
A Novel Approach to Netflow Monitoring in Data
Center Networks

Chaitanya Balantrapu, Anupama Potluri, Nirmoy Das
School of Computer and Information Sciences

University of Hyderabad, Hyderabad, India
Email: bnsk.uohyd@gmail.com, apcs@uohyd.ernet.in, nirmoy.aiemd@gmail.com

Abstract—Scalable netflow monitoring is one of the challenges
in data center networks which have thousands of Virtual Ma-
chines (VMs) running on hundreds of physical servers. The
typical architecture for netflow monitoring using a centralized
netflow collector is not scalable in data center networks. The
solution has been to use a cluster of netflow collectors and
include a load balancing element in the network. In this paper,
we propose a different architecture wherein the netflow clients
directly write to a scalable NoSQL database such as Cassandra.
We modified Open vSwitch (OVS) to directly write netflow
packets to Cassandra. We extendedntop-ng, a free open source
netflow collector software, to store netflow records in Cassandra
and compared its performance with that of OVS, a netflow client,
writing to Cassandra directly. We found that using Cassandra
from OVS leads to a significant performance improvement over
ntop-ng in terms of the average number of netflow packets written
per second. We modifiedntop-ng to store the netflow statistics to
Cassandra and compared the performance of Cassandra against
RRD, which is the default non-volatile storage inntop-ng. We
found that Cassandra is more scalable than RRD as the time to
store the records increases linearly with number of writes for
RRD whereas Cassandra has constant time in our experimental
setup.

I. I NTRODUCTION

Data center networks consist of thousands or tens of
thousands of Virtual Machines (VMs) running on hundreds
or thousands of physical servers. The VMs are connected
using software switches such as vSwitch of VMWare or
Open vSwitch. Network statistics collection and monitoring
are essential to management of networks. VMs may be started,
migrated to save energy by shutting down physical servers that
are lightly loaded or rogue VMs may be shutdown based on the
statistics collected. Data analytics software on top of Netflow
[4] records that alerts data center administrators of theseevents
is also of high importance today.

The typical architecture for netflow monitoring so far
has always been to use a centralized collector that collects
netflow records from all the netflow clients in various network
elements. Software switches such as Open vSwitch [9] are
also netflow clients. Typically, they are configured with theIP
address and port of the netflow collector. The netflow collector
software collects the records, may compute statistics fromthe
records and stores them in a non-volatile storage for further
use. When dealing with the thousands of netflow clients as
in the case of data center networks, the centralized collector
has to be highly scalable. This is difficult to achieve with a
single server. An obvious solution would be to have a cluster
of collectors with a load balancer to balance the traffic between

them. There are two issues with this solution. Firstly, it
replicates the solutions that have been already implemented in
scalable NoSQL databases such as Cassandra [3] etc. Secondly,
despite load balancing, the amount of information that needs
to be stored becomes unmanageable if historical information
needs to be maintained. Thus, there is a definite need to have
a highly scalable database. Storing the netflow records to a
scalable database can help overcome these limitations.

In this paper, we discuss our solution to the problem
of scalable netflow monitoring in data center networks. Our
contributions can be stated as follows:

1) We extended a well-known netflow collector,ntop-
ng [8], to store netflow records and/or statistics to
Cassandra, a NoSQL database. We experimented to
understand the performance of Cassandra as com-
pared to Round-Robin Database (RRD) withrrdtool
[10] which is the default storage inntop-ng.

2) We extended Open vSwitch to store netflow records
directly to Cassandra instead of sending them to
a netflow collector. We compared the performance
of ntop-ngand Open vSwitch for the same netflow
traffic to determine the speed up achieved.

The rest of this paper is organized as follows: we review a
couple of papers that deal with scalable network monitoringin
Section II. We present our architecture for netflow monitoring
and modifications tontop-ngand Open vSwitch in Section III.
We present our experimental setup and initial results in Section
IV. We conclude with Section V.

II. RELATED WORK

In [13], the authors propose a scalable netflow collection
for cloud data centers. The EMC2 architecture consists of two
threads in the collector – one for netflow and the second for
sflow records. The collector uses flat files to store the records
obtained. If the communicating VMs are all present within
the same data center,the netflow records will come from both
VMs for the same data. Hence, EMC2 does de-duplication to
eliminate such duplicate records before storing the data. EMC2
is a centralized netflow collector similar tontop-ngbut includes
de-duplication. However, its storage model of flat files is not
scalable as it is limited by the file system being used.

