
EE382A Lecture 5:

Branch Prediction

Department of Electrical Engineering

Stanford University

EE382A – Autumn 2009 Christos KozyrakisLecture 5- 1

Stanford University

http://eeclass.stanford.edu/ee382a

Announcements

• Project proposal due on Mo 10/14

List the group members– List the group members

– Describe the topic including why it is important and your thesis

– Describe the methodology you will use (experiments, tools, machines)

Statement of expected results– Statement of expected results

– Few key references to related work

Still missing most photos• Still missing most photos

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 2

Branch Prediction Review

• Why do we need branch prediction?

• What do we need to predict about branches?

• Why are branches predictable?Why are branches predictable?

• What mechanisms do we need for branch prediction?

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 3

Static Branch Prediction

• Option #1: based on type or use of instruction

– E g assume backwards branches are taken (predicting a loop)E.g., assume backwards branches are taken (predicting a loop)

– Can be used as a backup even if dynamic schemes are used

• Option #2: compiler or profile branch prediction• Option #2: compiler or profile branch prediction

– Collect information from instrumented run(s)

– Recompile program with branch annotations (hints) for prediction

• See heuristics list in next slide• See heuristics list in next slide

– Can achieve 75% to 80% prediction accuracy

• Why would dynamic branch prediction do better?• Why would dynamic branch prediction do better?

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 4

Heuristics for Static Prediction
(Ball & Larus PPoPP1993)(Ball & Larus, PPoPP1993)

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 5

Dynamic Branch Prediction Using History

nPC to Icache

nPC(seq.) = PC+4specu. target

prediction
FA-mux

Decode Buffer

Fetch

(q)
PCBranch

Predictor
(using a BTB)

specu. cond.

Dispatch Buffer

Decode

Dispatch

BTB
update
(target addr.
and history)nPC=BP(PC)

Reservation

Dispatch

Stations
IssueIssue

Execute

Branch

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 6

Finish
Completion Buffer

Review: Branch Target Buffer (BTB)

• A small “cache-like” memory in the instruction fetch stage

current

PC ……. ……. ……

Branch Inst. Direction Branch Target

PC

• Remembers previously executed branches, their addresses, information to aid

Address (tag) History (Most Recent)

p y

prediction, and most recent target addresses

• Predicts both branch direction and target

• When branch is actually resolved, BTB must be updated updated

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 7

y

Review: BTB Algorithm

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 8

Review: Keeping Track of Direction History:

2-bit Finite State Machines2 bit Finite State Machines

T
T

last two branches

TT
T

N

NT
T

T
T

TT
T next prediction

N

TN
T

TN
T

NN
N

N

T
N

• History avoids mispredictions due to one time events

N
N

– Canonical example: loop exit

• 2-bit FSM as good as n-bit FSM

S t ti t d FSM

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 9

• Saturating counter as good as any FSM

I-Cache & BTB Integration

• Why does this make sense?

Pl BTB t i h h li• Place a BTB entry in each cache line

– Each cache line tells you which line to address next

– Do no need the full PC, just an index the cache + a way select

– This is called way & line prediction

Implemented in Alpha 21264 processor• Implemented in Alpha 21264 processor

– On refills, prediction value points to the next sequential fetch line.

– Prediction is trained later on as program executes…

• When correct targets are known…

– Line prediction is verified in next cycle. If line-way prediction is incorrect,

slot stage is flushed and PC generated using instruction info and direction

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 10

prediction

Alpha 21264 Line & Way Predictionp y

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 11

Source: IEEE Micro, March-April 1999

Branch Target Prediction for Function Returns

• In most languages, function calls are fully nested

If you call A() B() C() D()– If you call A() B() C() D()

– Your return targets are PCc PCb PCa PCmain

• Return address stack (RAS)

– A FILO structure for capturing function return addresses

– Operation

• On a function call retirement, push call PC into the stackp

• On a function return, use the top value in the stack & pop

– A 16-entry RAS can predict returns almost perfectly

• Most programs do not have such a deep call treep g p

– Sources of RAS inaccuracies

• Deep call statements (circular buffer overflow – will lose older calls)

• Setjmp and longjmp C functions (irregular call semantics)

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 12

j p gj p (g)

RAS Operation

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 13

RAS Effectiveness & Size (SPEC CPU’95)

C t h?

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 14

• Can you see any catch?

