver converts physical signal back into a
data packet

¥ Need a widely-agreed upon set of protocols

Protocol Tasks
¥ Control information delivery rates

¥ Pass info across networks

¥ Provide fast/reliable IPC-like communication

¥ Support logical byte streams

¥ Create other models for communication
Ð File transfer

Ð Procedure call paradigm

Ð Shared memory paradigm

¥ Translate machine-dependent data representations

¥ É and more É

Standardizing Protocols
¥ ANSI X.25

¥ ARPAnet

¥ ISO Open Systems Interconnect (OSI)
model
Ð Now widely used as a reference architecture

Ð 7-layer model

Ð Provides framework for specific protocols (such
as IP, TCP, FTP, RPC, RSVP, É)

ISO OSI Model

Application
Presentation

Session
Transport
Network

Data Link
Physical

Application
Presentation

Session
Transport
Network

Data Link
Physical

ISO OSI Model

Data Link
Physical

Data Link
Physical

¥Physical/Data Link layer networks: Ethernet, Token Ring, ATM

Examples

ISO OSI Model

Network
Data Link
Physical

Network
Data Link
Physical

¥Physical/Data Link layer networks: Ethernet, Token Ring, ATM
¥Network layer net: The Internet

Examples

ISO OSI Model

Transport
Network

Data Link
Physical

Transport
Network

Data Link
Physical

¥Physical/Data Link layer networks: Ethernet, Token Ring, ATM
¥Network layer net: The Internet
¥Transport layer net: TCP-based network

Examples

ISO OSI Model

Presentation
Session

Transport
Network

Data Link
Physical

Presentation
Session

Transport
Network

Data Link
Physical

¥Physical/Data Link layer networks: Ethernet, Token Ring, ATM
¥Network layer net: The Internet
¥Transport layer net: TCP-based network
¥Presentation/Session layer net: http/html, RPC, PVM, MPI

Examples

ISO OSI Model

Application
Presentation

Session
Transport
Network

Data Link
Physical

Application
Presentation

Session
Transport
Network

Data Link
Physical

¥Physical/Data Link layer networks: Ethernet, Token Ring, ATM
¥Network layer net: The Internet
¥Transport layer net: TCP-based network
¥Presentation/Session layer net: http/html, RPC, PVM, MPI
¥Applications, e.g., WWW, window system, numerical algorithm

Examples

ISO OSI & TCP/IP

X.25

ISO OSI Network

ISO OSI TLI

ISO OSI Session

ISO OSI packet

ISO OSI frame

X.25 packet

ISO OSI & TCP/IP

X.25

ISO OSI Network

ISO OSI TLI

ISO OSI Session

ISO OSI packet

ISO OSI frame

X.25 packet

Ethernet

ARPAnet IP

ARPAnet TCP

ISO OSI Session

ISO OSI packet

IP frame

Ethernet packet

Low Level Protocols

¥ Physical layer: Signaling technology

¥ Data link layer: Frame management

¥ All done in hardware

¥ Examples
Ð Ethernet

Ð Token ring

Ð X.25

Ð ATM

¥ Read pages 463-471

Network Layer
¥ Primary purpose is to combine networks

¥ Internet protocol (IP) is dominant protocol

¥ Creates an internet address space

¥ Implements packet routing across networks

Host X

Host R Host S Host Y

Network B Network CNetwork A

Addressing & Routing

Host X

Host R Host Y

Network CNetwork A

3b4e87

3b4e62 3b4e55 3b621a

3b6209

¥Host X does not know how to send to Host Y
¥Can send a frame to Host R for forwarding
¥What should it tell Host R?

Addressing & Routing

Host X

Host R Host Y

Network CNetwork A

¥Host X does not know how to send to Host Y
¥Can send a frame to Host R for forwarding
¥What should it tell Host R?
¥Internet address spans all machines

3b4e87

3b4e62 3b4e55 3b621a

3b6209

128.123.234.033

128.123.234.188 128.229.244.006

128.229.244.109

128.123.234.063

To: 128.229.244.006
From: 128.123.234.033
Network Layer data

Addressing & Routing

Host X

Host R Host Y

Network CNetwork A

¥Host X does not know how to send to Host Y
¥Can send a frame to Host R for forwarding
¥What should it tell Host R?
¥Internet address spans all machines
¥Send encapsulated packet to Host R with Host Y

3b4e87

3b4e62 3b4e55 3b621a

3b6209

128.123.234.033

128.123.234.188 128.229.244.006

128.229.244.109

128.123.234.063

To: 3b4e55
From: 3b4e87

To: 128.229.244.006
From: 128.123.234.033
Network Layer data

Addressing & Routing

Host X

Host R Host Y

Network CNetwork A

¥Host X does not know how to send to Host Y
¥Can send a frame to Host R for forwarding
¥What should it tell Host R?
¥Internet address spans all machines
¥Send encapsulated packet to Host R with Host Y

3b4e87

3b4e62 3b4e55 3b621a

3b6209

128.123.234.033

128.123.234.188 128.229.244.006

128.229.244.109

128.123.234.063

Host S

Network B

Addressing & Routing

Host X

Host R Host Y

Network CNetwork A

¥Host X does not know how to send to Host Y
¥Can send a frame to Host R for forwarding
¥What should it tell Host R?
¥Internet address spans all machines
¥Send encapsulated packet to Host R with Host Y
¥Data Link frame is received by Host Y

3b4e87

3b4e62 3b4e55 3b621a

3b6209

128.123.234.033

128.123.234.188 128.229.244.006

128.229.244.109

128.123.234.063

To: 3b621a
From: ...

