#### Memory Management

# Memory Manager

- Requirements
  - Minimize primary memory access time
  - Maximize primary memory size
  - Primary memory must be cost-effective
- Today's memory manager:
  - Allocates primary memory to processes
  - Maps process address space to primary memory
  - Minimizes access time using cost-effective memory configuration

## Address Space vs Primary Memory

Primary Memory



## Building the Address Space



•Compose elements

## Building the Address Space



•Load time

## Building the Address Space







# Managing the Hierarchy

- Move across executable-secondary memory boundary (or lower) requires I/O operation
- Upward moves are <u>copy</u> operations
  - Require allocation in upper memory
  - Image exists in both memories
- Updates are first applied to upper memory
- Downward move is (usually) <u>destructive</u>
  - Deallocate upper memory
  - Updates image in secondary memory

## Memory Allocation



| Operating<br>System |
|---------------------|
| Process 3           |
| Process 0           |
| Process 2           |
|                     |
| Process 1           |

#### Fixed-Partition Memory



Region 3

 $N_3$ 

#### Fixed-Partition Memory -- Best-Fit



•Loader must adjust every address in the absolute module when placed in memory

#### Fixed-Partition Memory -- Worst-Fit



#### Fixed-Partition Memory -- First-Fit



#### Fixed-Partition Memory -- Next-Fit

| Operating                    |                |
|------------------------------|----------------|
| System                       | I              |
| Region 0                     | $N_0$          |
| p <sub>i</sub>               | N <sub>1</sub> |
|                              |                |
| P <sub>i+1</sub><br>Region 2 | $N_2$          |
| Region 3                     | N <sub>3</sub> |







•External fragmentation



•*Compaction* moves program in memory

## Cost of Moving Programs



Program loaded at 0x01000

## Cost of Moving Programs



Program loaded at 0x01000

3F016010

Program loaded at 0x04000

•Must run loader over program again!

# Dynamic Memory Allocation

- Common to use <u>dynamically allocated</u>
   memory
- Process wants to change the size of its address space
  - Smaller  $\Rightarrow$  Creates an external fragment
  - Larger  $\Rightarrow$  Have to move/relocate the program
- Allocate "holes" in memory according to

   Best- /Worst- / First- /Next-fit

# Swapping

- Suppose there is high demand for executable memory
- Equitable policy might be to <u>time-multiplex</u> processes into the memory (also space-mux)
- Means that process can have its address space unloaded when it still needs memory

– Usually only happens when it is blocked

• Have same problems as dynamic memory allocation

## Dynamic Address Relocation



•Program loaded at  $0x01000 \Rightarrow$  Relocation Register = 0x01000•Program loaded at  $0x04000 \Rightarrow$  Relocation Register = 0x04000

#### Runtime Bound Checking



# Strategies

- Fixed-Partition used only in batch systems
- Variable-Partition used everywhere (except in virtual memory)
- Swapping systems
  - Popularized in timesharing
  - Relies on dynamic address relocation
  - Now dated
- Virtual Memory
  - Paging -- mainstream in contemporary systems
  - Segmentation -- the future

## NT Memory-mapped Files

