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Abstract—Networking devices in ISP networks and data cen-
ters have been deployed in an over-provisioning and redundant
manner to meet the worst case traffic loads and to quickly recover
from failures. These devices are idle or semi-idle most of the
time with full power consumption. Today, there is widespread
interest in techniques that help in reducing energy waste and
achieving high levels of energy-efficiency. Solutions proposed
in literature are either topology-oriented (ESTOP) or traffic-
oriented (ESTA). In this paper, we propose a Hybrid Heuristic
for Green Networking (HHGN) that exploits the parameters
considered in both ESTOP and ESTA to identify a subset
of network elements that can be switched off such that the
power saving is maximized under network connectivity and
edge bandwidth utilization constraints. We introduce two new
heuristics, w-BFLP (weighted Betweenness, Flow, Links, Power)
and w-BFP (weighted Betweenness, Flow, Power), that sort the
nodes and the edges respectively in increasing order of their
importance in the topology. Nodes and edges are then switched
off from the least important until the connectivity threshold
or maximum bandwidth utilization constraint on the edges as
specified by the user is reached. We compare our approach with
ESTOP and ESTA for edge optimization in terms of power gain,
mean utilization of edge bandwidth, percentage of sleeping edges,
fairness index, trade-off between power gain and edge utilization,
and increase in the length of re-computed paths for real ISP and
FatTree topologies using different power models. Experimental
results show that HHGN gives the best performance independent
of power models, traffic matrices and topologies tested.

I. INTRODUCTION

The rapid growth of cloud computing with data centers
and increase in Internet usage have led to a tremendous
increase in power consumption by networking infrastructure.
Traditionally, the development of networking systems has been
focused on performance improvements; but now, the energy
consumption of network elements has started to limit further
performance growth. In this context, the goal of networking
and communication systems’ design has shifted to energy-
efficiency. Green networking strategies are classified, at a high
level, as individual device level and network level solutions
[1]. At the network level, the traffic flow orders are regrouped
on a subset of network elements during off-peak hours while
maintainig a desired level of network connectivity or maximum
edge utilization. Network level solutions are divided into two
categories: Topology-oriented solutions [1]–[3] and Traffic-
oriented solutions [4]–[6].

The topology-oriented solutions depend on the topological

information available in the routing protocols such as network
connectivity and betweenness, which is the number of the all-
pairs shortest paths of the topology that cross the network
elements. They are usually applied under connectivity-related
constraints, such as network connectivity threshold, to ensure
some level of redundancy. In [1], a modification of OSPF
is proposed in which a set of routers, called exporters, send
their shortest path tree (SPT) to their neighbor routers called
importers. The importer routers modify their SPTs by using
the SPTs of associated exporters and then switch off the
other edges which are not included in the modified SPTs. In
[3], the authors propose an algorithm called Energy Saving
based on Algebraic CONnectivity (ESACON) which uses the
algebraic connectivity to decide which subset of edges should
be switched off. The set of edges that are switched off is called
the sleeping list. This solution is improved in [2] with an
algorithm called Energy Saving based on TOPology control
(ESTOP) which uses the edge betweenness and algebraic
connectivity to identify the sleeping list. The element will be
switched off only if the connectivity of the reduced network
is above a given threshold.

The traffic-oriented solutions require instantaneous mea-
surements of the network traffic loads as a main parameter of
switching off process. They are usually applied under a number
of traffic-related constraints, such as maximum edge utilization
threshold, to guarantee specific traffic requirements. In [6], the
authors propose a solution used in IP/MPLS networks in which
power off/on of an edge depends on the available capacity of
the edge after rerouting the LSPs. In [4], an algorithm called
Energy Saving Traffic Aware algorithm (ESTA) is proposed
which uses different heuristics to sort network nodes and edges
before switching them off. These heuristics are: least-flow
(LF), most-power (MP), least-link (LL) and random (R). The
element will be switched off only if resultant utilization of all
edges in the network is below a given threshold. In [5], an
algorithm to save energy in data centers called ElasticTree is
provided which depends only on port counters rather than a
complete traffic flow matrix. ESTA and ElasticTree provide an
ILP formulation of the power saving problem and show that
it can be used only for trivial cases and it is not an efficient
solution for large networks.