In [12], the authors propose scalable network traffic mea-
surement and analysis using Hadoop [1], an open-source
implementation of MapReduce [5] and the Hadoop distributed
file system (HDFS). Hadoop primarily supports text fields or

binary format data in a sequence file format. In [12], packet
trace files generated bylibpcap tools such astcpdumpare used
as input to Hadoop for offline processing. Since this format
is not compatible with the Hadoop format for binary data,
the authors build a Hadoop API to handle this data. While
text data has an end-of-the-record marker in a carriage return,
packet data has no such marker. Packet data is also not of
fixed length. Thus, differentiating packet records in Hadoop is
a challenge. The authors propose the use of the timestamp field
and the fact that consecutive packets do not differ too much
in their timestamp to distinguish between packets in a HDFS
block. They propose a heuristic algorithm using this property
which is used by themapjobs to parallelize the packet analysis
jobs.

III. SCALABLE NETFLOW MONITORING USING
CASSANDRA

EMC2 is a netflow collector that stores netflow records
in flat files instead of statistics in RRD as done byntop-ng.
In [12], standardlibpcap data stored in flat files on different
systems is read and converted to Hadoop-compatible format.
This is not netflow data but standard packet trace information.
In this paper, we propose the extension of netflow clients
to store netflow records directly to the scalable database,
Cassandra, using simple data models. This is different from
the earlier solutions in two respects: firstly, it is not the netflow
collector that stores data into flat files/databases but the netflow
client. Secondly, it is an online algorithm unlike in [12], where
they read the offline data from flat files and store this data in
Hadoop.

We look at scalability in netflow monitoring from two
perspectives – scalability in terms of storage time and the
handling of the amount of netflow traffic generated in data
center networks.

Fig. 1. Cassandra Data Model for Storing NetFlow Records

A. Scalability in Storage Time:

When we look at typical netflow collectors such as the
EMC2 [13] or ntop-ng which uses RRD or other netflow
collectors such asnfdump[7] etc., none of them have a scalable
storage capacity. While RRD is built specially for time series
data, it has limited storage space. If historical information
needs to be stored and data analytics software needs to use
this data to predict network performance of different tenants
of the data center, RRD cannot be the database of choice. We

propose instead the use of Cassandra and extendntop-ng to
achieve this.

ntop-ng computes statistics from the netflow records re-
ceived and stores these in RRD. We store the exact same
information in Cassandra and compare the performance of
these two databases. Since the rate of generation of netflow
records will be very high in a data center network, computing
statistics and then storing the information may lead to loss
of scalability. We propose storing raw netflow records into
Cassandra without any processing inntop-ng. The data model
we have used to store the raw netflow records in Cassandra is
given in Fig. 1.

Fig. 2. Architecture of OVS storing netflow records into Cassandra

B. Scalability in NetFlow Record Collection:

While netflow collectors that use a scalable database to
store information overcome the issue of scalability in storage,
they may still not be able to handle the rate of netflow traffic
destined to them. Centralized servers suffer from limitations of
the socket interface they are generally using to receive netflow
records. The solution then is to use netflow collector clusters
to achieve scalability. This leads to replication of inherent
scalability features of NoSQL databases in netflow collectors.

To overcome the above limitations, we propose that net-
flow clients store their netflow records directly in a scalable
database. These databases already consist of clusters and are
built to handle large amounts of data at high speeds and also
do not have a limitation of storage space. Another reason to
choose a scalable database is the fast retrieval of data needed
for a monitoring tool which uses data analytics software.
This is well supported by the NoSQL databases. We chose
Cassandra for our implementation since it has been proven to
be better thanRedisand Hbaseby a test done by DataStax
[2].

