
How to Program

(An Informal Guide)

Chakravarthy Bhagvati

This is an informal guide to solving problems on a computer by writing programs. The

emphasis is not so much on software engineering but on simple rules of thumb to make one a

better programmer. Follow these guidelines for every programming assignment, make it a habit

and it is almost certain to halve the programming time while doubling the pleasure and returns.

1 The three steps to writing good programs

Design: this is 60% of the process

Implementation: writing the program (the easiest part!)

Testing and debugging: after all, nobody’s perfect

1.1 Design

Design itself is a four-step process:

1. Generalize

Normally, one is given an instance of a problem and not the problem itself. It is very im-

portant to realize the distinction between the two. An instance is one specific example,

many times a special case, of a more general problem. Generalization is done by expand-

ing the type and range of inputs, identifying and expanding hidden parameters, and very

rarely (only at the expert level) the problem itself into an equivalent family of problems.

2. Enumerate specific cases

This is almost the opposite of Step 1. Reduce the general problem into specific subsets

of problem instances or sub-problems. Identify and clearly list the limitations, ranges,

parameters, etc. for each specific case. Make sure the original problem is included as at

least one specific case :-)

3. Make choices; give choices

It may be possible to solve only some of the cases identified in Step 2 easily and efficiently.

One has to make certain decisions here: do you want to implement only those easy and

efficient cases? do you want to make them the default option and provide the user with a

choice to enable solving the more difficult cases?

4. Organize

This often appears to be the hardest part but if you follow the above three steps, orga-

nizing the solution into clearly defined steps is rather straight-forward. The golden rule

of thumb for organizing your solution: separate the input and output aspects from the

computation.

1

June 2009 2

Identify and group all necessary inputs. How many and what should be given by the

users? What are better chosen as parameters (these are values that change only rarely;

offer the ability to generalize; require expert knowledge, etc.)?

Computation is easy! Find a good algorithm, organize the computational module into

major steps as described by the algorithm and voila! that’s all.

Identify clearly the outputs and how they need to be presented to the users. Organize the

outputs according to their importance. Let there be modules to summarize the results in

addition to the raw values.

At the end of this step, the solution is broken down into a set of different modules or

functions each with clearly defined inputs, functionality and outputs.

1.2 Implementation

Implementation is converting the design into a program. Once the design is well-done, imple-

mentation is easy. However, there are a set of choices to make at this stage.

The first is, how to get user input.

1. The program can prompt the user. I personally hate this one as it has many disadvantages:

the user has to give all the inputs each time the program is run; it is easy for the user to

make a mistake and it is not so easy to write user input routines to allow users to correct

their mistakes; it makes the programs slow (users are slow, aren’t they?!). My only advice

is to remember what you are letting yourself into with this one and write your programs

very carefully to handle mistakes. Nothing is worse than a program that dies because of

wrong input from users.

2. The program can have command line options. This is my favourite — hey, I have been

born and brought up on UNIXes. Many of the disadvantages disappear in this mode.

More importantly, for me, it allows a later easy up-(sorry, down-) gradation to GUI. But,

design your command line options well and make sure you write a good parser or use

pre-written, well-tested code from the net.

3. Have a configuration file that contains all the user choices and have the input routines

read the file. This is the best option if there are many inputs as the user can enter them

once and it is also easy to correct mistakes. Parsing is also relatively easy compared to

command line options.

4. Use a combination!

−1. Finally, one thing you should NEVER DO: hard code input in the program. You do this

and I will pull you inside out, make you swallow yourself and dance on your remains with

hob-nailed boots!! If not me, your supervisor, team leader, boss or somebody will, believe

me.

As far as computation is concerned, use your knowledge of data structures and algorithms and

write good code. In certain situations, I strongly recommend downloading well-tested code

from the net.

How about the output? Again, the choices are somewhat similar to those for input. In many

cases, it is fine to display output on the screen; leave sufficient white space, comment it well

and keep things uncluttered. Do not use functions to clear the screen, etc. because they are

unnecessary and make your code oh-so-Turbo-C-ish! If there is a lot of output, it may be good

to write it into a file and display summary information on the screen.

