
Programming Your Network at Run-time
for Big Data Applications

Guohui Wang?, T. S. Eugene Ng†, Anees Shaikh?

?IBM T.J. Watson Research Center, †Rice University

ABSTRACT
Recent advances of software defined networking and optical switch-
ing technology make it possible to program the network stack all
the way from physical topology to flow level traffic control. In this
paper, we leverage the combination of SDN controller with optical
switching to explore the tight integration of application and net-
work control. We particularly study the run-time network configu-
ration for big data applications to jointly optimize application per-
formance and network utilization. We use Hadoop as an example
to discuss the integrated network control architecture, job schedul-
ing, topology and routing configuration mechanisms for Hadoop
jobs. Our analysis suggests that such an integrated control has great
potential to improve application performance with relatively small
configuration overhead. We believe our study shows early promise
of achieving the long-term goal of tight network and application
integration using SDN.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design

Keywords
Software Defined Networking, Optical Circuit Switching, Big Data
Applications

1. INTRODUCTION
Network engineers and researchers have long sought effective

ways to make networks more “application-aware”. A variety of
methods for optimizing the network to improve application per-
formance or availability have been considered. Some of these ap-
proaches have been edge-based, for example tuning protocol pa-
rameters at end-hosts to improve throughput [28], or choosing over-
lay nodes to direct traffic over application-optimized paths [23].
Examples of network-centric approaches include providing custom
instances of routing protocols to applications [10], or even allowing
applications to embed code in network devices to perform applica-
tion processing [24].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

While these earlier efforts have met with varying degrees of suc-
cess and adoption, the recent emergence of the software-defined
networking paradigm has created renewed interest in tailoring the
network to better meet the needs of applications. By providing
a well-defined programming interface to the network (e.g., Open-
Flow), SDN provides an opportunity for more dynamic and flexi-
ble interaction with the network. Despite this promising vision, the
ability of SDN to effectively configure or optimize the network to
improve application performance and availability is still nascent.

Recently, two concomitant trends in data center applications and
network architecture present a new opportunity to leverage the ca-
pabilities of SDN for truly application-aware networking. The first
is the growing prominence of big data applications which are used
to extract value and insights efficiently from very large volumes of
data [1, 2, 20, 29]. Many of these applications process data ac-
cording to well-defined computation patterns, and also have a cen-
tralized management structure which makes it possible to leverage
application-level information to optimize the network. The second
trend is the growing number of proposals for data center network
architectures that leverage optical switches to provide significantly
increased point-to-point bandwidth with low cabling complexity
and energy consumption [26, 18, 15, 25]. Some of this work has
demonstrated how to collect network-level traffic data and intelli-
gently allocate optical circuits between endpoints (e.g., top-of-rack
switches) to improve application performance. But without a true
application-level view of traffic demands and dependencies, circuit
utilization and application performance can be poor [14].

These three trends taken together – software-defined networking,
dynamically reconfigurable optical circuits, and structured big data
applications – motivate us to explore the design of an SDN con-
troller using a “cross-layer” approach that configures the network
based on big data application dynamics at run-time. In this paper,
we focus on Hadoop as an example to explore the design of an inte-
grated network control plane, and describe Hadoop job scheduling
strategies to accommodate dynamic network configuration. We in-
troduce the topology construction and routing mechanisms for a
number of communication patterns, including single aggregation,
data shuffling, and partially overlapping aggregation traffic patterns
to improve application performance.

The proposed topology configuration algorithms can be imple-
mented using a small number of OpenFlow rules on each switch.
Our preliminary estimation suggests that the flow rule installation
introduces low overhead compared to the relatively long duration of
MapReduce jobs. However, a number of challenges remain which
have implications for SDN controller architectures. For example,
in contrast to common SDN use cases such as WAN traffic engi-
neering [12] and cloud network provisioning [8], run-time network
configuration for big data jobs requires more rapid and frequent

103

SDN	 	
Controller	

Hadoop	
Scheduler	 	

HBase	
Master	 	

Mesos	 cluster	
manager	

OCS	

Individual application controllers Multi-application managers

… …

Figure 1: Integrated network control for big data applications

flow table updates. This imposes significant requirements on the
scalability of the SDN controller and how fast it can update state
across the network. Another challenge is in maintaining consistent
network-wide routing updates with low latency, and in coordinat-
ing network reconfiguration requests from different applications in
multi-tenancy environments.

This is a work-in-progress, and there is clearly more work to be
done to realize and fully evaluate the design. Nevertheless, we be-
lieve that this work shows early promise for achieving one of the
oft-cited goals of software-define networking, that is to tightly in-
tegrate applications with the network to improve performance and
utilization.

2. INTEGRATED NETWORK CONTROL
ARCHITECTURE

In this section, we describe the overall architecture of cross-layer
network control for big data applications.