Topology-oriented solutions are traffic-blind and focus only
on the network connectivity. They do not provide any guaran-
tee for traffic-related and quality of service constraints. On
the other hand, traffic-oriented solutions consider only the
current traffic patterns. They do not consider the topology and978-1-4244-8953-4/11/$26.00 c© 2015 IEEE



the importance of specific nodes and edges in that topology
in terms of their participation in the shortest paths between
source-destination pairs. To our knowledge, no scheme has
been proposed to take advantage of both the topology and the
traffic information to make the decision for switching off a
subset of network elements. In this paper, we propose a hybrid
approach – Hybrid Heuristic for Green Networking (HHGN)
– which considers both factors to identify a maximum number
of nodes and edges that can be put to sleep. We try to ensure
that the power saving is maximized and edge utilization does
not exceed a given threshold while maintaining the network
connectivity above a predefined level. The contributions of this
paper may be stated as follows:

1) Proposed a hybrid energy-efficiency solution that
considers both topology and traffic parameters.

2) Extended the power model to include random and
uniform power models.

3) Extensive experimentation comparing ESTOP, ESTA-
LF, ESTA-MP and HHGN for edge optimization on
different topologies including FatTree, using multiple
power models.

The rest of the paper is organized as follows: Section
II provides a more detailed explanation of the hybrid ap-
proach. Section III describes experimental setup and evaluation
methodology. Experimental results and analysis are given in
Section IV. Finally, we conclude the paper in Secion V.

II. HYBRID HEURISTIC FOR GREEN NETWORKING

(HHGN)

As shown in Figure 1, the block diagram of the proposed
energy saving system consists of three main logical modules:
HHGN optimizer, routing and power control modules. The
power control module controls the power state of the net-
work elements depending on the inputs coming from HHGN
optimizer output. The routing module is to compute all-pairs
shortest paths of the topology.

HHGN considers both the topology and traffic parameters
to determine the importance of different nodes and edges in the
topology. These parameters are: the betweenness, total traffic
flowing through a node/edge, degree of nodes, and power
consumption. We assign weights to each of these parameters
and sort the nodes/edges according to increasing order of their
importance. For example, an edge with a high betweenness or
most traffic flow is not a good candidate for switching off. We
call such an edge as an important edge. We start switching
off nodes/edges from the least important element onwards
until the connectivity and bandwidth utilization constraints
are satisfied. By using weights for different parameters, a
network administrator can fine tune the network based on
the SLAs to be satisfied. HHGN can be run during off-peak
hours in ISP backbones or enterprise networks to reduce power
consumption during low load conditions. In addition, it can
be implemented to control power consumption in software-
defined data center (DC) networks as in B4, Google’s inter-
DC software-defined WAN [7] which reallocates flows to keep
bandwidth utilization high. We present the notations used in
our algorithm in the next section. Following that, we present
our algorithm, specifically, the edge optimization algorithm in
detail.

Fig. 1: HHGN Block-diagram

A. Notations

HHGN considers the network topology as an undirected
graph G(V,E), where V is the set of nodes in the network
and E is the set of edges. N = |V | and M = |E| represent
the number of nodes and the number of edges in the network
respectively. The traffic flow matrix, TFM(G), is an N × N
matrix that represents the traffic flow orders (TFODs) between
every pair of source and destination nodes belonging to the
network. Each TFOD in TFM(G) represents an aggregation of
all the traffic flows between the source and destination nodes.
Table I describes the notations and quantities that are used in
HHGN.

TABLE I: Notations used in HHGN

Noatation Description

P (G) power matrix of the network graph

NS , LS list of sleeping nodes and edges respectively

Ǵ reduced network graph after deleting NS and LS

AG, A
Ǵ

algebraic connectivity of the initial and reduced
network graphs respectively

C%
Ǵ

percentage connectivity of the reduced network
graph with respect to the initial network graph

Cth network connectivity threshold

SP (s, d) shortest path between nodes s and d

SPs set of SP (s, d)s for all (s, d) pairs

NB(v), LB(l) betweenness of the node v and edge l respectively

NF (v), LF (l)
total aggregated traffic flow that crosses the node
v and edge l respectively

NP (v), LP (l)
amount of power consumed by the node v and edge
l respectively

LC(l) given capacity of the edge l

NL(v) number of edges incident on node v

U%max maximum edge utilization threshold

α, β, γ
weights of LB(l), LF (l), LP (l) respectively
which are used in w-BFP

σ, η, ω and ζ
weights of NB(v), NF (v), NL(v) and
NP (v) respectively which are used in w-BFLP