Finally, an important point about output is to think about how a user might use it. For

example, if the user is likely to plot the output, then it is a great idea to write the output into

Chakravarthy Bhagvati Dept. of CIS

June 2009 3

a file in a format that allows for easy plotting by popular packages. In UNIX world, the output

from one program is often sent as input to another and therefore it is not a bad idea to remove

all unnecessary comments and write only the data out. If necessary, there may be an option to

produce more human-readable output. By the way, this is another reason why I like command

line options!

1.3 Testing and debugging

The under-rated and often despised aspect of programming — to err is human, to debug, sub-

human. Books, tomes and treatises have been written on the subject. Industry swears by it,

academicians swear at it. None of us is a God and we have to live with mistakes. So, it might

be well to learn a few tricks to reduce the number of bugs before we get down to testing.

1.3.1 Where do most bugs occur?

1. Reading input

One of the commonest mistakes early programmers make is to read input as characters. A

typical example: the computer prompts, “Do you want to continue (y/n)? ”, to which a

learned (and an unusually generous) user responds with a “y” or an “n.” What is wrong

here? Nothing except that beginners read user input with getc(), getch() or getchar()

functions. The result is a disaster. All I/O is buffered in most systems and a user has to type

<ENTER> key to send the input to the computer and these character reading functions leave

the <ENTER> keystroke behind for the next getc() — something that the programmer did

not really want.

One may think that the above can be fixed by judiciously adding dummy getc()s — don’t.

It won’t work. The problem is that user input is a combination of real data and whitespace.

While we can say that the user is stupid, make jokes and laugh at his/her expense when

it comes to mistakes in the data, we cannot do that with whitespace. The user does not

even know what it is.

So what is the solution? ALWAYS read user input as formatted data or strings using

scanf(), fscanf() or best of all, fgets(). For airtight reading of user input, use

fgets() followed by sscanf() and the like.

2. Uninitialized variables

Easiest to fix, so do it, please! These errors are extremely easy to detect. Run the

program and if the answer gives you a 10- or 11-digit positive or negative number when

the maximum or minimum you are expecting as an answer is only a couple of digits, there

are uninitialized variables. Go through your code and simply initialize all variables at the

time of their declaration. Instead of

int i;

use

int i = 0;

3. Uninitialized pointer variables

A special case of the above, but a very scary and unnerving one. This one gives the

dreaded segmentation violation, bus error or something equally scary. It is not very hard

to fix and does not occur frequently in languages more modern than ‘C.’

Chakravarthy Bhagvati Dept. of CIS

June 2009 4

There are only three ways to initialize a pointer variable — to NULL which does not solve

the problem; assign an already allocated variable; or use malloc(), calloc(), etc. to

really initialize it. Choose your poison and you are going to be fine.

4. Forget arguments to functions

Oh boy, has this hit you yet? You use printf() to get extra information to identify a pesky

bug and end up with a far worse output. The problem: you forgot to pass the variable for

printing to printf(). In other words, you wrote

printf(‘‘Value of var1: %d\n’’);

instead of

printf(‘‘Value of var1: %d\n’’, var1);

This also occurs when calling functions. Again, a more modern language than ‘C’ flags

these errors but in ‘C’ you only get warnings. And, as is the normal case, you ignored

them, didn’t you? Pay attention to warnings — some of them are useful!

There are other bugs but they are much rarer these days. Logical bugs occur and are hard to

fix but they don’t occur with the same frequency as above. A final advice is to learn using a

debugging tool. You don’t need anything fancy, one that can tell you where exactly a bug occurs

is enough. Once you know where the bug is, you don’t need a fancy-shmancy debugger to tell

you what it is. Hey, we are smart enough, thank you!

1.3.2 Testing

The simplest way to test a program is to run it several times with different inputs. If the output

is not one of the cases listed in the previous section, you’re most likely OK. Also, keep one

realistic example worked out by hand so that you know the correct output for a given input.

