Memory Management



Memory Manager

* Requirements
— Minimize primary memory access time
— Maximize primary memory size
— Primary memory must be cost-effective
* Today’s memory manager:
— Allocates primary memory to processes
— Maps process address space to primary memory

— Minimizes access time using cost-effective
memory configuration
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Managing the Hierarchy

Move across executable-secondary memory
boundary (or lower) requires I/O operation

Upward moves are copy operations
— Require allocation in upper memory

— Image exists in both memories
Updates are first applied to upper memory

Downward move 1s (usually) destructive

— Deallocate upper memory
— Updates image in secondary memory
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Fixed-Partition Memory
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Fixed-Partition Memory -- Best-Fit
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Fixed-Partition Memory -- Worst-Fit
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Fixed-Partition Memory -- First-Fit

Operating
System
P;
NCEIVIL V NO
Region 1 N,
Region 2 N,
Region 3 N;




Fixed-Partition Memory -- Next-Fit
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Cost of Moving Programs
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Cost of Moving Programs
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Dynamic Memory Allocation

e Common to use dynamically allocated
memory

* Process wants to change the size of its
address space
— Smaller [J Creates an external fragment

— Larger [1 Have to move/relocate the program

e Allocate “holes” in memory according to
— Best- /Worst- / First- /Next-fit



Swapping
Suppose there 1s high demand for

executable memory

Equitable policy might be to time-multiplex
processes into the memory (also space-mux)

Means that process can have its address
space unloaded when it still needs memory

— Usually only happens when 1t 1s blocked

Have same problems as dynamic memory
allocation



Dynamic Address Relocation
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Runtime Bound Checking
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Strategies

Fixed-Partition used only in batch systems

Variable-Partition used everywhere (except
in virtual memory)

Swapping systems

— Popularized mn timesharing

— Relies on dynamic address relocation

— Now dated

Virtual Memory

— Paging -- mainstream 1n contemporary systems
— Segmentation -- the future



NT Memory-mapped Files
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