NH(v), LH(l)
hybrid factors of node v and edge l respectively
which are used in w-BFLP and w-BFP

To measure the network connectivity, we use algebraic
connectivity (AG) which is defined as the second eigenvalue,
λ2, of laplacian matrix, L(G), of the network graph. It is a



lower bound on the node connectivity which is the minimum
number of nodes that can be removed from the graph before
it becomes disconnected. λ2 becomes zero when the graph
is disconnected [2], [8]. Cth represents a redundancy factor
to guarantee that connectivity is preserved above a given
threshold in the modified topology, i.e,

C%Ǵ =
AǴ

AG

≥ Cth (1)

U%max represents an overprovisioning factor to guarantee
that for each edge l with a given capacity LC(l), the total traffic
flows, LF (l), on that edge should not exceed a maximum
value, i.e,

LF (l) ≤ LC(l) × U%max ∀ l ∈ E (2)

B. HHGN Algorithm

HHGN optimizer consists of two main parts: node opti-
mization and edge optimization which are used to switch off
nodes and edges respectively. We can run node optimizer only,
edge optimizer only, or both at the same time. When a node is
selected to be turned off, all its incident edges will be turned
off. Therefore, when we run both optimizers, we start with the
node optimizer to achieve a higher power savings by switching
off a node and all its incident edges as done in [4]. Then, we
run the edge optimizer to switch off individual edges of other
nodes that could not be switched off. Switching off all edges
of a node implies that all line cards of a switch/router have
been powered off. However, in standard routers, there is also a
central processor that is not switched off. Secondly, if we can
switch off a node without affecting the bandwidth utilization
and connectivity constraints, then, many edges will be switched
off in one iteration leading to a better time complexity for
the algorithm. Therefore, first determining which nodes can
be powered off and then the edges leads to better power
efficiency as well as time complexity. Every time HHGN tries
to switch off a node or an edge, it checks two parameters:
C%Ǵ and LF (l) against Cth and U%max respectively. The
switching off process succeeds only if both Equations 1 and 2
are fulfilled. Otherwise, the element will still be active. Edge
and node optimizers use w-BFP (weighted Betweenness, Flows
and Power) and w-BFLP (weighted Betweenness, Flows, Links
and Power) to sort edges and nodes respectively according
to the following hybridization formulas, where α, β etc. are
weights assigned to the respective parameters:

LH(l) = α× LB(l) + β × LF (l) + γ ×
1

LP (l)
(3)

NH(v) = σ×NB(v)+η×NF (v)+ω×NL(v)+ ζ×
1

NP (v)
(4)

To achieve the hybridization, the values assigned to the
weights in these equations should range between 0 and 1 and
the sum of them must be 1. These weights can be considered
as control knobs to tune the importance of each of the

parameters to obtain the desired energy saving with a minimum
impact on the mean edge utilization and network connectivity.
This allows the administrator to determine whether the static
parameters such as betweenness and power are given more
weightage than the current traffic conditions or vice versa. It
also allows us to understand the importance of dynamic traffic
conditions in the saving of energy in networks. In the edge
optimization equation 3, if we set α to 1 and β and γ to
zero, it reduces to ESTOP heuristic [2]. If we set β (γ) to 1
and the others to zero, it reduces to ESTA-LF (ESTA-MP) [4]
respectively. Similarly, for node optimization equation 4, if we
set one of the weights σ, η, ω and ζ to 1 and the others to zero,
it reduces to ESTOP, ESTA-LF, ESTA-LL [4] and ESTA-MP
respectively.

Algorithm 1 Edge Optimization

Input: G(V,E), TFM(G), P(G), W(G), Cth, U%max.

1: L ←− w-BFP(G, TFM(G), P(G), W(G)
2: LS ←− φ
3: for i = 1 → M do
4: É = E − LS − L[i]
5: Ǵ = G(V, É)

6: C%Ǵ = A(Ǵ)
A(G)

× 100

7: if (C%Ǵ < Cth) then Continue
8: SPs = φ
9: for each (s,d) pair ∈ V where TFM[s][d] 6= 0 do

10: SP (s, d) = Shortest path(Ǵ, s, d)
11: SPs = SPs ∪ SP (s, d)
12: end for
13: stop = FALSE
14: for each edge l ∈ SPs do
15: LF (l) = Edge util(l, SPs, TFM(G) )
16: if ( LF (l) > LC(l) × U%max ) then
17: stop = TRUE
18: break
19: end if
20: end for
21: if ( stop 6= TRUE ) then
22: LS = LS ∪ L[i]
23: end if
24: end for
25: Ǵ = G(V, E − LS)

Output: Ǵ, LS .