Verify that your program’s output matches your answer. If you are really a masochist, then you

can try giving all kinds of wrong inputs just to see how your program handles them. Form a

group of friends and test each other’s programs out. It is fun!

Chakravarthy Bhagvati Dept. of CIS

2 Solved Problem: Magic Square

Let us put all the points above into practice with this example.

Write a program to create a 5 × 5 magic square using the numbers 1 – 25. A magic square

is a square matrix in which the sum of numbers along any row, column or diagonal is the

same.

For example, the following is a 3 × 3 magic square with a magic sum of 15:

2 7 6

9 5 1

4 3 8

2.1 Design

Let us start with generalizing the problem given. What can we generalize? First, the size of the

matrix: allow arbitrary size not just 5 × 5.

Second, how about the range of numbers? Can we use any set of N2 consecutive numbers

for an N × N magic square not just 1 . . . N2. Even better, can any arbitrary set of numbers be

arranged in a magic square?

Third, can we let the user specify a magic sum and then derive the other inputs such as the

size and range of numbers from it?

Good, enough generalization (Lynn Truss1, you may remove the comma too, if you please)!

Let us now enumerate the specific cases:

1. Let the user specify the size, N . We arrange the numbers 1 . . . N2 in a magic square.

2. Let the user specify the size N and a starting number S. We arrange the numbers S, S +
1, . . . , S + N2 in a magic square of size N × N .

3. Let the user specify the size N and an arbitrary sequence of numbers A1...N2 . We arrange

the numbers in a magic square of size N × N .

4. Let the user specify a magic sum M and a size N . We compute the required set of N2

numbers and arrange them in a magic square.

5. Let the user specify a magic sum M . We compute the size N and the required set of

numbers and arrange them in a magic square.

That’s a lot of cases — enough for anyone to make and give choices. We will examine each

case above. Take Case 1. When we scan the literature, we find that constructing magic squares

is simple if N is odd but not so straight-forward if N is even. The only special case of N = 4 is

easy. Therefore, let us choose only to write the program for odd N.

Cases 2 and 3 are related. The real question is, “which sequence of numbers?” If we scan

the literature, we find that magic squares are always constructed from sequences of consecutive

numbers although with arbitrary starting points. But the general question (i.e., Case 3) is

interesting too, in a Martin Gardner2 sense. These are now my own intuitions. Any sequence of

numbers in arithmetic progression is fine. In fact, my belief is that a sequence of numbers that

can be arranged in pairs such that the pairs have identical sums is sufficient but don’t quote me

on this. Anyway, let us be conservative and choose only to implement Case 2.

1The one who wrote that hilarious bestseller on punctuation titled, “Eats, shoots and leaves”
2This is the guy who is known for his brilliant mathematical puzzles and problems; and whose publications are a

staple diet of Scientific American

June 2009 6

Cases 4 and 5 are straight-forward if we restrict the required set of numbers to N2 con-

secutive numbers starting with S. In Case 4, we need to compute only S while in Case 5, we

somehow need to compute N and S.

How are magic sum, starting point and size related? Their relationship is given by the

equation

M = N

(

S +
N2

− 1

2

)

(1)

Given M and N ,

S =
M

N
−

N2
− 1

2
Given that our problem is 5×5 magic square, let us make that the default. In other words, if

the user gives no input, the program generates a 5× 5 magic square using the numbers 1 . . . 25.

The other cases are optional.

To structure the solution, separate the input, computation and output. Here is how the input

is specified.

1. Default case: 5 × 5 magic square using numbers 1 . . . 25.

2. User specifies size as an odd number N .

3. User specifies size as an odd number N and a starting point S.

4. User specifies a magic sum M and size N .

5. User specifies a magic sum M only.

As far as the computation is concerned, we have only one case: constructing a magic square

of odd size. One algorithm that we get from the literature is given in the box. You may want to

verify that the 3 × 3 magic square given at the beginning of the section is constructed from the

algorithm above.

At the end of the design phase, we have the following clearly defined modules/functions.

Input:

1. getInputBySize(msSize,

msStart)

This function prompts the

user for size and starting

point and returns them via

the parameters. It returns

0 on success and any other

value on failure.

