Memory Management

Memory Manager

* Requirements
— Minimize primary memory access time
— Maximize primary memory size
— Primary memory must be cost-effective
* Today’s memory manager:
— Allocates primary memory to processes
— Maps process address space to primary memory

— Minimizes access time using cost-effective
memory configuration

Address Space vs Primary Memory

Pri M
Process Address Space rmary Memory

T

AAAAAAAAAAAAAAAAAAAA Mapped to ObJ ect
other than memory

Building the Address Space

II Source II ibrary II Other
code code objects
<y L e

Translation

*Compose elements

Building the Address Space

II ibrary II Other
code objects
<y L e

Translation :>
w

*Compose elements \

*Adjust addresses Process address space
*Translation time
*[oad time

Secondary
memory

Building the Address Space

II ibrary II Other
code objects
Secondary
@ gt Q memory

| Executable
Translation :> @ memory

*Compose elements L
*Adjust addresses
*Translation time Loader :> Process
: address
] oad time (pace
*Allocate executable

memory Space

Memory Hierarchies

CPU Registers
v t
Executable Cache Memory
Memory ! 5
Primary Memory
X v)
Rotating Magnetic Memory
Secondary v t
Memory Optical Memory
v t

Sequentially Accessed Memory

Memory Hierarchies

I CPU Registers
Executable Cache Memory
Memory g v A §
Primary Memory
x . f 3
Rotating Magnetic Memory

Memory Optical Memory

. f §

Sequentially Accessed Memory

’
Y
Secondary g v) §
¢

Managing the Hierarchy

Move across executable-secondary memory
boundary (or lower) requires I/O operation

Upward moves are copy operations
— Require allocation in upper memory

— Image exists in both memories
Updates are first applied to upper memory

Downward move 1s (usually) destructive

— Deallocate upper memory
— Updates image in secondary memory

Memory Allocation

Operating
Unused System

In Use

Process 3

Process 0

Process 2

Process 1

Fixed-Partition Memory

Operating
System
p; needs n, units

5 Region0 | N,

b Pi
Region 1 N,
Region 2 N,
Region 3 N;

Fixed-Partition Memory -- Best-Fit

Internal
Fragmentation

Operating
System
Region0 | N,
Region 1 N,
Pi N,
Region 3 N;

[.oader must
adjust every
address 1n the
absolute module
when placed in
memory

Fixed-Partition Memory -- Worst-Fit

Operating
System
P;
NCEIVIL V NO
Region 1 N,
Region 2 N,
Region 3 N;

Fixed-Partition Memory -- First-Fit

Operating
System
P;
NCEIVIL V NO
Region 1 N,
Region 2 N,
Region 3 N;

Fixed-Partition Memory -- Next-Fit

Operating
System
Region0 | N,
Pi N,
P.
IXT gluﬁ 14 N2
Region 3 N;

Variable Partition Memory

Operating
System

Variable Partition Memory

Operating
System

Operating
System

Process 0

Process 1

Process 2

Process 3

Process 4

*[Loader must
adjust every
address 1n every
absolute module
when placed in
memory

Variable Partition Memory

Operating Operating Operating
System System System

Process 0 Process 0

Process 1 Process 6

Process 2 Process 2

Process 3 Process 5

Process 4 Process 4

*External fragmentation

Variable Partition Memory

Operating
System

Operating
System

Process 0

Process 1

Process 2

Process 3

Process 4

Operating Operating
System System
Process 0 Process 0
Process 6 Process 6
Process 2 Process 2
Process 5 Process 5

Process 4
Process 4

Compaction moves program in memory

Cost of Moving Programs

load R1, 0x02010

N

3F013010

Program loaded at 0x01000

Cost of Moving Programs

load R1, 0x02010

3F013010 <E;j

Program loaded at 0x01000 3F016010

Program loaded at 0x04000

*Must run loader over program again!

Dynamic Memory Allocation

e Common to use dynamically allocated
memory

* Process wants to change the size of its
address space
— Smaller [J Creates an external fragment

— Larger [1 Have to move/relocate the program

e Allocate “holes” in memory according to
— Best- /Worst- / First- /Next-fit

Swapping
Suppose there 1s high demand for

executable memory

Equitable policy might be to time-multiplex
processes into the memory (also space-mux)

Means that process can have its address
space unloaded when it still needs memory

— Usually only happens when 1t 1s blocked

Have same problems as dynamic memory
allocation

Dynamic Address Relocation

CPU

Relative Address E
|

Relocation Register

h 4
load R1, 0x02010 MAR

N

3F012010

*Program loaded at 0x01000 LI Relocation Register = 0x01000
*Program loaded at 0x04000 LI Relocation Register = 0x04000

Runtime Bound Checking

CPU

Relative Address (:}
|

Relocation Register

Limit Register 4><Y<> @

h 4
v MAR

Strategies

Fixed-Partition used only in batch systems

Variable-Partition used everywhere (except
in virtual memory)

Swapping systems

— Popularized mn timesharing

— Relies on dynamic address relocation

— Now dated

Virtual Memory

— Paging -- mainstream 1n contemporary systems
— Segmentation -- the future

NT Memory-mapped Files

Secondary
memory

*Open the file Executable
*Create a section object memory
(that maps file)

Identify point in il
address space to place

the file

Ordinary file

