File Management

File Management

- *File* is a named collection of information
- The file manager administers the collection by:
 - Storing the information a device
 - Mapping the block storage to the logical view
 - Allocating/deallocating storage
 - Providing file directories
- What abstraction is presented to programmer?

Information Structure

Low Level Files

Stream-Block Translation

File Descriptors

- •External name
- •Current state
- •Sharable
- •Owner
- •User
- •Locks
- •Protection settings
- •Length
- •Time of creation
- •Time of last modification
- •Time of last access
- •Reference count
- •Storage device details

Byte Stream File Interface

fileID = open(fileName)
close(fileID)
read(fileID, buffer, length)
write(fileID, buffer, length)
seek(fileID, filePosition)

Structured Files

Record-Block Translation

Record-Oriented Sequential Files

Logical Record

fileID = open(fileName)
close(fileID)
getRecord(fileID, record)
putRecord(fileID, record)
seek(fileID, position)

Record-Oriented Sequential Files

Logical Record

H byte header k byte logical record

			•••		

Record-Oriented Sequential Files

Logical Record

Indexed Sequential File

- Suppose we want to directly access records
- Add an *index* to the file

```
fileID = open(fileName)
close(fileID)
getRecord(fileID, index)
index = putRecord(fileID, record)
deleteRecord(fileID, index)
```

Indexed Sequential File (cont)

More Abstract Files

- Inverted files
 - Index for each datum in the file
- Databases
 - More elaborate indexing mechanism
 - DDL & DML
- Multimedia storage
 - Records contain radically different types
 - Access methods must be general

Implementing Low Level Files

- Secondary storage device contains:
 - Volume directory (sometimes a root directory for a file system)
 - External file descriptor for each file
 - The file contents
- Manages blocks
 - Assigns blocks to files (descriptor keeps track)
 - Keeps track of available blocks
- Maps to/from byte stream

An open Operation

- Locate the external file descriptor
- Extract info needed to read/write file
- Authenticate that process can access the file
- Create an internal file descriptor in primary memory
- Create an entry in a "per process" open file status table
- Allocate resources, e.g., buffers, to support file usage

Opening a UNIX File

Block Management

- The job of assigning storage blocks to the file
- Fixed sized, k, blocks
- File of length m requires $N = \lceil m/k \rceil$ blocks
- Byte b_i is stored in block $\lfloor i/k \rfloor$
- Three basic strategies:
 - Contiguous allocation
 - Linked lists
 - Indexed allocation

Contiguous Allocation

- Maps the N blocks into N contiguous blocks on the secondary storage device
- Difficult to support dynamic file sizes

File descriptor

Head position	237
 First block Number of blocks	785 25

Linked Lists

- Each block contains a header with
 - Number of bytes in the block
 - Pointer to next block
- Blocks need not be contiguous
- Files can expand and contract
- Seeks can be slow

Indexed Allocation

- Extract headers and put them in an index
- Simplify seeks
- May link indices together (for large files)

Unallocated Blocks

- How should unallocated blocks be managed?
- Need a data structure to keep track of them
 - Linked list
 - Very large
 - Hard to manage spatial locality
 - Block status map ("disk map")
 - Bit per block
 - Easy to identify nearby free blocks
 - Useful for disk recovery

Managing the Byte Stream

- Packing and unpacking blocks
 - Must read-ahead on input
 - Must write-behind on output
 - Seek
 - Inserting/deleting bytes in the interior of the stream
- Block I/O
 - Buffer several blocks
 - Memory mapped files

Directories

- A set of logically associated files and sub directories
- File manager provides set of controls:
 - -enumerate
 - сору
 - rename
 - -delete
 - -traverse
 - etc.

Directory Structures

- How should files be organized within directory?
 - Flat name space
 - All files appear in a single directory
 - Hierarchical name space
 - Directory contains files and subdirectories
 - Each file/directory appears as an entry in exactly one other directory -- a *tree*
 - Popular variant: All directories form a tree, but a file can have multiple parents.

Directory Implementation

- Device Directory
 - A device can contain a collection of files
 - Easier to manage if there is a root for every file on the device -- the device root directory
- File Directory
 - Typical implementations have directories implemented as a file with a special format
 - Entries in a file directory are handles for other files (which can be files or subdirectories)

UNIX mount Command

UNIX mount Command