2.

getInputByMagicSum(msSum,

msSize, msStart)

This function prompts the

user for magic sum and size,

computes the other inputs

and returns them via the pa-

rameters. It returns 0 on suc-

cess and any other value on

failure.

MAGIC SQUARES ALGORITHM FOR ODD N

1. Put the starting number S in the middle of the last

column. Let current number c = S.

2. Repeat until all the cells are exhausted

(a) Increment current number: c = c + 1.

(b) Move upward and to the right of cell last filled

by c, i.e., to cell (i−1, j +1) if the last cell filled

is (i, j).

(c) There are five possible cases for the new location.

i. If the cell is empty, put c there.

ii. If the cell is already filled, move one cell to

the left, i.e., to (i − 1, j).

iii. If the column is invalid, i.e., j > N , then

set j = 1. In other words, fill the first cell in

that row.

iv. If the row is invalid, i.e., i < 1, then set

i = N . In other words, fill the last cell in

that column.

v. If both row and column are invalid, i.e., i <

1, j > N , then fill the cell (i, j − 1).

Chakravarthy Bhagvati Dept. of CIS

June 2009 7

Computation: Computation is done by a single function which uses the algorithm above to

fill the matrix msMagicSquare. The function

computeMagicSquare(msMagicSquare, msSize, msStart)

returns 0 on success and any other value on failure.

Output: Output is equally simple and done by a single function which writes out the computed

magic square on the screen. The function

writeMagicSquare(msMagicSquare, msSize, msStart)

does not return any value.

2.2 Implementation

Implementation requires programming the above four functions. The user needs to input at

most two values. Therefore, the input functions can read data directly from the user. The

algorithm is also straight-forward and does not need any special data structures or tricks. My

implementation is given in the appendix.

However, there are a few interesting implementation choices. The first is the way user

decides between magic sum and magic square size. I decided to use command line option here.

The usage of the program is

magicsquares: the default case where the program simply outputs a 5 × 5 magic square with

numbers from 1 to 25.

magicsquares bySize: the user is prompted for the size and beginning of the range of num-

bers.

magicsquares bySum: the user is prompted for the magic sum and the program generates a

corresponding magic square.

Any other call results in an error message that gives the correct usage.

The second interesting choice is the bySum option. When the user specifies a magic sum,

the program uses Equation 1 with S = 1 and then finds N . For most magic sums, N found by

substituting S = 1 will not result in an integer and therefore the size has to be separately input

by the user. One observation from Equation 1 is that the magic sum must be divisible by the size

and therefore the program attempts to find such sizes and provides the user with choices. The

user may then choose a size and the program returns the appropriate magic square. Sometimes

it may not be possible to construct a magic square for certain sums and the program says so.

There are error checks to see that the program does not crash even if the user gives an impossible

choice.

2.3 Testing

Testing is easy because we can verify if the output is a magic square by computing sums along

the rows, columns and diagonals. Here are some inputs and outputs showing that the program

is written correctly.

Chakravarthy Bhagvati Dept. of CIS

June 2009 8

1. The default case: magicsquares

MagicSquare of Order 5x5 beginning at 1

| 9 | 3 | 22 | 16 | 15 |

| 2 | 21 | 20 | 14 | 8 |

| 25 | 19 | 13 | 7 | 1 |

| 18 | 12 | 6 | 5 | 24 |

| 11 | 10 | 4 | 23 | 17 |

----- Magic Sum: 65 -----

2. Specifying the size: magicsquares bySize

Enter desired size of Magic Square (default 5): 7

Enter start of range of numbers in Magic Square (default 1):

