
Heuristics for Consolidation of Ensembles of Virtual

Machines

Geetha Sowjanya Akula, Anupama Potluri

School of Computer and Information Sciences

University of Hyderabad, Hyderabad, India

Email: geethasowjanya.akula@gmail.com, apcs@uohyd.ernet.in

Abstract—Virtualization has lead to great energy efficiency in
data center networks through consolidation of computing and
other resources. Despite this, there is still room for innovation
when considering the off-peak hours and the consolidation
required to power down some of the physical machines. Migration
of Virtual Machines (VMs) without consideration of network
traffic patterns between these VM can lead to inefficiency. There
have been algorithms in literature that have considered traffic or
other resource consumption to migrate VMs singly or as an en-
semble. But, very few algorithms consider migration of ensembles
with consolidation based on the traffic pattern of the migrating
VMs. In this paper, we present two heuristics for migration with
consolidation of VMs based on their communication graph and
other resource requirements such as CPU, memory etc.. The
heuristics are based on Prim’s Maximum Spanning Tree and
a Modified Bread-First Search (MBFS) of the communication
graph of VMs identified for migration. The algorithms work
by identifying the connected components of the communication
graph and placing the VMs of a component in physical machines
that are in proximity to each other if it cannot be entirely
migrated to a single machine. The MBFS and modified Prim’s
algorithms are used to partition a component that does not fit
entirely into a single machine, such that the partitions can fit into
a single physical machine.

I. INTRODUCTION

Data centers consist of thousands or tens of thousands of
Virtual Machines (VMs) running on hundreds or thousands
of physical machines arranged in hundreds of racks. Energy
efficiency is a primary concern in data centers. During off-peak
hours, there may be many physical machines running much
below the average load. Consolidation of VMs into fewer racks
and machines will lead to savings in power consumption and
cooling costs. Communication between VMs also contributes
to energy costs of the data centers, in addition to latency and
inefficient utilization of bandwidth of the switches. When VMs
that communicate with each other are co-located in the same
physical machine, the data never reaches the physical network
card and is handled entirely through software switches such
as Open vSwitch (OVS) [1]. This can be utilized to conserve
energy by switching off unnecessary ports in the top-of-the-
rack (TOR) switches or core switches etc. during off-peak
hours.

Recently, algorithms have been proposed for VM place-
ment that are traffic-aware and energy-efficient [3], [8], [2].
There have been algorithms proposed for consolidation of VMs
through migration to reduce the number of physical machines
that are powered on [9], [11], [4], [5]. [10] proposes an algo-
rithm that is a traffic-aware migration algorithm but does not

perform consolidation. Live Migration of Ensembles (LIME)
[7] is a migration algorithm that takes into account the traffic
of a VM scheduled for migration and moves an ensemble of
communicating VMs and the network elements being used
by these VMs rather than the single VM alone. However,
there is no discussion on consolidation during migration of
the ensemble of VMs.

In this paper, we propose heuristics for migration and
consolidation of an ensemble of communicating VMs. Our
contribution may be stated as follows:

1) We propose a new heuristic for consolidating hetero-
geneous VMs taking into consideration their com-
munication graph. Most consolidation or migration
algorithms do not consider either heterogeneous VMs
or their traffic matrix or both.

2) We propose modifications to Breadth First Search
and Prim’s Maximum Spanning Tree algorithms to
partition a set of communicating VMs that do not fit
into a single machine such that the communication
between VMs hosted on different physical machines
is minimized.

The rest of this paper is organized as follows: we review
the traffic-aware VM placement and ensemble migration algo-
rithms in Section II. We present our algorithm for migration
of an ensemble with consolidation in Section III. We conclude
with Section IV.

II. RELATED WORK

LIME [7] is an ensemble migration technique. It performs
live joint migration of VMs and the network. Instead of
migrating an individual VM it migrates VMs, network and
management system because applications running on multiple
VMs of a single tenant are tightly coupled with the underlying
network state and have high communication with each other.