To determine the difference in performance between net-
flow clients writing raw netflow records directly to Cassandra
and a centralized netflow collector doing the same, we chose
one netflow client – Open vSwitch – and extended it to store
the netflow records to a Single Writer Single Reader (SWSR)
shared memory. A daemon (NfCassastorein Fig. 2) reads this
shared memory and stores them in the Cassandra database.
This prevents a tight coupling of a specific database with OVS
at the cost of a slight loss of performance. The architectureof
our proposed solution is shown in Fig. 2.NfCassastorewill not
become a bottleneck as it is limited to data coming only from
thevswitchof that physical machine. We can also increase the
size of the shared memory segment to be sufficient to handle
the rate of traffic of a singlevswitchand therefore this is not
a limitation of our architecture.

IV. EXPERIMENTAL SETUP AND DISCUSSION OFRESULTS

The experimental setup used is shown in Fig. 3. We
have one VM on a physical system communicating with its
corresponding VM in another physical system. The VMs are
connected via Open vSwitch to the physical Gigabit Ethernet
card on the physical system. The POSIX shared memory
segment used for the experimentation is 64KB in size which
is the same as the TCP socket buffer size used byntop-ng.
The components used and the details are given in Table I.
In each VM, we run 125netperf [6] clients. Eachnetperf
client generates TCP-CRR (Connection Request-Response)
transaction. This consists of 10 TCP packets – three each
for open and close connection and two for the data and its
ack. Each such transaction generates two netflow records.
Since Open vSwitch generates a netflow packet to the netflow
collector when 30 netflow records are collected, 15 TCP-
CRR transactions generate a netflow packet. In our experiment,
Open vSwitch generates 220-250 netflow packets/second, each
containing 30 netflow records.

Fig. 3. Testbed used for the experimentation

TABLE I. COMPONENTS OF OUR TESTBED

Component Name Details/Version
CPU Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz.
Operating System OpenSuse 12.2
Linux Kernel 3.4
KVM kvm-1.1.1-1.8.1
QEMU Emulator version 1.1.1
Open vSwitch openvswitch-1.9.0(LTS)
netperf netperf-2.6
ntop-ng ntop-ng 1.0.1
Cassandra Apache Cassandra-2.0.0
RRD RRD version 1.4.7
nprobe nprobe 6.14.130821svn3645

A. ntop-ngperformance comparison with RRD and Cassan-
dra:

Fig. 4 shows the time taken to store the computed statistics
in RRD and Cassandra. We compute the time by using the
system callgettimeofdaybefore and after the calls to RRD
and Cassandra write operations. We ran thenetperf clients
for 60 minutes. A thread runs every minute and stores the
computed statistics for that minute into the database. As the
number of records written to RRD increases, the time taken by
it to store similar amount of data, i.e., statistics/min increases.
As reported in [11], RRD opens, writes and closes the file each
time a write has to be done. Cassandra, on the other hand, is
usingmemtablesbefore commit and therefore is much faster.
We see that when Cassandra is on a remote system, the time
increases a little. Since our systems were isolated from the
rest of the LAN and there was no other traffic the difference
in time between Cassandra server on the same system asntop-
ng and on a remote system is not very high. This is the ideal
difference and represents the cost of the socket interface and
the limitation of the switch connecting the systems.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 10 20 30 40 50 60

tim
e

fo
r

st
or

in
g

a
st

at
 p

kt
 in

 c
as

 in
 u

se
cs

minutes

Storing into local cas
Storing into remote cas

Storing into rrd

Fig. 4. Comparison of time taken byntop-ngto store statistics in RRD and
Cassandra (local and remote locations)

B. ntop-ngversus Open vSwitch performance with Cassandra:

Fig. 6 shows the number of netflow records stored in
Cassandra fromntop-ngand Open vSwitch. The data model
used in Cassandra is that each second fromepoch timeis
the row key. Each netflow packet received by Cassandra
(that consists of 30 netflow records) is stored as a different
column. The netflow packets received every second need not

 100

 120

 140

 160

 180

 200

 220

 240

remotelocal

O
V

S
 P

kt
s/

S
ec

Cassandra Server Location

OVS PktsIntoSHM
OVS StoresIntoCassa

Fig. 5. Rate of Netflow Packets (1 Netflow Pkt = 30 Netflow Records)
Stored/Minute by OVS into Local and Remote Cassandra Servers

