
Copyright Josep Torrellas 2003 1

Memory Consistency

Instructor: Josep Torrellas
CS533

Copyright Josep Torrellas 2003 2

Hiding Memory Latency
• Overlap memory accesses with other accesses and with

computation:

• Simple in uniprocessors
• Can affect correctness in MPs
• Memory Model: specifies the ordering constraints among

accesses

Wr A

Rd B

Wr A
Rd B

Copyright Josep Torrellas 2003 3

• Memory accesses atomic and in program order

• Not necessary to maintain sequential order for correctness
– Hardware: buffering, pipelining
– Software: register allocation, code motion

• Simple for programmers
• Allows for high performance

Uniprocessor Memory Model

Write A

Write B

Read A

Read B

Copyright Josep Torrellas 2003 4

Shared Memory Multiprocessors
• Order between accesses to different locations becomes

important

• Unsafe reorder can happen: accesses issued in order may be
observed out of order (even without caches):
– Flag is in the local memory module of P2

P1

A = 1;

Flag = 1;

P2

wait (Flag == 1);

.. = A;

Copyright Josep Torrellas 2003 5

Caches Complicate Things More
• Multiple copies of the same location

• P3 had A=B=0 in its cache, invalidations for B have arrived
before the invalidations for A. P3 reads 0

P1

A = 1;

P2

wait (A == 1);

B = 1;

P3

wait (B == 1);

.. = A;

Copyright Josep Torrellas 2003 6

Sequential Consistency
• Formalized by Lamport

– “Execution of parallel program appear as some interleaving of the
parallel processes on a sequential machine”

– Intuitive orders assumed by programmer are typically maintained

P1 P2 P3

Memory

Copyright Josep Torrellas 2003 7

Example
• Initially: all vars are 0

• Possible (x,y) = (0,0),(0,1),(1,1)
• Impossible (x,y) = (1,0)

P1

A =1

Flag = 1

P2

x = Flag

y = A

Copyright Josep Torrellas 2003 8

How We Will Proceed
• Focus on the instructions issued by a processor, and put

ordering constraints among them
– when a load is seen by others
– when a store is seen by others

• Define sufficient conditions so that a particular memory
consistency model is supported

• Note that accesses issues by a processor to the same
variable cannot be reordered.

P1

Wr X

Rd X

P1

Wr A

Rd X

Copyright Josep Torrellas 2003 9

Performing
• LOAD by Pi is performed wrt Pk when a STORE by Pk

cannot affect the value returned by the LOAD

Pi PkLOAD

STORE

a

Copyright Josep Torrellas 2003 10

Performing
• STORE by Pi is performed wrt Pk when a LOAD by Pk

returns the value defined by that STORE

Pi Pk

LOAD

STORE

a

INV

Copyright Josep Torrellas 2003 11

• Conditions for satisfying Sequential Consistency and other
models can be formulated so that….

… Process needs to keep track of requests initiated by itself
ONLY

Copyright Josep Torrellas 2003 12

Sequential Consistency

• Before a LOAD is allowed to perform wrt any processor, all
previous LOAD/STORE accesses must be performed wrt
everyone

• Before a STORE …. (same)

/* Note GLOBALLY performed */

Copyright Josep Torrellas 2003 13

Sequential Consistency

Program

Execution

LOAD

LOAD

LOAD

STORE

STORE

STORE

Copyright Josep Torrellas 2003 14

Processor Consistency
• Main idea: LOADs are allowed to bypass STORES

Program

Execution

LOAD

LOAD

LOAD

STORE

STOREThis LOAD

bypasses the

two STORES

… Honoring, of course,

local dependences

Copyright Josep Torrellas 2003 15

Processor Consistency

• Before a LOAD is allowed to perform wrt any processor, all
previous LOAD/STORE accesses must be performed wrt
everyone

• Before a STORE ….
…. LOAD/STORE ...

/* Note GLOBALLY performed */

Copyright Josep Torrellas 2003 16

Weak Consistency
• Suppose we are in a critical section

• Then, we can have several accesses pipelined b/c programmer
has made sure that:
– no other process can rely on that data structure being consistent until

the critical section is exited

• Adv: Higher performance (more overlap)
• Dsv: Need to distinguish between ordinary LOAD/STORES

and SYNCH

Copyright Josep Torrellas 2003 17

Weak Consistency

Program

Execution

LOAD/STORE

SYNCH

LOAD/STORE
….

LOAD/STORE

LOAD/STORE
….