MagicSquare of Order 7x7 beginning at 1

--

| 20 | 12 | 4 | 45 | 37 | 29 | 28 |

--

| 11 | 3 | 44 | 36 | 35 | 27 | 19 |

--

| 2 | 43 | 42 | 34 | 26 | 18 | 10 |

--

| 49 | 41 | 33 | 25 | 17 | 9 | 1 |

--

| 40 | 32 | 24 | 16 | 8 | 7 | 48 |

--

| 31 | 23 | 15 | 14 | 6 | 47 | 39 |

--

| 22 | 21 | 13 | 5 | 46 | 38 | 30 |

--

----- Magic Sum: 175 -----

Chakravarthy Bhagvati Dept. of CIS

June 2009 9

3. Sepcifying the size and start of the range: magicsquares bySize

Enter desired size of Magic Square (default 5): 9

Enter start of range of numbers in Magic Square (default 1): 12

MagicSquare of Order 9x9 beginning at 12

--

| 46 | 36 | 26 | 16 | 87 | 77 | 67 | 57 | 56 |

--

| 35 | 25 | 15 | 86 | 76 | 66 | 65 | 55 | 45 |

--

| 24 | 14 | 85 | 75 | 74 | 64 | 54 | 44 | 34 |

--

| 13 | 84 | 83 | 73 | 63 | 53 | 43 | 33 | 23 |

--

| 92 | 82 | 72 | 62 | 52 | 42 | 32 | 22 | 12 |

--

| 81 | 71 | 61 | 51 | 41 | 31 | 21 | 20 | 91 |

--

| 70 | 60 | 50 | 40 | 30 | 29 | 19 | 90 | 80 |

--

| 59 | 49 | 39 | 38 | 28 | 18 | 89 | 79 | 69 |

--

| 48 | 47 | 37 | 27 | 17 | 88 | 78 | 68 | 58 |

--

----- Magic Sum: 468 -----

4. Specifying the magic sum: magicsquares bySum

Enter Magic Sum: 80

Enter desired size of Magic Square (Optimum 5):

MagicSquare of Order 5x5 beginning at 4

| 12 | 6 | 25 | 19 | 18 |

| 5 | 24 | 23 | 17 | 11 |

| 28 | 22 | 16 | 10 | 4 |

| 21 | 15 | 9 | 8 | 27 |

| 14 | 13 | 7 | 26 | 20 |

----- Magic Sum: 80 -----

In this example, the program found that by substituting S = 1 in Equation 1, the largest

magic square for which the magic sum is less than 80 is 5 × 5. As 80 divisible by 5, the

program suggests the user to specify a size of 5.

5. Specifying the magic sum: magicsquares bySum

Chakravarthy Bhagvati Dept. of CIS

June 2009 10

Enter Magic Sum: 2009

Enter desired size of Magic Square (Magic Sum 2009 should be divisible by size (~15)

Here are some possible choices: 7

Enter the desired size: 7

MagicSquare of Order 7x7 beginning at 263

--

| 282 | 274 | 266 | 307 | 299 | 291 | 290 |

--

| 273 | 265 | 306 | 298 | 297 | 289 | 281 |

--

| 264 | 305 | 304 | 296 | 288 | 280 | 272 |

--

| 311 | 303 | 295 | 287 | 279 | 271 | 263 |

--

| 302 | 294 | 286 | 278 | 270 | 269 | 310 |

--

| 293 | 285 | 277 | 276 | 268 | 309 | 301 |

--

| 284 | 283 | 275 | 267 | 308 | 300 | 292 |

--

----- Magic Sum: 2009 -----

In this example, the program suggests 7 as a possible size because 2009 is divisible by

7 and no other number less than 15. 15 is the size computed by substituting S = 1 in

Equation 1 and gives the largest magic square for which the magic sum is less than 2009.

6. Specifying impossible choices: magicsquares bySum

Enter Magic Sum: 230964

Enter desired size of Magic Square (Magic Sum 230964 should be divisible by size (~77)

Here are some possible choices: 57 19 3

Enter the desired size: 55

Please enter a size that divides 230964

Enter Magic Sum: 230964

Enter desired size of Magic Square (Magic Sum 230964 should be divisible by size (~77)

Here are some possible choices: 57 19 3

Enter the desired size: 3

MagicSquare of Order 3x3 beginning at 76984

| 76985 | 76990 | 76989 |

| 76992 | 76988 | 76984 |

| 76987 | 76986 | 76991 |

----- Magic Sum: 230964 -----

7. Invalid choices: magicsquares default

Usage: magicsquares [bySum|bySize]

