CSc1 3753: Systems

Gary Nutt
Department of Computer Science

University of Colorado



General Information

Focus 1s on operating systems

— Complies with ACM & IEEE courses

— Prerequisites: CSci1 2270 & ECEN 2220
Recitations will have new material in them
Do your work 1n the NT Lab -- ECCS 123
No late homework!

OK to discuss assignments, but:
— Must develop your own code

— Cannot look at other’s code

— Cannot use code 1n a book



General Information (cont)

* Course grade
— There will be about ~9 programming assignments
— (Assign #1 1s due September 1)
— Midterm (15%) -- Tentatively on October 20
— Final (25%) -- Dec 15@7:30 am

e Office hours: M & T, 3:30-5:00 -- ECOT 521

* Get all information from web page

http://www.cs.colorado.edu/~nutt/CS3753/base.html



Introduction



Why Study OS?

Understand model of operation

— Easier to see how to use the system
— Enables you to write efficient code

Learn to design an OS
Even so, OS 1s pure overhead of real work

Application programs have the real value to
person who buys the computer



System Software

* Independent of applications, but common to
all

« Examples
— C library functions
— A window system

— A database management system

— Resource management functions



Purpose of an OS
(What 1s Resource Management?)

* Process: An executing program

* Resource: Anything that 1s needed for a
process to run

— Memory
— Space on a disk
— The CPU

« “An OS creates resource abstractions’

* “An OS manages resource sharing”



Resource Abstraction

load (block, length, device);
seek (device, 236);
out (device, 9)



Resource Abstraction

load (block, length, device);
seek (device, 236);
out (device, 9)

write (char *block, int len, int device,
int track, int sector) {

load (block, length, device);
seek (device, 230);
out (device, 9);



Resource Abstraction

load (block, length, device);
seek (device, 236);
out (device, 9)

write (char *block, int len, int device,
int track, int sector) {

load (block, length, device);
seek (device, 230);
out (device, 9);

}

write (char *block, int len, int device, int addr);



Resource Abstraction

load (block, length, device);
seek (device, 236);
out (device, 9)

write (char *block, int len, int device,
int track, int sector) {

load (block, length, device);
seek (device, 230);
out (device, 9);

}

write (char *block, int len, int device, int addr);

fprintf (filelID, “%d”, datum);



Abstract Resources

User Interface

Abstract Resources (API)/

OS Resources (OS Interface)

Hardware Resources




Resource Sharing

Space- vs time-multiplexed sharing

To control sharing, must be able to isolate
resources

OS usually provides mechanism to 1solate,
then selectively allows sharing

— How to 1solate resources
— How to be sure that sharing 1s acceptable

Concurrency



Multiprogramming

Technique for sharing the CPU among
runnable processes

— Process may be blocked on 1/0

— Process may be blocked waiting for other
resource

While one process is blocked, another
should be able to run

Multiprogramming OS accomplishes CPU
sharing “automatically”

Reduced time to run all processes



How Multiprogramming Works

Process 1
Process 2 J
Process 3
Time-multiplexed CPU
Process 4

Space-multiplexed Memory



OS Strategies

Batch processing

Timesharing

Personal computer & workstations
Process control & real-time
Network

Distributed



Batch Processing

Uses multiprogramming

Job (file of OS commands) prepared offline
Batch of jobs given to OS at one time

OS processes jobs one-after-the-other

No human-computer interaction

OS optimizes resource utilization

Batch processing (as an option) still used
today



Timesharing

Uses multiprogramming

Support interactive computing model
(Illusion of multiple consoles)

Different scheduling & memory allocation
strategies than batch

Tends to propagate processes

Considerable attention to resource 1solation
(security & protection)

Tend to optimize response time



Personal Computers

CPU sharing among one person’s processes

Power of computing for personal tasks
— Graphics

— Multimedia

Trend toward very small OS

OS focus on resource abstraction

Rapidly evolved to “personal multitasking”
systems



Process Control & Real-Time

Computer 1s dedicated to a single purpose
Classic embedded system

Must respond to external stimuli in fixed

time

Continuous media popularizing real-time
techniques

An area of growing interest



Networks

 LAN (Local Area Network) evolution

* 3Mbps (1975) -> 10 Mbps (1980)->100
Mbps (1990)

* High speed communication means new way
to do computing
— Shared files

— Shared memory
—77?



Distributed OS

« Wave of the future

" Dissibued0s

Multiple Computers connected by a Network



Evolution of Modern OS

Protocols

Scheduling

Memory Mgmt
Protection
Scheduling

Devices

Modern OS



Examples of Modern OS

« UNIX variants -- have evolved since 1970

« Windows NT -- has evolved since 1989
(much more modern than UNIX)

* Research OS -- still evolving ...
* Book uses Linux as main example

e This course will use Windows NT as the
main example

— Lab exercises will use NT
— Supplementary materials will be made available



Microsoft Windows NT

« Heavily window-oriented

 Foundation behavior is windows-
independent

— We will focus on the foundation
— Use only the “MS-DOS prompt” -- cmd . exe

OS API

NT Executive NT User Interface

_ and Graphics




Windows NT (cont)
OS API has text orientation (like UNIX)

Object-oriented implementation

Heavy use of threads

Broad spectrum of synchronization tools
Modern I/O system