To: 128.229.244.006
From: 128.123.234.033
Network Layer data

Network B

More on the Network Layer
¥ Implements internet addressing & routing

¥ ARPAnet IP protocol is dominant --
underlies the Internet

¥ Intermediate hosts are called gateways
Ð Connected to two or more networks

Ð Runs IP routing software
Ð nag is a gateway for the teaching lab

Ð Read pages 471-477

Transport Layer
¥ Provides yet another address extension

Ð IP references onlyu networks and hosts

Ð Transport layer adds ports -- logical endpoints
Ð Address form is <net, host, port>

¥ Two primary protocols (both from ARPAnet)
Ð User Datagram Protocol (UDP)

¥ User-space interface to IP packets

¥ No guarantee that packet will be delivered

Ð Transmission Control Protocol (TCP)
¥ Provides a stream-oriented interface to the network

¥ Reliable delivery

Communication Ports
¥ Global name for a ÒmailboxÓ

¥ Will be many ports at one <net, host>

P P P P

Transport Layer

Network Layer

Low Layers
Machine X <net, host>

Communication Ports
¥ Global name for a ÒmailboxÓ

¥ Will be many ports at one <net, host>

¥ Each port can be bound to an address

P P P P

Transport Layer

Network Layer

Low Layers
Machine X <net, host>

BSD Sockets
¥ Sockets are comm ports in BSD UNIX

¥ Semantics resemble pipes (files)

¥ Bidirectional

BSD Sockets
¥ Sockets are comm ports in BSD UNIX

¥ Semantics resemble pipes (files)

¥ Bidirectional

int socket(int addressFamily, int socketType, int protocolNo)

s
s = socket(É)

BSD Sockets (cont)
¥ Once a socket has been created, it can be

bound to an internet port

P

s

BSD Sockets (cont)
¥ Once a socket has been created, it can be

bound to an internet port

int bind(int skt, struct sockadrr *addr, int addrLength)

¥ Example code available on the web page

P

s

UDP

¥ Datagram (ÒconnectionlessÓ) service
Ð Similar to disk I/O level of service

¥ Logically associated with an IP packet &
Data Link frame (but not physically)

¥ Best-effort delivery of datagrams, but:
Ð Datagram may be dropped (lost)

Ð Datagrams may be delivered out of order

¥ Efficient, relative to TCP

Using UDP
/* Set up a socket to talk to the server */
 skt = socket(AF_INET, SOCK_DGRAM, 0);
 host = gethostbyname(remoteHostName);
 bzero(&remote, sizeof(remote));
 remote.sin_family = host->h_addrtype;
 remote.sin_port = htons(remotePort);
 bcopy(host->h_addr, &remote.sin_addr, host->h_length);
/* Export the socket to a port (and IP address) */
 host = gethostbyname(localHostName);
 bzero(&local, sizeof(local));
 local.sin_family = host->h_addrtype;
 local.sin_port = htons(localPort);
 bcopy(host->h_addr, &local.sin_addr, host->h_length);
 if(bind(skt, &local, sizeof(local))) {
 printf("Bind error ... restart\n");
 exit(1);
 }
 . . .
 sendto(s, outBuf, strlen(outBuf), 0, remote, sizeof(remote));
 if((len = recv(s, inBuf, BUFLEN, 0)) > 0) {. . .}

TCP
¥ Connected (or virtual circuit) protocol

¥ Interface allows programmer to read/write a
byte stream over the network

¥ Byte stream is mapped into a series of
packets
Ð Reliable delivery

Ð Each packet must be acknowledged

Ð Effectively 2 packets per transmission

¥ Must open/close a connection before use

Using TCP -- Client

skt = socket(AF_INET, SOCK_STREAM, 0);
host = gethostbyname(serverHostName);
bzero(&listener, sizeof(listener));
listener.sin_family = host->h_addrtype;
listener.sin_port = htons(port);
bcopy(host->h_addr, &listener.sin_addr, host->h_length);
if(connect(skt, &listener, sizeof(listener))) {
 printf("Connect error ... restart\n");
 printf("(Must start Server end first)\n");
 exit(1);
};
. . .
write(s, outBuf, BUFLEN);
if((len = read(s, inBuf, BUFLEN)) > 0) {. . .}

Using TCP -- Server
skt = socket(AF_INET, SOCK_STREAM, 0); /* Produce an inet address */
host = gethostbyname(serverHostName);
bzero(&listener, sizeof(listener));
listener.sin_family = host->h_addrtype;
listener.sin_port = htons(port);
bcopy(host->h_addr, &listener.sin_addr, host->h_length);
if(bind(skt, &listener, sizeof(listener))) {
 printf("Bind error ... restart\n");
 exit(1);
}
listen(skt, BACKLOG); /* Listen for a request */
newSkt = accept(skt, &client, &clientLen);
if (fork() == 0) {
 close(skt); /* Child doesn't need listener socket */
 . . .
}
close(newSkt); /* Parent doesn't need the new socket */

if((len = read(s, inBuf, BUFLEN)) > 0) { . . .}
write(s, outBuf, BUFLEN);

Client-Server Paradigm
¥ Making a connection in TCP is an example

of the client-server paradigm for distributed
computing
Ð Active component is the client

¥ Runs autonomously

¥ Decides when it wants to use server

Ð Passive component is the server
¥ Persistent

¥ Always waiting for a client to request service

¥ Not a machine -- just software