Tracking Branch Speculation

NT T (TAG 1)

NT T NT T
(TAG 2)

NT T NT T NT TNT T

(TAG 3)

• At leading speculation

– For each branch, remember the predicted branch outcome

– For each branch, assign a tag to each speculated branch (circular order)

()

For each branch, assign a tag to each speculated branch (circular order)

– Tag all following instructions with the same tag

• At trailing confirmation (case of correct prediction)

– Remove the tag

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 15

Remove the tag

– Allow branch and all following instructions to retire (based on ROB order)

Recovering from Incorrect Speculation

NT T

NT T
NT

T
(TAG 2)

NT T NT T NT TNT T

(G)

(TAG 3) (TAG 1)

• Eliminate incorrect path

(TAG 3) (TAG 1)

– Must ensure that the misspeculated instructions produce no side effects

• Start new correct path
– Must remember the alternate (non-predicted) path

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 16

(p) p

Mis-speculation Recovery

• Eliminate incorrect path

1 U t () t d ll t ROB t i ith l ti i t ti1. Use tag(s) to deallocate ROB entries with speculative instructions

• Can structure ROB around groups of instructions with same tag

• Leads to some inefficiency but makes tracking simpler

2. Invalidate all instructions in the decode and dispatch buffers, as

well as those in reservation stations

• Start new correct path

1. Update PC with computed branch target (if predicted NT)g ()

2. Update PC with sequential instruction address (if predicted T)

3. Can begin speculation again at next branch

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 17

Review: Coupling the BTB with a Simple

Branch History Table (BHT)Branch History Table (BHT)

• Why would you have a BHT in addition to the BTB?

• How would you use its predictions?

• What if the BHT has a 2-cycle latency?

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 18

What if the BHT has a 2-cycle latency?

• See any shortcoming?

BHT Accuracy and Limitations

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 19

Branch Correlation

• So far, the prediction of each static branch instruction is based solely

on its own past behavior and not the behaviors of other neighboringon its own past behavior and not the behaviors of other neighboring

static branch instructions

• How about this one?

x=0;

If (someCondition) x=3; /* Branch A*/If (someCondition) x=3; / Branch A /

If (someOtherCondition) y+=19; /* Branch B*/

If (x<=0) dosomething(); /* Branch C*?

• Other correlation examples?

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 20

Global History Branch Predictor

• BHR: a shift register for global history

– Shift in latest result in each cycle

Provides global context

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 21

– Provides global context

• Advantages & shortcomings?

Local History Branch Predictor

• BHT keeps track of local history

– Select entry based on PC bits; shift in latest result in each cycle

Ad t & h t i ?

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 22

• Advantages & shortcomings?

Local History Predictor Example:

Short LoopsShort Loops

• Must identify the last

iteration of short loop
0000

0001

11101110111011101110
PHT

Loop closing branch’s history

iteration of short loop

– Predict its branch not-taken

0001

0010

0011

0100

• BHT allows us to use a

different PHT entry for

each iteration of the loop

0101

0110

0111 00

each iteration of the loop

– In this example, the loop

has 4 iterations

1000

1001

1010

1011 11

– ‘0111’ entry predicts not

taken

1011

1100

1101

1110 11

11

11

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 23

1111

Two-level Adaptive Branch predictors

Two-level TaxonomyTwo level Taxonomy

• Based on indices for branch history and pattern history

– BHR: {G P}: {Global history Per-address history}BHR: {G,P}: {Global history, Per address history}

– PHT: {g,p,s}: {Global, Per-address, Set}

• g: use the BHR output as the address into the PHT

• p: combine the BHR output with some bits from the PCp p

• s: use an arbitrary hashing function for PHT addressing

– 9 combinations: GAg, GAp, GAs, PAg, PAp, PAs, SAg, SAp and SAs

• Examples

– Our global predictor so far is a GAp

– Our local predictor so far was a PApOur local predictor so far was a PAp

• T. Yeh and Y. Patt. Two-Level Adaptive Branch Prediction. Intl.

Symposium on Microarchitecture November 1991

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 24

Symposium on Microarchitecture, November 1991.

Gshare Branch Prediction [McFarling]

Branch Address

j bits

xor

io
nBranch History

Shift Register (BHSR)

xor

P
re

d
ic

tig ()

k bits

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 25

BHT of 2 x 2 max(j,k)

Combining, Hybrid, or Tournament

Branch PredictorsBranch Predictors

• What if different programs exhibit different patterns?

• Combining predictors: use multiple predictors

– Each type tries to capture a particular program behavioryp p p p g

– Use another history-based prediction scheme to “predict” which predictor

should be used for a particular branch

You get the best of all worlds. This works quite wellYou get the best of all worlds. This works quite well

– Variations:

• Static prediction using software hints• Static prediction using software hints

• Select from more than one alternative (multihybrid and fusion predictors)

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 26

Combining, Hybrid, or Tournament

Branch PredictorsBranch Predictors

• E.g. Alpha 21264 used this approach

– Predictor 1: a gshare with 12 bits of history (4K counters)

– Predictor 2: a Pap with 1K history entries (10b) and 1K BHT

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 27

Predictor 2: a Pap with 1K history entries (10b) and 1K BHT

– Selector: a 4K entry BHT

Comparison of Branch Predictor (SPEC’92)

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 28

Are We Done with Branch Predictors?