When frequently communicating VMs are placed on Phys-
ical Machines (PMs) that are far apart, it introduces a large
amount of network traffic. This results in network congestion
affecting the availability of the network for other applications
running in the data center. AAGA [3], TVMPP [8], K-
means cluster algorithm [12] are some of the solutions in the
literature that take this parameter into consideration during VM
placement. These algorithms can be extended through simple
modifications to handle consolidation. However, the TVMPP
algorithm is having a complexity of O(N4) for each recursive
call. AAGA uses the k-cut algorithm and proposes to use



the TVMPP algorithm in future. However, K-means algorithm
considers each VM separately and not as an ensemble.

Sercon [9] is a VM consolidation technique that tries to
minimize the number of migrations. The key idea is to migrate
VMs from a least loaded server onto a heavy loaded server
only if a node can be released entirely. However, it does
not consolidate taking the communication between VMs into
consideration.

III. HEURISTICS FOR MIGRATION WITH CONSOLIDATION

OF ENSEMBLES OF VMS

There have been many intelligent VM placement algo-
rithms to ensure that network resource consumption is taken
into account [8], [6] and recently for ensemble migration based
on communication pattern between the VMs [7]. However,
there has been very little work that considers network com-
munication during consolidation of VMs. Many papers also
do not consider the case of heterogeneous VMs – i.e., VMs
that have varying requirements of memory and CPU power
except in a few [9]. In this paper, we propose two heuristics
that consolidate heterogeneous VMs of lightly loaded servers
of multi-tenant data centers taking into consideration the traffic
pattern between them.

We make some assumptions in our problem definition.
These are the following:

1) VM placement is done such that the VMs of the
same tenant are co-located to the greatest extent
possible. This is reasonable for placement algorithms
that consider the traffic pattern between VMs.

2) During off-peak hours, a single tenant’s VMs may be
scattered across many lightly loaded PMs and can be
consolidated together.

3) Inter-tenant VM communication is likely to be non-
existent or small.

4) We do not consider traffic going out of the data center
to other popular resources such as the Google search
engine etc.

TABLE I. NOTATION USED IN THE ALGORITHMS

Symbol Description

P Set of PMs {P1, P2, · · · , Pm}

Pi ithPM

V MPi
Set of VMs on PM Pi

VMmig Set of VMs to be migrated

Msched Mapping of V Mmig to target PMs

T Traffic Matrix between VMmig

CG Communication graph of V Mmig

C Set of Connected Components of CG

Ci ith Connected Component

VCi
Vertices of Ci

ECi
Edges of Ci

PR Set of target PMs that can accommodate VMmig

PX Set of target PMs in whose proximity other PMs need to be found

EA Edges incident on a VM set A

loadu Resource usage of V Mu

loadA Resource usage of VM set A

rcPi
Idle resource of PMi

D Distance Matrix of set P

Our algorithm starts off by identifying the physical ma-
chines that are loaded beyond a given threshold and those with
load less than a second threshold. The first set of servers are
not candidates for VMs to migrate into whereas the second
set are candidates for shutdown. Next, we identify the set

Algorithm 1 VM Consolidation

Require: P, T,Algo
1: Msched ←− φ
2: VMmig ←− φ
3: P = sort(P )
4: {PR, t} = partition(P )
5: for i = t → |P | do
6: VMmig = VMmig ∪ VMPi

7: end for
8: CG = ConstructCommGraph(VMmig, T )
9: C = SortedConnectedComponents(CG)

10: for i = 1 to |C| do
11: if ¬FitComponent(Ci, PR) then
12: r = MaxRankNode(Ci)