Chakravarthy Bhagvati Dept. of CIS

June 2009 11

A Magic Square Program in ‘C’ Language

#include <stdio.h>

#include <math.h>

#define MAXSIZE 100 /* Maximum size of the magic square */

/****** FUNCTION PROTOTYPES ******/

int getInputBySize(int *msSize, int *msStart);

int getInputByMagicSum(int *msSum, int *msSize, int *msStart);

int computeMagicSquare(int msMagicSquare[][MAXSIZE], int msSize, int msStart);

void writeMagicSquare(int msMagicSquare[][MAXSIZE], int msSize);

int main(int argc, char *argv[])

{

int msOrder = 5, msStart = 1, msSum = 0, msOptionBySum = 0, rv = 0;

int msMagicSquare[MAXSIZE][MAXSIZE], msDefaultOption = 1;

if ((argc != 1) && (argc != 2)) { /* Incorrect Usage */

fprintf(stderr, "Usage: magicsquares <bySum>\n");

exit(1);

}

if (argc == 2) {

if ((strcmp(argv[1], "bySum") != 0) &&

(strcmp(argv[1], "bySize") != 0)) {

fprintf(stderr, "Usage: magicsquares [bySum|bySize]\n");

exit(1);

} else if (strcmp(argv[1], "bySum") == 0) { /* By Magic Sum */

msOptionBySum = 1;

msDefaultOption = 0;

} else /* By Size */

msDefaultOption = 0;

}

if (msDefaultOption == 0) {

if (msOptionBySum == 0)

do

rv = getInputBySize(&msOrder, &msStart);

while (rv != 0);

else

do

rv = getInputByMagicSum(&msSum, &msOrder, &msStart);

while (rv != 0);

}

if (computeMagicSquare(msMagicSquare, msOrder, msStart) != 0) {

fprintf(stderr, "Error in computing magic square\n");

exit(1);

}

writeMagicSquare(msMagicSquare, msOrder); /* Output */

}

Chakravarthy Bhagvati Dept. of CIS

June 2009 12

A.1 Input Functions

int getInputBySize(int *msSize, int *msStart)

{

int rv = 0;

char tmpBuffer[MAXSIZE];

printf("Enter desired size of Magic Square (default 5): ");

fflush(stdout); /* To force output even without \n */

if (fgets(tmpBuffer, MAXSIZE, stdin) != NULL) {

if (sscanf(tmpBuffer, "%d", &rv) == 1) {

if (rv % 2 == 0) {

fprintf(stderr, "Desired size should be ODD\n");

return (1);

}

if (rv <= 0) {

fprintf(stderr, "Desired size > 0\n");

return(1);

}

if (rv < MAXSIZE)

*msSize = rv;

else

*msSize = MAXSIZE;

}

} else

return(1);

printf("Enter start of range of numbers in Magic Square (default 1): ");

fflush(stdout); /* To force output even without \n */

if (fgets(tmpBuffer, MAXSIZE, stdin) != NULL) {

if (sscanf(tmpBuffer, "%d", &rv) == 1) {

if (rv <= 0) {

fprintf(stderr, "Start should be >= 1\n");

return (1);

}

*msStart = rv;

}

} else

return(1);

return(0);

}

Chakravarthy Bhagvati Dept. of CIS

June 2009 13

int getInputByMagicSum(int *msSum, int *msSize, int *msStart)

{

int rv = -1, firstGuess = 1, sqSize = (*msSize) * (*msSize), i = 0;

int possible = 0;

char tmpBuffer[MAXSIZE];

printf("Enter Magic Sum: ");

fflush(stdout); /* To force output even without \n */

if (fgets(tmpBuffer, MAXSIZE, stdin) != NULL) {

if (sscanf(tmpBuffer, "%d", &rv) == 1) {

if (rv <= 0) {

fprintf(stderr, "Magic Sum should be >= 1\n");

return (1);