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 2 4 6 8 10 12

nu
m

be
r

of
 n

et
flo

w
 r

ec
or

ds
 s

to
re

d
in

to
 c

as
sa

/s
ec

minutes

From ovs to local cas
From ntopng to local cas
From ovs to remote cas

From ntopng to remote cas

Fig. 6. Comparison of average number of Netflow Records stored by ntop-ng
and OVS per minute in Cassandra

be constant. We average the packets received over a minute.
We ran the experiment for 15 minutes and show the average
number of netflow packets received every minute. The number
of netflow packets stored per minute when OVS stores directly
to Cassandra is significantly higher whether the Cassandra
server is co-located on the same physical system as OVS/ntop-
ng or is on a remote system.

When we tested OVS with a remote Cassandra server, we
found that the performance dropped by 25%. We measured
the average number of packets/second written to the shared
memory by OVS and the number of stores into Cassandra
server in that time. We ran the experiment three times for 12
minutes each and calculated the average across all the runs.We
find that 87% of the records in the shared memory are stored
in a local Cassandra server whereas with a remote Cassandra
server only 62% of the records are stored. This is shown in
Fig. 5. The rate at which the data is written to Cassandra is
limited by the socket interface limitations.

V. CONCLUSION AND FUTURE WORK

We have extendedntop-ng, a netflow collector and Open
vSwitch (OVS), a netflow client, to store data to Cassandra, a
scalable NoSQL database. We generated a high rate of netflow
traffic by using 125netperf clients per VM per physical
system. Eachnetperf client generates TCP-CRR transactions.
We have compared the time taken byntop-ngand OVS when
storing raw netflow data to Cassandra. We found that the
number of netflow packets stored per minute by OVS is
significantly higher thanntop-ng. We also found that the time
taken to store statistics into Cassandra is constant whereas
it increases linearly in RRD, which is the default database
in ntop-ng. We conclude that our approach of netflow clients
storing data directly to Cassandra is promising for high speed
traffic.

In future, we plan to use a cluster of Cassandra servers
and experiment with a much larger testbed with many VMs in
many physical systems and the OVS in each physical system
storing the netflow records in the Cassandra cluster. We also
plan to extend our work to store the netflow records in HDFS
and compare its performance with Cassandra.

ACKNOWLEDGMENT

The authors would like to thank Aravinda Potluri, Man-
aging Director, Oneconvergence Devices India for her initial
proposal of extendingntop to use Cassandra for netflow
monitoring in data center networks. We also acknowledge
A.Geetha Sowjanya for her help in the experimental setup.

REFERENCES

[1] “Apache hadoop and hbase,” http://www.slideshare.net/cloudera/sf-
nosql2011/58.

[2] “Cassandra performance review,” http://www.datastax.com/dev/blog/
2012-in-review-performance.

[3] “Cassandra, the ideal foundation for big data.” http://www.datastax.com/
what-we-offer/products-services/datastax-enterprise/apache-cassandra.

[4] “Cisco IOS NetFlow,” http://www.cisco.com/en/US/products/ps6601/
products ios protocol group home.html.

[5] “Mapreduce,” http://en.wikipedia.org/wiki/MapReduce.

[6] “Netperf homepage,” http://www.netperf.org/netperf/.

[7] “nfdump home page,” http://nfdump.sourceforge.net/.

[8] “ntop-ng: High-speed web-based traffic analysis and flowcollection.”
http://www.ntop.org/products/ntop/.

[9] “Open vswitch: A open virtual switch,” http://openvswitch.org/.

[10] “Rrdtool home page,” http://oss.oetiker.ch/rrdtool/.

[11] L. Deri, S. Mainardi, and F. Fusco, “tsdb: a compressed database for
time series,” inProceedings of the 4th international conference on
Traffic Monitoring and Analysis, ser. TMA’12. Springer-Verlag, 2012,
pp. 143–156.

[12] Y. Lee and Y. Lee, “Toward scalable internet traffic measurement
and analysis with hadoop,”SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 1, pp. 5–13, Jan. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2427036.2427038

[13] V. Mann, A. Vishnoi, and S. Bidkar, “Living on the edge: Monitoring
network flows at the edge in cloud data centers,” inFifth International
Conference on Communication Systems and Networks, COMSNETS
2013, 2013.