13: lwt = min
|ECi

|

j=1
wj

14: C
′

= Partition(Ci, r, PR,Msched, Algo, lwt)
15: sort(PR)
16: C = C ∪C

′

17: sort(C)
18: end if
19: end for
20: return Msched

of target PMs that have sufficient residual capacity, PR, and
sort them from least loaded first to the most heavily loaded
last. We identify the set of VMs, VMmig, whose load can
be accommodated by these physical machines. We construct
the communication graph, CG = (VG, EG), of these VMs.
The edges of this graph are weighted based on the amount of
traffic between the VMs. If there is no communication between
a pair of VMs, there is no edge between them. It is likely that
this graph CG is a disconnected graph based on assumption
3. We determine the connected components of CG, C, and
sort them in decreasing order of their size. The consolidation
algorithm attempts to migrate the largest connected component
first. If we migrate the least connected components first, they
will fit into the physical machines identified and the probability
that a large connected component fits into a single server
is reduced. We also therefore identify the physical machine
with the least load as the target for migration. If a connected
component can fit into a single physical machine,i.e., function
FitComponent returns TRUE in Algorithm 1, the migration
schedule, Msched, is updated to include the mapping between
the VMs of this component and the PM, PMR1

to which they
are migrating. The residual capacity of the physical machine,
PMR1

, is decremented. If the residual capacity becomes zero,
it is removed from the list of target physical machines and the
algorithm proceeds to the next connected component.

If a connected component cannot be fit into a single
physical machine, the component is further partitioned into
smaller components. We perform this partition using one of
two methods – a modified BFS algorithm and a modified
maximum Prim’s algorithm – until the capacity of the target
physical machine, rcPR1

, is reached. We repeat the algorithm
until all connected components are migrated. The start or root
node for Prim’s and BFS algorithms r, is the node with the
largest communication in the selected component. If there is a
tie, we break the tie with the node that has the highest degree.
This entire procedure is given in Algorithm 1.



In the modified BFS algorithm, we perform the breadth-
first search except that the edges with the least weight of the
connected component are not walked. We stop the walk when
the capacity of the target physical machine is reached or no
more edges with a weight higher than the least weight are inci-
dent on the nodes walked. If there are no edges with sufficient
weight, it leads to a partition of the connected component. By
ignoring the least weight edges, we do not perform a strict
BFS. Instead, we proceed to the next level keeping all the
nodes that have high communication between them together
as long as they fit on a single physical machine. Only the
VMs which represent the nodes walked to are migrated to the
target physical machine, PR1

, the least loaded of the target PM
set, PR. If the entire component is not migrated to a PM, the
part that is migrated is removed from the original component,
Ci. A communication graph for the remaining component is

constructed, C
′

G, and the connected components of this graph,

C
′

, are determined. The algorithm attempts to find a PM that

can accommodate the largest component of C
′

G entirely such
that the new PM has the least distance to PMR1

. All these PMs
which hold partitions of the same component are added to the
set PX and the new PM found has to be close to at least one
of these PMs. By placing the partitions of a single component
close together, we reduce unnecessary traffic across multiple
switches and especially core switches that connect multiple
racks. Any of the partitions that cannot be fit into a single
PM are added to the original set of connected components so
that later in the iteration, the component is further partitioned.
This algorithm is shown in Algorithm 2. The only difference
between the MBFS algorithms and the modified maximum
Prim’s algorithm is that in Prim’s technique we construct the
maximum spanning tree until the capacity of the target physical
machine, rcPR1

is reached. Whenever there are edges with the
same weight to be walked, we resolve the tie by considering the
sum of weights of the edges from the nodes that are potential
candidates to nodes already in the tree. We choose the node
with the higher weight since this implies that this node has
higher communication with the nodes already present in the
spanning tree and is a better candidate to be co-located with
the other nodes.