2.1 System Architecture
Figure 1 shows the system architecture of a cross-layer network

control plane. We assume a hybrid electrical and optical data cen-
ter network where OpenFlow-enabled top-of-rack (ToR) switches
are connected to two aggregation networks, a multi-root tree with
Ethernet switches and a MEMS-based optical circuit switch1. Each
ToR switch has multiple optical uplinks connected to the optical
switch (commodity switches typically have 4 to 6 uplinks). All
the switches are controlled by a SDN controller which manages
physical connectivity among ToR switches over optical circuits by
configuring the optical switch. It can also manage the forwarding
at ToR switches using OpenFlow rules.

Many big data applications, such as Hadoop [1], Dryad [20],
Spark [29] and HBase [2], have a master node, or application con-
troller, that manages all incoming job requests. To support cross-
layer network control, the SDN controller is interfaced to the mas-
ter node for each individual application, such as the Hadoop sched-
uler or HBase master. It could also connect to broader coordination
frameworks such as Mesos [13] that manage multiple co-existing
applications sharing the data center.

Since the SDN controller may be shared among multiple applica-
tions, it provides a general interface to configure devices and con-
trol forwarding in the network. It also provides a query interface to
make authoritative network information available to applications.
For big data applications, the SDN controller provides an interface
that accepts traffic demand matrices from application controllers in
a standard format. The traffic demand matrix describes the vol-

1We assume MEMS-based optical switch for the simplicity of dis-
cussion. The integrated network control plane can also incorpo-
rate other optical circuit switching technologies with different ways
to configure network topologies, e.g. wavelength selective switch
used in OSA [15].

ume and policy requirements for traffic exchanged between differ-
ent source and destination racks.

Using the network configuration interface, application controllers
report traffic demands and structure from one or multiple jobs and
issue a network configuration command to set up the topology ac-
cordingly. They can also use network information provided by the
SDN controller, such as topology, to make more informed decisions
on job scheduling and placement (further described in Section 3.2).
Application controllers implement their own application-specific
mechanisms to collect traffic demands from different components,
and also define appropriate criteria to correlate and aggregate de-
mands from multiple jobs.

2.2 Traffic Pattern of Big Data Applications
The traffic in big data applications consists of bulk transfer, data

aggregation/partitioning, and latency sensitive control messages.
The control traffic is typically low data rate and can be handled eas-
ily by even a relatively slow Ethernet. In our architecture, control
messages are always sent over the packet switched network using
default routes that direct traffic over the Ethernet2.

Data aggregation and partitioning, where data are partitioned or
aggregated between one server and a large number of other servers,
is a common traffic pattern. For example, in MapReduce, the inter-
mediate results from all the mappers will be aggregated at a reducer
for performing the reduce function. The shuffle phase of MapRe-
duce is actually a combination of multiple data aggregation patterns
between mappers and reducers. In parallel database systems, most
operations require merging and splitting data from different tables.
Data aggregation requires high bandwidth to exchange large vol-
umes of data between a potentially large number of servers. In the
typical case of oversubscribed data center networks, the data aggre-
gation and shuffling patterns can easily become performance bot-
tlenecks. Our cross-layer network controller is designed primarily
to address the challenge of handling a mix of multiple aggregation
and data shuffling tasks.

2.3 The Advantage of Application Awareness
For big data applications, an application-aware network controller

provides improved performance. By carefully allocating and schedul-
ing high-bandwidth links via optical paths, job completion time can
be reduced significantly. Data center operators also benefit from
better utilization of the relatively limited set of high-bandwidth op-
tical links.

Current approaches for allocating optical circuits in data centers,
such as c-Through [26], Helios [18] and OSA [15], rely on network
level statistics to estimate the traffic demand matrix in the data cen-
ter. While these designs show the potential to benefit applications,
recent work has shown that without a true application-level view of
traffic demands and dependencies, circuit utilization and applica-
tion performance can be poor [14]. First, it is difficult to estimate
real application traffic demand based only on readings of network
level statistics. Without accurate information about application de-
mand, optical circuits may be configured between the wrong lo-
cations, or circuit flapping may occur from repeated corrections.
Second, blindly optimizing circuit throughput without considering
application structure could cause blocking among interdependent
applications and poor application performance.

To give an example of these problems, and further motivate our
approach, Figure 2 shows an aggregation pattern where data is ag-
gregated from racks R1–R8 to rack R0. Each rack has 200 MB of
data to send to R0. Rack R0 has 3 optical links with 10Gbps band-
2This can be implemented using static default rules on ToR
switches in addition to dynamic routes discussed later.

104

Aggregation
demand

Aggregation
tree topology

0

1 2 3 4 5 6 7 8

0

5 6 1

2 7 8 3 4

Figure 2: An Example of 8-to-1 Aggregation

width on each link. The aggregation flows are correlated where the
application cannot proceed until all the data has been aggregated.