The edge optimization phase is described in Algorithm 1. It
starts by calling w-BFP heuristic to sort network edges before
switching off process (line 1). The algorithm that switches off
edges (lines 3-24) iteratively tries to turn off a new edge from
the set of the sorted edges L and put it into the sleeping list
LS . At each iteration, it removes the current edge L[i] from
the graph (line 4). It then computes AǴ of the reduced graph

Ǵ = G(V, E − LS − L[i]). If connectivity threshold is not
satisfied, the edge remains active and the algorithm skips to
the next iteration (lines 6-7). If connectivity threshold is fine,
the algorithm checks that the maximum utilization threshold
is satisfied once this edge is removed (lines 8-20). It does this
by computing all SPs of the reduced graph Ǵ (lines 8-12)
and the new utilization for each edge in the shortest paths
and checks it against U%max (lines 13-20). If this is fine for
all edges in SPs, the edge is definitely powered off (lines
21-23). Otherwise, it is still active and the algorithm skips to
the next iteration. The node optimization phase is similar to



the edge optimization, except that it switches off the nodes
and their incident edges. To compute edge/node betweenness,
LB(l) and NB(v), HHGN uses Dijkstra to find the shortest
path between every node pair in the network (s, d) ∈ V where
s 6= d. The betweenness of every edge or node included in
that path is incremented. It adds the TFOD between the pair
of nodes of that path to NF (v) and LF (l), the total node and
edge flow respectively. To compute network connectivity, we
use the algebraic connectivity, AǴ, of the network graph as
described in Section II-A. Total flow of edges is recomputed
every time an element is switched off by using Dijkstra and
re-calculating the paths for the flows. Algebraic connectivity
is also computed each time. These are done to ensure that the
edge utilization/network connectivity satisfy the thresholds set
for these parameters. In the worst case, this is done N times for
node optimization and M times for edge optimization. Since
Dijkstra takes O(N2logN) and algebraic connectivity takes
O(N2), in node optimization the complexity is O(N3logN)
while the edge optimization complexity is O(MN2logN).

III. EXPERIMENTAL SETUP AND EVALUATION

METHODOLOGY

To evaluate HHGN, we wrote a custom C program in
Linux. We run the experiments on a platform running Ubuntu
13.04 (Kernel ver. Linux 3.8.0-19), and equipped with Intel
Core2 Duo 3.00 GHz CPU and 4 GB of RAM. The input to
the program is in the form of a text file including information
of nodes and edges of the topology, their power consumption,
and the capacity of the edges. The output file provides the
evaluation parameters described in Section III-E. We evaluated
HHGN for edge optimization only. We experimented with 10
different sets of weight values given to betweenness (α), total
flow (β), and power (γ). The aim is to identify a set of α, β and
γ, which enable us to achieve a high level of power gain, PG%,
with a minimum increase in edge mean utilization, U%. We
compare HHGN performance with that of ESTOP, ESTA-LF
and ESTA-MP. In all cases we set maximum edge utilization
threshold, U%max, to 80% and connectivity threshold, Cth, is
in the range 10% to 90%. The following subsections describe
more about evaluation setup.

A. Network Topology Description

To thoroughly assess HHGN performance, we consider
different sets of network topologies: sparsely connected topolo-
gies, medium degree topologies and data center topologies. We
mainly use real ISP topologies provided by SND-lib [9] and
other topologies such as typical topologies used in data center
networks [10].

• The sparse set is composed of three real ISP topologies
[9]: Abilene: with 12 nodes and 15 edges, France: with
25 nodes and 45 edges and Germany50: with 50 nodes
and 88 edges.

• The medium set is composed of two real ISP topolo-
gies [9]: Dfn-Gwin: with 11 nodes and 47 edges and
Di-Yuan: with 11 nodes and 42 edges.

• The data center topology is a FatTree with 45 nodes
and 108 edges [10].

Due to lack of space, we present results of only Ger-
many50, Dfn-Gwin and FatTree. The results for Abilene and
France are similar to Germany50 and Di-Yuan has similar
results to Dfn-Gwin.