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 29

Causes for Mispredictions

• Fundamentally unpredictable branches

– Cold miss data dependentCold miss, data dependent, …

• Training period

– Need some time to warm up the predictorNeed some time to warm up the predictor

– The more patterns detected, the longer it takes to train

• E.g. assume a global history predictor with 10 bits of history

• Need to potentially train up to 2^10 entries for a specific branch

• Insufficient history or patterns

• Aliasing/interference

– Branch predictors have limited capacity and no tags

– Negative aliasing: two branches train same entry in opposite directions

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 30

– Positive/neutral aliasing: two branches train same entry in same direction

Advanced Branch Predictors

(see textbook for details)(see textbook for details)

• Bi-mode predictor

– Separate PHT for mostly taken and mostly non-taken branches

– Eliminate negative aliasing

– Use predictor to select the type

• G-skew predictor (used in Alpha EV8)

– Use multiple hash-functions into PHTs & vote on outcome– Use multiple hash-functions into PHTs & vote on outcome

– Reduce chance of negative interference affecting prediction

• Agree predictor

– BTB gives you a basic prediction

– Extra PHT tells you if you should agree with the BTB

– Biased branches have positive interference regardless of direction…

• YAGS

Keep a small tagged cache with branches that experience interference– Keep a small tagged cache with branches that experience interference

• Other related ideas:

– Branch filtering, selective branch inversion, alloyed history predictors, path history

predictors, variable path length predictors, dynamic history length fitting predictors, loop

ti di t t di t d t fl di t t l l di t

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 31

counting predictors, percepton predictors, data-flow predictors, two-level predictors,

analog circuit predictors, …

gskewed Predictorg

Branch Address

f
0

PHT
0

PHT
1

PHT
2

Global BHR

0

f
1

f
2

Ma jority

Fi l P di i

• Multiple PHT banks indexed by different hash functions

– Conflicting branch pair unlikely to conflict in more than one PHT

Majorit ote determines prediction

Final Prediction

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 32

• Majority vote determines prediction

• Used in the cancelled Alpha 21464

Agree Predictorg

Branch Address

biasing bits

Branch Address

Global BHR

XOR

Prediction

PHT
1

0

1 = agree with bias bit
0 = disagree

• Same principle as bi-mode

• PHT records whether branch bias matches outcome

E l it 70 80% t ti di t bilit

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 33

– Exploits 70-80% static predictability

• Used in in HP PA-8700

Prediction Confidence

A Very Useful Tool for SpeculationA Very Useful Tool for Speculation

• Estimate if your prediction is likely to be correct

A li ti• Applications

– Avoid fetching down unlikely path

• Save time & power by waiting

– Start executing down both paths (selective eager execution)

– Switch to another thread (for multithreaded processors)

• ImplementationImplementation

– Naïve: don’t use NT or TN states in 2-bit counters

– Better: array of CIR (correct/incorrect registers)

• Shift in if last prediction was correct/incorrect• Shift in if last prediction was correct/incorrect

• Count the number of 0s to determine confidence

– Many other implementations are possible

Using counters etc

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 34

• Using counters etc

Branch Confidence Prediction

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 35

Other Branch Prediction Related Issues

• Multi-cycle BTB

Keep fetching sequentially repair later (bubbles for taken branches)– Keep fetching sequentially, repair later (bubbles for taken branches)

– Need pipelined access though

• BTB & predictor in series

– Get fast target/direction prediction from BTB only

– After decoding, use predictor to verify BTB

• Causes a pipeline mini-flush if BTB was wrongp p g

– This approach allows for a much larger/slower predictor

• BTB and predictor integration

C BTB ith th l l t f di t– Can merge BTB with the local part of a predictor

– Can merge both with I-cache entries

• Predictor/BTB/RAS updates

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 36

– Can you see any issue?

Fetch & Predict Example:

AMD OpteronAMD Opteron

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 37

Why is Prediction Important in Opteron?

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 38

Fetch & Predict Example:

AMD OpteronAMD Opteron

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 39

Fetch & Predict Example

AMD OpteronAMD Opteron

• Branch selectors: a local history table

Stored along with L1 and L2 (!) lines for instructions (2 bits per 2 bytes)– Stored along with L1 and L2 (!) lines for instructions (2 bits per 2 bytes)

– Allow to predict up to 2 branches + 1 return

• Global history counters: 4 counters per line

– Remember there can be >1 branch per cache line

– 4 bits from PC, 8 bits from global history

• BTB: each entry has up to 4 targetsBTB: each entry has up to 4 targets

– Remember there can be >1 branch per cache line

– Partial targets are just enough to index the I-Cache

Th l i l b l b l d l l hi– They also integrate a selector between global and local history

• BTAC: a functional unit for early branch target calculation

EE382A – Autumn 2009 Christos KozyrakisLecture 5 - 40