VM2
VM3

VM4

VM1 VM5
VM1
VM7

VM8

VM6

RES
NO

CAP
RES
NO

CAP

VM11

VM12

VM13

VM14
VM15

VM16

VM9

VM10

PR t

Fig. 1. Set of Physical Machines, Virtual Machines and their current state
in our example along with the communication between VMs shown by the
arrows

We illustrate the above algorithm with two communication
graphs. For this illustration, we assume that all VMs have equal
load. We find that the Prim-Partition algorithm works better
than MBFS in one whereas in the other, MBFS works similar
to Prim-Partition. Our example has seven physical machines
(PMs) as shown in Fig. 1, each of which can accommodate
8 VMs at full capacity. The first two PMs in our example

Algorithm 2 Partition

Require: Ci, r, PR,Msched, Algo, lwt
1: A← φ
2: PX ← φ
3: if (Algo = MBFS) then
4: Use BFS to walk the component Ci until rcPR1

is not
exceeded while ignoring the edges with weight ≤ lwt and
collect them into set A

5: else
6: Use MaxPrim to construct the spanning tree A such

that rcPR1
is not exceeded

7: end if
8: Msched = Msched ∪ {PR1

, A}
9: rcPR1

= rcPR1
− loadA

10: if (rcPR1
= 0) then

11: PR = PR \ PR1

12: end if
13: if VCi

= φ then
14: return NULL
15: end if
16: PX = PX ∪ PR1

17: CG

′

= {VCi
\A,ECi

\ EA}
18: C

′

= ConnectedComponents(CG

′

)

19: C
′

= sort(C
′

)
20: for i = 1 to |C

′

| do

21: if Proximity(C
′

i, PR, PX , D) then

22: C
′

= C
′

\ C
′

i

23: end if
24: end for
25: return C

′

are fully loaded and cannot be used for migration. The PMs
in yellow are the target PMs, PR, and they have the residual
capacity to accommodate more VMs. The PMs in pale pink
can be powered down after migrating all of their VMs as the
residual capacity of the PMs in PR can accommodate all these
VMs. The index t indicates the most heavily loaded of the PMs
that are marked for shutdown.

VM10

VM9

VM11

VM12

VM13 VM14

VM15

VM16

5

3

4

5

4

3

4

4

3

3

Fig. 2. Example Communication Graph where Prim-Partition and Modified
BFS return similar results

In the example graph shown in Fig. 2, the larger connected
component consisting of VMs 11-16 is the first one considered
for migration since we sort the connected components based
on their cardinality. VM11 is selected as the root from which
the maximum spanning tree is constructed because it is the
node with the highest sum of weight of edges and also has
the highest degree. The spanning tree construction stops when
four VMs are traversed because the residual capacity of the



VM10

VM9

VM11

VM12

VM13 VM14

VM15

VM16

5

4

3

5

2

5

4

4

32

Fig. 3. Example Communication Graph where Prim-Partition works better
than Modified BFS

target server is reached. These are VM11, VM12, VM13 and
VM14. Here, though the maximum Prim’s algorithm can select
the subset {VM11, VM12, VM13, VM16}, our algorithm will
select VM14 instead of VM16 because VM13 and VM11 are
both in communication with VM12 and VM14. The sum of the
weights of the edges between these is higher than with VM16.
Thus, our modified Maximum Prim’s algorithm will ensure
that the highly communicating VMs are fit into a physical
machine wherever possible. These are migrated to the PM
which is least loaded. Since in our example, both target PMs
are equally loaded, the lower indexed PM is chosen. The
residual capacity of this PM is exhausted by this migration.
The remaining VMs of this component, V15, V16, can be
accommodated in the only other available PM in PR. In
the next iteration of the Algorithm VM Consolidation, the
component {VM9, VM10} will be migrated to the same PM.
When MBFS is run on this graph, it migrates VMs 11, 12,
13 and 16 to the first PM. The remaining VMs 14 and 15
and the next component comprising of VMs 9 and 10 are all
migrated to the only other PM. The inter-PM communication
cost, i.e., the sum of edges that cross the PMs, is 11 in the
case of Prim-Partition and 13 in the case of MBFS.