B. Traffic Flow Model

We use real-life traffic matrices provided by SND-lib as
well as synthetic traffic matrices that we have generated as per
the models proposed in [2], [4]. We generate 40 synthetic traf-
fic matrices and average results over these 41 traffic matrices.
For synthetic traffic matrices, we generate two flows for every
pair of routers: one flow has a high rate of traffic randomly
selected from [20, 100] Mbps and the other flow has a low
rate of traffic randomly selected from [1, 20] Mbps. A TFOD
is given as: TFOD = 0.5×R[1, 20] + 0.5×R[20, 100]Mbps

These TFODs constitute the traffic flow matrix.

C. Edge Capacity Model

For edge capacity assignment, we first define a traffic
matrix as explained in Section III-B and then assign edge
capacities to match the traffic demands as specified in [2].
This guarantees that the capacity constraints are met in the
initial state. The procedure is as follows: first, we route all
TFODs according to shortest path routing. Second, the total
traffic flow of edges is computed. Finally, modules of capacity
2.5Gbps (Cm) are assigned to each edge such that the edge
utilization is less than or equal to the overprovisioning factor
of 25% (Cov) as in [2]. The capacity LC(l) of an edge l that
has a total traffic flow LF (l) is given as follows:

LC(l) = max
(⌈

LF (l)
Cm×Cov

⌉

, 1
)

× Cm Gbps

D. Edge Power Model

To define the power consumption of edges for the topolo-
gies, we used three different power models: power model used
in ESTOP [2], random power model that assumes different
linecards in each of the routers and a uniform power model
that assumes same linecards in all routers. In [11], the authors
define a generalized power model for routers which takes into
consideration the power consumption of the chassis, the num-
ber of line cards that are active, a scaling factor corresponding
to traffic utilization and the line card in a base configuration.
Since we are not dealing with node optimization here but only
edge optimization, we used the power consumption values for
different NICs of Cisco and Juniper routers [12], [13].

1) ESTOP Power Model: This model is used in [2]. The
power consumption of an edge depends on the number of
capacity modules assigned to the edge, which in turn, depends
on the amount of total traffic flow. The power LP (l) of an
edge l that has a total capacity LC(l) is given as follows:

LP (l) =
LC(l)
Cm

× 140 watts

2) Random Power Model: To adopt more practical sce-
narios, we assume heterogeneous systems in which different
network interface cards (NICs) are used. We consider different
types of NICs given in [12], [13] and we randomly select one
of these values, RPNIC , and assign it to both ends of the edge.
The power LP (l) of an edge l is given as follows:

LP (l) = 2× RPNIC watts



3) Uniform Power Model: In this model, we use uniform
power assignments. The scenario assumes homogeneous sys-
tems in which all NICs of the topology are of the same type
and hence consume the same amount of power, UPNIC . The
power LP (l) of an edge l is given as follows:

LP (l) = 2× UPNIC watts

E. Evaluation Parameters

In this work, we used the following parameters defined in
[2] to evaluate HHGN:

• edge power gain(PG%): the percentage of power that
can be saved.

• mean utilization(U%): the mean edge utilization of the
reduced network.

• sleeping edges(LS%): the percentage of edges that can
be switched off.

• fairness index(J ): the traffic distribution fairness on
all edges of the reduced network.

• increase in the length of paths(δ): measures the length
of paths (number of hops) after running the heuristic.

We also propose a new parameter, fitness function Fpu, to
measure the trade-off between maximizing power gain, PG%,
and minimizing the increase in edge mean utilization, U%.
Fpu is defined as follows:

Fpu = PG%
U% × 100

The higher Fpu value implies a better tradeoff between
PG% and U%.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the evaluation results and
analysis of the proposed scheme. We present tradeoff function,
Fpu, of HHGN when the weights given to betweenness (α),
total flow on the edges (β) and the power of the edges (γ) equal
to (0.1, 0.1, 0.8), (0.1, 0.2, 0.7) and (0.2, 0.1, 0.7) which give
a better tradeoff than the other combinations which we tried.
For the other evaluation parameters: power gain (PG%), mean
utilization (U%), sleeping edges (LS%), fairness index (J ),
and increase in the length of paths (δ), we present the results
when α, β and γ equal to (0.1, 0.1, 0.8) for sparse and medium
degree topologies and (0.1, 0.2, 0.7) for FatTree topology.