}

*msSum = rv;

}

} else

return(1);

/******** Substitute S = 1 in Equaton 1 and estimate N ********/

firstGuess = (int)(pow((double)(2.0 * *msSum), 1.0/3.0));

if (firstGuess % 2 == 0)

firstGuess += 1;

if (*msSum % firstGuess == 0) { /* Is Sum divisible by N */

*msSize = firstGuess;

printf("Enter desired size of Magic Square (Optimum %d): ",

firstGuess);

} else {

printf("Enter desired size of Magic Square (Magic Sum %d ", *msSum);

printf("should be divisible by size (~%d)\n", firstGuess);

printf("Here are some possible choices: ");

for (i=firstGuess - 1; i>2; i--) { /* Check divisibility */

if (i % 2 == 1) /* Offer choice to users */

if ((*msSum) % i == 0) {

printf("%d ", i);

possible = 1;

}

}

printf("\n");

if (possible == 0) { /* If no number divides Sum */

fprintf(stderr,

"It is NOT POSSIBLE to build a magic square for %d\n",

*msSum);

return(1);

}

printf("Enter the desired size: ");

}

fflush(stdout); /* To force output even without \n */

Chakravarthy Bhagvati Dept. of CIS

June 2009 14

if (fgets(tmpBuffer, MAXSIZE, stdin) != NULL) {

if (sscanf(tmpBuffer, "%d", &rv) == 1) {

if (rv % 2 == 0) {

fprintf(stderr, "Desired size should be ODD\n");

return (1);

}

if (rv <= 0) {

fprintf(stderr, "Desired size > 0\n");

return(1);

}

if (rv < MAXSIZE) /* Accept user’s choice and */

msSize = rv; / build magic square with */

else /* an approximate sum */

*msSize = MAXSIZE;

}

} else

return(1);

*msStart = *msSum / *msSize - ((*msSize) * (*msSize) / 2);

if (*msStart < 1) {

fprintf(stderr, "It is NOT POSSIBLE to construct a Magic Square ");

fprintf(stderr, "with Sum %d and Size %d (%d)\n", *msSum, *msSize,

*msStart);

return(1);

}

return(0);

}

A.2 Magic Square Computation

int computeMagicSquare(int msMSq[][MAXSIZE], int msSize, int msStart)

{

int c = msStart, cpi = 0, cpj = 0;

printf("MagicSquare of Order %dx%d beginning at %d\n",

msSize, msSize, msStart);

for (cpi = 0; cpi < msSize; cpi++)

for (cpj = 0; cpj < msSize; cpj++)

msMSq[cpi][cpj] = -1;

/**** Starting Location in the middle of the last column */

cpi = msSize / 2;

cpj = msSize - 1;

for (c = msStart; c < (msStart + msSize * msSize); c++) {

msMSq[cpi][cpj] = c; /* Case i */

cpi = cpi - 1;

cpj = cpj + 1;

if ((cpi < 0) && (cpj >= msSize)) { /* Case v */

cpi = cpi + 1;

Chakravarthy Bhagvati Dept. of CIS

June 2009 15

cpj = cpj - 2;

} else {

if (cpi < 0) /* Case iv */

cpi = msSize - 1;

if (cpj >= msSize) /* Case iii */

cpj = 0;

}

if (msMSq[cpi][cpj] != -1) { /* Case ii */

cpi = cpi + 1;

cpj = cpj - 2;

}

}

return(0);

}

A.3 Output Function

void writeMagicSquare(int msMSq[][MAXSIZE], int msSize)

{

int i, j;

for (i=0; i<msSize; i++) {

for (j=0; j<msSize; j++)

printf("-------");

printf("-\n");

for (j=0; j<msSize; j++)

printf("| %4d ", msMSq[i][j]);

printf("|\n");

}

for (j=0; j<msSize; j++)

printf("-------");

printf("-\n");

printf("\n-----\tMagic Sum: %d\t-----\n",

msMSq[msSize/2][msSize/2] * msSize);

}

Chakravarthy Bhagvati Dept. of CIS