In the example graph shown in Fig. 3, for the Prim’s
algorithm the VMs 11, 12, 15 and 16 are migrated to the
first PM and the VMs 13 and 14 of this component and the
next component are migrated to the second PM. In MBFS,
the schedule is VMs 11, 12, 14 and 16 are migrated to
the first PM and 13, 15 of this component and the next
component are migrated to the second PM. The inter-PM cost
of communication in this example is 13 for Prim-Partition and
21 for MBFS.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an algorithm to consolidate
an ensemble of VMs identified for migration. We construct the
communication graph of the VMs that are to be migrated and
identify the connected components of this graph. We attempt
to migrate each component as a whole to a single physical
machine based on the load of the VMs of the component and
the residual capacity of the target physical machine. Where
this is not possible, we use either the modified breadth-first
search algorithm or a modified Prim’s maximum spanning
tree algorithm to partition the component. The partitions are
migrated to physical machines in proximity to each other based
on their distance matrix. Wherever the partition cannot be
entirely migrated, it is further partitioned.

In future, we plan to implement these algorithms and
compare them against the TVMPP and K-means consolidation
algorithms. We plan to integrate this into LIME architecture
to also migrate the related network components as needed.

REFERENCES

[1] “Open vswitch: A open virtual switch,” http://openvswitch.org/.

[2] M. Al Shayeji and M. Samrajesh, “An energy-aware virtual machine
migration algorithm,” in Advances in Computing and Communications

(ICACC), 2012 International Conference on, 2012, pp. 242–246.

[3] J. Chen, K. Chiew, D. Ye, L. Zhu, and W. Chen, “AAGA: Affinity-aware
grouping for allocation of virtual machines,” in Advanced Information

Networking and Applications (AINA), 2013 IEEE 27th International

Conference on, 2013, pp. 235–242.

[4] M. Chen, H. Zhang, Y.-Y. Su, X. Wang, G. Jiang, and K. Yoshihira,
“Effective VM sizing in virtualized data centers,” in Integrated Network

Management (IM), 2011 IFIP/IEEE International Symposium on, 2011,
pp. 594–601.

[5] E. Feller, C. Morin, and A. Esnault, “A case for fully decentralized
dynamic VM consolidation in clouds,” in Cloud Computing Technology

and Science (CloudCom), 2012 IEEE 4th International Conference on,
2012, pp. 26–33.

[6] D. Huang, D. Yang, H. Zhang, and L. Wu, “Energy-aware virtual ma-
chine placement in data centers,” in Global Communications Conference

(GLOBECOM), 2012 IEEE, 2012, pp. 3243–3249.

[7] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford, “Live migration of
an entire network (and its hosts),” in Proceedings of the 11th ACM

Workshop on Hot Topics in Networks, ser. HotNets-XI. New York,
NY, USA: ACM, 2012, pp. 109–114.

[8] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010 Proceedings IEEE, 2010, pp. 1–9.

[9] A. Murtazaev and S. Oh, “Sercon: Server consolidation algorithm using
live migration of virtual machines for green computing,” vol. 28, no. 3,
2011, pp. 212–231.

[10] J. Sonnek, J. Greensky, R. Reutiman, and A. Chandra, “Starling: Min-
imizing communication overhead in virtualized computing platforms
using decentralized affinity-aware migration,” in Parallel Processing

(ICPP), 2010 39th International Conference on, 2010, pp. 228–237.

[11] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines
with dynamic bandwidth demand in data centers,” in INFOCOM, 2011

Proceedings IEEE, 2011, pp. 71–75.

[12] B. Zhang, Z. Qian, W. Huang, X. Li, and S. Lu, “Minimizing com-
munication traffic in data centers with power-aware vm placement.” in
IMIS, I. You, L. Barolli, A. Gentile, H.-D. J. Jeong, M. R. Ogiela, and
F. Xhafa, Eds. IEEE, 2012, pp. 280–285.