A. Sparsely Connected Topologies

Table II reports Fpu of different heuristics using the
random power model for Germany50. Figures 2 and 3 show
PG%, U%, LS%, and J of the four heuristics with all the
power models.

In the random and ESTOP power models, we observe
that ESTA-MP, on occasion, does not give a high power
gain even though it switches off most power-consuming edges
first. This is due to the fact that these edges are also those
with a maximum amount of traffic flow, especially in ESTOP
power model. Switching off such edges increases maximum
utilization of the other edges beyond the configured threshold
and so it is unable to switch off many edges. HHGN, on the

TABLE II: Fpu of ESTOP, ESTA-LF, ESTA-MP and HHGN
with the three best combinations of weights and different

values of Cth for Germany50 with the random power model.

❳
❳

❳
❳

❳
❳

❳
❳

Heuristic
Cth 10% 20% 30% 40% 50% 60% 70% 80% 90%

Average
Fpu

ESTOP 115 115 115 118 115 113 107 95 88 109
ESTA-LF 117 117 116 115 116 113 112 93 80 109
ESTA-MP 112 112 112 113 116 106 85 67 86 101

H
H

G
N (0.1, 0.1, 0.8) 123 124 125 125 126 127 119 125 104 122

(0.1, 0.2, 0.7) 122 123 123 127 129 127 122 126 109 123
(0.2, 0.1, 0.7) 121 121 122 122 122 126 119 125 108 121

other hand, does better than ESTA-MP despite the fact that
we are giving a weight of 0.8 for the power of edges. This
shows that hybridization does help in improving tradeoff and
also allow more edges to be switched off by their reordering
due to betweenness and least flow. We observe that HHGN
performs better with the random power model. This is because
the edge power consumption does not depend on the edge flow
unlike in ESTOP power model in which the edge with the most
power also has the highest amount of traffic.

ESTOP and ESTA-LF have a higher LS% and less U%
than ESTA-MP and HHGN with the random and ESTOP
power models. They have a worse performance in terms of
PG% because they do not consider edge power in the sorting
heuristic. Hence, they have less Fpu than HHGN. From the
experiments, we found that the least betweenness edges also
have the least amount of traffic flows and least effects on
network connectivity, while the highest betweenness edges
have more traffic flows and the highest effects on connectivity.
Therefore, ESTOP and ESTA-LF perform similarly with all
three power models.

In the uniform power model, all the edges have the same
power consumption. Therefore γ does not have any effect.
However, PG% depends on the number of sleeping edges
while U% depends on the flow of these edges. Therefore, the
performance of ESTA-MP is the worst, whereas the perfor-
mance of HHGN in this power model is comparable to that
of ESTOP and ESTA-LF. This is because it depends on the
edge betweenness and the edge flow with the same value of α
and β. LS% of HHGN is comparable to that of ESTOP and
ESTA-LF and higher than that of ESTA-MP.

We also observe that J of HHGN is almost similar to
that of ESTOP and ESTA-LF with the random and uniform
power models. This is because the redirected flows are fewer
as implied from the less U% resulting from these two power
models. While with ESTOP power model, it is almost as worse
as that of ESTA-MP. This is because the redirected flows,
which are high, are unfairly redistributed to the active edges.

Figure 4 shows the maximum increase in the length of re-
computed paths (δ) of the different heuristics with the random
power model for Germany50. It can be seen that HHGN, on
the average, has a comparable δ to the other heuristics. In
ESTOP power model, it has less δ than the other heuristics;
while in the uniform power model, it is comparable to ESTOP
and ESTA-LF, which are better than ESTA-MP.

B. Medium Degree Topologies

In these topologies, the number of edges that can be
switched off is higher for the same given connectivity thresh-
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(a) ESTOP power model

 0

 10

 20

 30

 40

 50

 60

 10  20  30  40  50  60  70  80  90  100

M
ea

n 
U

til
iz

at
io

n 
%

Connectivity Threshold %

ESTOP
ESTA-LF

 ESTA-MP
HHGN

 0

 10

 20

 30

 40

 50

 60

 10  20  30  40  50  60  70  80  90  100

Po
w

er
 G

ai
n 

%

Connectivity Threshold %

ESTOP
ESTA-LF

 ESTA-MP
HHGN

(b) Random power model

 0

 10

 20

 30

 40

 50

 10  20  30  40  50  60  70  80  90  100

M
ea

n 
U

til
iz

at
io

n 
%

Connectivity Threshold %

ESTOP
ESTA-LF

 ESTA-MP
HHGN

 0

 10

 20

 30

 40

 50

 10  20  30  40  50  60  70  80  90  100

Po
w

er
 G

ai
n 

%

Connectivity Threshold %

ESTOP
ESTA-LF

 ESTA-MP
HHGN

(c) Uniform power model

Fig. 2: Power gain, PG%, and mean utilization, U%, of
ESTOP, ESTA-LF, ESTA-MP and HHGN when α, β and γ