LOAD/STORE

LOAD/STORE
….

SYNCH

2

1

Copyright Josep Torrellas 2003 18

Weak Consistency
• 1. Before an ordinary LOAD/STORE is allowed to perform

wrt any processor, all previous SYNCH accesses must be
performed wrt everyone

• 2. Before s SYNCH access is allowed to perform wrt any
processor, all previous ordinary LOAD/STORE accesses must
be performed wrt everyone

• SYNCH accesses are sequentially consistent wrt one another

Copyright Josep Torrellas 2003 19

Release Consistency
• Distinguish between:

– SYNCH acquires: e.g. LOCK
– SYNCH releases: e.g. UNLOCK

• LOAD/STORE following a RELEASE do not have to be
delayed for the RELEASE to complete

• An ACQUIRE needs not to be delayed for previous
LOAD/STORES to complete

• Accesses in the critical section do not wait or delay
LOAD/STORES outside the critical section

Copyright Josep Torrellas 2003 20

Release Consistency

Program

Execution

SYNCH

LOAD/STORE

LOAD/STORE
….

LOAD/STORE

LOAD/STORE
….

LOAD/STORE

LOAD/STORE
….SYNCH

2

1

3

4

Copyright Josep Torrellas 2003 21

Release Consistency
• Advantages: Higher performance
• Disadvantages: Need to additionally distinguish between

ACQUIRE/RELEASE

Copyright Josep Torrellas 2003 22

Release Consistency

• 3. Before an ordinary LOAD/STORE is allowed to perform
wrt any processor, all previous SYNCH ACQUIRE accesses
must be performed wrt everyone

• 4. Before s SYNCH RELEASE access is allowed to perform
wrt any processor, all previous ordinary LOAD/STORE
accesses must be performed wrt everyone

• ACQ/REL accesses are processor consistent wrt one another

Copyright Josep Torrellas 2003 23

How to enforce these stalls?

• With Fence instructions
• Different types of fences present in current processors
• Check manuals of processors to see which types of fences are

supported

Copyright Josep Torrellas 2003 24

Further Readings

• Shared Memory Consistency Models: A Tutorial, S.V. Adve and K.
Gharachorloo, IEEE Computer, December 1996, 66-76.

• An Evaluation of Memory Consistency Models for Shared-Memory
Systems with ILP Processors, Vijay S. Pai, Parthasarathy Ranganathan,
Sarita V. Adve, and Tracy Harton, Proceedings of the 7th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VII), October 1996, 12-23.

• Culler and Singh course textbook

• Processors have their own memory consisteny models: e.g. SUN’s PSO,
TSO

Copyright Josep Torrellas 2003 25

Overlap of Operations

ACQ RD RD RD compute WR WR WR REL

See figure in Paper

Copyright Josep Torrellas 2003 26

Performance Gains from Relaxed Models
• Gains both in hardware and compiler
• Gains in hardware: Come from latency hiding

– Overlap several memory operations: RDs and WRs
• Need a lock up free cache (of course): multiple misses serviced at a

time
• Puts extra pressure on the buffers (read and write buffers):

– have more transactions pending at a time
– These transactions need to keep record until fully performed

• It also creates extra traffic

• See Figure 3 and Figure 4

Copyright Josep Torrellas 2003 27

Performance Gains in HW (II)
• Note that paper by Gharachorloo et al (ASPLOS) assumes a very simple

processor that stalls on reads. Not representative of current processors
• See further readings for evaluation on Superscalar processors:

– Allow multiple outstanding reads: Unlock more potential for relaxed
models

– But the computation is also smaller because of ILP
– As a result: relative performance gains of relaxation under ILP can be

bigger or smaller than under simple processor

Copyright Josep Torrellas 2003 28

Performance Gains in SW
• Common compiler optimizations require:

– Change the order of memory operations
– Eliminate memory operations

• Examples:
– Register allocating a flag that is used to synchronize

While (flag==0);

– Code motion or register allocation across synchronization
Lock L
Read A
Write B
Unlock L
Lock L
Read A
Read B
Unlock L

• Sequential consistency disallows reordering of shared accesses

Copyright Josep Torrellas 2003 29

Performance Gains in SW
• More advanced optimizations such as loop transformation and blocking
• Relaxed models allow compilers to do more re-arrangements

Copyright Josep Torrellas 2003 30

Summary
• Release consistency model

– Simple abstraction for programmer
– Performance gains in SW and HW

• Relaxed models are universal in current multiprocessors

• Different manufacturers have different models

