
INTEGRATED M.Tech. Operating Systems

Course Syllabus

February 2015

Credits: 3-0-1

Prerequisites: C programming, Data and File Structures.

Course Objectives:

In this course, a detailed view of the kernel is given. This includes a detailed
description of the way system calls work, the extended process state diagram in
process management, detailed file system management description including the
data structures such as inodes used to maintain metadata and introduction to device
drivers as part of the I/O subsystem.

This course excludes user space application development program-

ming such as using IPC or thread-based programming. This is included

in the Network Programming course.

UNIT - I: Introduction and Operating System Structures

Operating Systems Functionality, Computer Organization and Architecture, OS Op-
erations, Kernel Data Structures, OS Services, User interfaces to OS, Programmer
interfaces to OS, OS Structure, System Boot.

UNIT - II: Process and Thread Management

Process Concept, Process operations, Process Scheduling, Extended Process State
Diagram (To be done from Stallings, Operating Systems: Internals and

Design Principles), Process Context Switch in detail including System Call inter-
face and implementation (To be done from Crowley: Operating Systems: A

design-oriented approach), Interprocess Communication: Pipes, Named Pipes,
Shared Memory, Process Synchronization: Signals, Mutexes, Semaphores, Monitors
(To be done from Silberschatz et al. and Stevens), Thread Management:
thread creation, thread scheduling, thread synchronization, Deadlocks: Resource
Allocation Graphs, deadlock detection, prevention and avoidance, recovery from
deadlock.

UNIT - III: Memory Management

Memory allocation techniques: paging and segmentation, Swapping, structure of
the page table, Virtual memory: demand paging, copy-on-write, Page replacement,

1



allocation of frames, kernel memory allocation, thrashing, memory-mapped files,
Translation-Lookaside Buffer (TLB), multiprocessor concerns.

UNIT - IV: File System Management

Disk management: formatting, boot block, swap-space management, RAID struc-
ture, Disk scheduling algorithms: elevator, C-SCAN, File concept, Access methods,
Directory structure, File system mount and unmount operations, file sharing, pro-
tection, file system structure, file system implementation: file system metadata
storage structures such as inode (To be done from Bach: The Design of the

Unix OS), allocation methods, free space management, efficiency and performance
including disk cache and recovery from failures.

UNIT - V: I/O Management

I/O devices: polling, interrupt-driven, DMA, Application I/O interface: charac-
ter and block devices, network devices, clocks and timers, nonblocking and asyn-
chronous I/O, vectored I/O, Kernel I/O interface: I/O scheduling, Buffering, Caching,
Spooling and device reservation, error handling, I/O protection, Kernel data struc-
tures Transforming I/O requests to hardware operations, Performance.

TEXTBOOK

Abraham Silberschatz, Peter Baer Galvin and Greg Gagne. Operating System Con-

cepts, 9th edition, Wiley.

REFERENCE BOOKS

1. Charles Crowley. Operating Systems: A Design-Oriented Approach, Prentice-
Hall India.

2. W. Richard Stevens, . Advanced Programming in Unix Environment, Pearson
Education.

3. W. Richard Stevens. Unix Network Programming, vol. 2, Pearson Education.

4. William Stallings. Operating Systems: Internals and Design Principles, Pear-
son Education.

5. Maurice J. Bach. The Design of the Unix Operating System, Prentice-Hall
India.

6. Robert Love. Linux Kernel Development, Pearson Education.

7. Thomas Anderson and Michael Dahlin. Operating Systems: Principles and

Practice, 2nd edition, Recursive Books.

2



SUGGESTED ASSIGNMENTS for the Lab Component
of the course

1. Modify the kernel to include the statement “Hello, World”, compile the kernel
and modify the bootloader to add the new version.

2. Compare the popular file systems: ext3, NTFS and XFS.

3. Implement small modifications of Producer-Consumer problem.

4. Implement a user level ps command by walking through the /proc directory.

5. Implement page tables and virtual-physical address mapping using the page
tables. In this, the input can consist of a file containing the processor arch.
(16/32/64-bit), page size, available RAM. For each process the file will contain
the size of the executable and/or page no. and permissions on it and the frame
start address. Then a set of virtual addresses with the operation (r/w/x)
are input to the program for which the corresponding physical address must
be returned if it is a valid virtual address and also whether the operation
attempted is legal as per the permissions on the page.

6. Go through the /etc/fstab and manipulate it to mount partitions with dif-
ferent settings and/or use mount/umount commands to mount and unmount
partitions and understand the concept of logical volumes.

7. Implement a simple file system such as FAT using FUSE API.

8. Implement a simple software device driver.

3