= (0.1, 0.1, 0.8) for Germany50.

old. Table III shows Fpu of the different heuristics with the
random power model for Dfn-gwin. From the experimental
results, we find that all the heuristics have similar performance
for ESTOP and uniform power models. This is due to the fact
that most of the edges have similar amounts of traffic flowing
through them. In ESTOP power model, this implies that they
are assigned the same capacity. This results in a uniform
edge power when using ESTOP power model. Moreover, we
observed that most of edges have the same betweenness.
Thus, all factors being the same, all heuristics have similar
performance for these topologies for all evaluation parameters
considered for these power models. For the random power
model, the power gain of ESTA-MP and HHGN is better than
ESTA-LF and ESTOP (Fig. 5) as the number of edges switched
off is same in all the heuristics but, HHGN and ESTA-MP
switch off those edges that consume more power leading to
a higher power gain. We also observe that the sleeping edges
and fairness index of HHGN and ESTA-MP are similar to
ESTA-LF and ESTOP (Fig. 5). The increase in average length
of paths (Fig. 6) is higher for HHGN and ESTA-MP only for
10% connectivity threshold whereas they are mostly similar in
other cases. Thus, we can conclude that HHGN and ESTA-MP
are better for medium degree topologies for the random power
model.
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(a) ESTOP power model
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(b) Random power model
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(c) Uniform power model

Fig. 3: Sleeping edges, LS%, and fairness index, J , of
ESTOP, ESTA-LF, ESTA-MP and HHGN when α, β and γ

= (0.1, 0.1, 0.8) for Germany50.
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Fig. 4: Maximum increase in the length of paths, δ, of
ESTOP, ESTA-LF, ESTA-MP and HHGN when α, β and γ =
(0.1, 0.1, 0.8) for Germany50 with the random power model.

TABLE III: Fpu of ESTOP, ESTA-LF, ESTA-MP and HHGN
with the three best combinations of weights and different

values of Cth for Dfn-Gwin with the random power model.

❳
❳

❳
❳

❳
❳

❳
❳

Heuristic
Cth 10% 20% 30% 40% 50% 60% 70% 80% 90%

Average
Fpu

ESTOP 230 250 289 357 385 397 396 434 449 354
ESTA-LF 231 264 304 347 403 417 443 463 473 372
ESTA-MP 239 306 366 467 459 453 573 595 638 455

H
H

G
N (0.1, 0.1, 0.8) 232 308 357 390 455 481 557 574 622 442

(0.1, 0.2, 0.7) 233 298 359 393 450 483 518 564 594 432
(0.2, 0.1, 0.7) 231 288 362 390 453 495 505 558 596 431

C. FatTree Topology

In FatTree topology, the communications are either be-
tween servers within the data center or between the servers
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Fig. 5: Power gain, PG%, mean utilization, U%, sleeping
edges, LS%, and fairness index, J ,of ESTOP, ESTA-LF,

ESTA-MP and HHGN when α, β and γ = (0.1, 0.1, 0.8) for
Dfn-Gwin with the random power model.
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Fig. 6: Maximum increase in the length of path, δ, of
ESTOP, ESTA-LF, ESTA-MP and HHGN when α, β and γ =
(0.1, 0.1, 0.8) for Dfn-Gwin with the random power model.

and outside users. Therefore, TFODs generated as specified in
Section III-B, are only from edge switches to edge switches
and from edge switches to core switches and vice versa. Table
IV shows Fpu of different heuristics using the random power
model. Figures 7 and 8 show PG%, U%, LS%, and J with
all the power models.

TABLE IV: Fpu of ESTOP, ESTA-LF, ESTA-MP and
HHGN with the three best combinations of weights and

different values of Cth for FatTree topology with the random
power model.

❳
❳

❳
❳

❳
❳

❳
❳

Heuristic
Cth 10% 20% 30% 40% 50% 60% 70% 80% 90%

Average
Fpu

ESTOP 84 84 86 74 69 63 82 51 10 67
ESTA-LF 99 100 99 93 85 71 53 36 19 73
ESTA-MP 127 127 128 131 124 119 111 79 25 108

H
H

G
N (0.1, 0.1, 0.8) 125 126 131 133 119 108 96 69 31 104

((0.1, 0.2, 0.7) 126 127 133 133 121 107 91 64 28 103
(0.2, 0.1, 0.7) 118 118 122 123 107 92 89 69 31 97

From the results, we can see that HHGN has better per-
formance than the other heuristics with ESTOP and uniform
power models. In fact, with the uniform power model, it has the
highest power gain, most number of sleeping edges and highest
fairness index whereas ESTA-MP has the worst performance
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(a) ESTOP power model
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(b) Random power model
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(c) Uniform power model

Fig. 7: Power gain, PG%, and mean utilization, U%, of
ESTOP, ESTA-LF, ESTA-MP and HHGN when α, β and γ

= (0.1, 0.2, 0.7) for FatTree topology.

on all parameters. This shows that in data centers using FatTree
topologies and uniform interconnection between switches (i.e.,
uniform NICs), ESTA-MP must not be used and HHGN is
the best heuristic. With the random power model, HHGN
performance is better than that of ESTOP and ESTA-LF and
less than that of ESTA-MP. The better performance of ESTA-
MP in the random power model, in which the power edge does
not depend on the traffic flow, is due to its ability to switch off
a number of edges comparable to that of the other heuristics
as we can see in Fig 8. Since these edges are the ones with
more power, its power gain is highest.

Figure 9 shows the maximum increase in the length of
paths (δ) in terms of number of hops with the random power
model. It can be seen that HHGN in most of the cases is
comparable to other heuristics. ESTOP has a higher increase
when Cth ranges between 10% and 30%. The same is true
for the ESTOP power model, whereas in the uniform power
model, ESTA-MP has less δ than other heuristics. This can be
explained by the fact that it switches off the least number of
edges. All the other heuristics have similar increase in length
of paths for the uniform power model.

V. CONCLUSION

In this paper, we proposed a hybrid solution, HHGN, to
exploit both topology and traffic parameters to identify a subset
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(a) ESTOP power model
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(b) Random power model
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(c) Uniform power model

Fig. 8: Sleeping edges, LS%, and fairness index, J , of
ESTOP, ESTA-LF, ESTA-MP and HHGN when α, β and γ

= (0.1, 0.2, 0.7) for FatTree topology.
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Fig. 9: Maximum increase in the length of path, δ, of ESTOP,
ESTA-LF, ESTA-MP and HHGN when α, β and γ = (0.1,

0.2, 0.7) for FatTree topology with the random power model.

of nodes and edges that can be switched off under connectivity
and maximum edge utilization constraints. In general, we find
that ESTA-MP has a better performance than ESTA-LF and
ESTOP for random and ESTOP power models. It has the worst
performance for uniform power model whereas ESTA-LF and
ESTOP are good with this model. For sparse topologies, we
find that HHGN gives the best tradeoff between power gain
and mean utilization compared to all other heuristics for all
power models considered. HHGN switches off more edges
than ESTA-MP which has equivalent power gain for these
topologies while mean utlization is smaller than for ESTA-
MP. This shows that it is far better than ESTA-MP for such

topologies. For FatTree topologies, commonly seen in data
center networks, HHGN has the highest power gain, more
number of sleeping edges and high fairness index and similar
mean utilization as ESTOP and ESTA-LF for uniform power
model making it the heuristic of choice for such networks
using similar interconnection NICs. HHGN and ESTA-MP are
both suitable for FatTree topologies with random power model,
i.e., data center networks which use heterogeneous NICs. We
find that the results are similar when we consider only the
single real life traffic matrix available for these topologies.
HHGN has as good a performance as ESTA-MP with random
and ESTOP power models and as good as ESTOP and ESTA-
LF for uniform power model. This proves that hybridization
leads to an overall improved performance for different types
of topologies with different power models.

In our future work, we intend to evaluate for node optimiza-
tion only and using both node and edge optimization. We plan
to evaluate the schemes using higher degree ISP topologies
and other data center topologies such as VL2, B-Cube, and
large FatTree topologies. We also plan to modify HHGN to
switch on nodes and edges based on traffic load conditions
and fault tolerance requirements.
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