In single-hop circuit allocation systems, such as c-Through [26]
and Helios [18], the aggregation can be finished in 3 rounds with
circuits on rack R0 connecting to 3 other racks in each round.
Assuming the minimum circuit reconfiguration interval is set to
1 second, i.e., circuits will be in place for a minimum of 1 sec-
ond, the aggregation will be finished in 2.16 seconds (1s + 1s +
200MB/10Gbps), even ignoring the reconfiguration overhead of
optical circuits (usually on the order of tens of ms). However,
as discussed in [14], with competing background traffic, circuits
might be allocated to other flows due to the limited view of network-
level traffic demand estimation. In this case, the aggregation might
take much longer to finish. For example, if the 200 MB traffic on
rack R5 is mistakenly placed on the congested Ethernet network
with, say, 100 Mbps of residual bandwidth, the completion time of
the whole aggregation could be as high as 16 seconds.

With a cross-layer view, the SDN controller can collect related
traffic demands from application tasks and configure the network
for them in an application-aware way. As shown in Figure 2, the
SDN controller can set up an aggregation tree topology among the
9 racks and complete the aggregation task in one round without re-
configuring the circuits (i.e., in just 480 ms, a 70% reduction). In
this sense, application-aware network configuration based on cor-
related traffic has the potential to achieve significant performance
improvements.

Note that recently proposed all-optical architectures like OSA [15]
can create a data center wide multi-hop topology among racks us-
ing optical circuits. However, OSA has two important characteris-
tics that make it fundamentally different from our proposal. Firstly,
OSA is still application agnostic and the multi-hop topology is con-
structed based on network-level observations of traffic demand. We
and others have already argued that application agnostic designs
can lead to poor application performance [14]. Secondly, OSA re-
quires all racks in the data center – potentially thousands of racks
in total, with different subsets of racks running unrelated applica-
tions – form one connected network topology. This inflexibility
coupled with the lack of application awareness makes it hard to
optimize for a specific application running over a subset of racks.
Consider our data aggregation example under OSA. Due to simul-
taneous traffic demands from many other tasks, rack R1, ..., R8
could be placed topologically far away from rack R0, resulting in
significantly slower data aggregation.

3. NETWORK CONFIGURATION FOR
HADOOP JOBS

In this section, we use Hadoop as an example to discuss the spe-
cific design of an integrated network control plane.

3.1 Traffic Demand Estimation of Hadoop Jobs
Hadoop uses a centralized architecture to manage jobs and data.

Job submission and scheduling are controlled by a job tracker node.
A name node manages the meta-data of all the data blocks on Hadoop
distributed file system. The centralized architecture makes it easier
to collect job and data related information for Hadoop applications.
A demand estimation engine can be implemented on the job tracker
to collect the traffic demand matrix for selected jobs and request
network configuration for them.

Hadoop job tracker has accurate information about the place-
ment of map and reduce tasks. It also knows which map and reduce
tasks belong to the same MapReduce job. So given a set of jobs,
the demand estimation engine can compute the source and destina-
tion racks of their traffic demand easily by looking at the placement
of tasks. However, estimating traffic volume among these tasks re-
quires more detailed analysis. When the job is submitted, the job
tracker can compute the input split size for each map task. But
the volume of shuffling traffic between a map and a reduce task
is decided by the size of intermediate data generated by the map-
per, which is not available until the map task is finished. So the
job tracker has to monitor the progress of all the tasks and updates
the observed traffic volume among them at run-time. By correlat-
ing traffic volume observed on different tasks, it can predict the
shuffling traffic demand of map tasks before they are finished. For
example, we can predict the shuffling traffic demand of a map task
using traffic volume observed on previous similar map tasks. Since
all the map tasks belong to the same job are running the same map
function, they would generate similar amount of intermediate data
with the same input split size.
3.2 Network-aware Job Scheduling

The default scheduling discipline in Hadoop is FIFO, where jobs
are submitted to a queue and the job tracker simply schedules them
one by one in the order of arrival. Hadoop uses different strategies
to place map tasks and reduce tasks. Data locality is considered
in the placement of map tasks so that the input data of most map
tasks is loaded from local disks. Reduce tasks are placed randomly
without considering data locality in shuffling phase.

Hadoop job scheduling is still an active research topic, with re-
cent studies showing that task scheduling has significant implica-
tions on the performance of Hadoop jobs [30, 7]. With knowledge
of network-layer information, Hadoop can make more informed de-
cisions about job placement and scheduling. Although job schedul-
ing is not the focus of this paper, we discuss a few simple strategies
to leverage the integrated network control plane in the job place-
ment to make the network configuration easier.

Bin-packing placement: We use rack-based bin-packing place-
ment for reduce tasks to aggregate them onto a minimum number of
racks. Since the SDN controller configures topology and routing at
the rack level, rack-based bin-packing placement can create oppor-
tunities to aggregate traffic on these racks and reduce the number
of ToR switches that need to be configured.

Batch processing: The network configuration of map and re-
duce tasks should be handled in batches, where a group of tasks
submitted in a period T will be processed together. Within a batch
of tasks, the job tracker selects those with greatest estimated vol-
ume and requests the SDN controller to set up the network for
them. Tasks in earlier batches have higher priority such that tasks
in later batches can be allocated optical circuits only if there are
left over circuits from earlier batches. There are two benefits of
doing batch processing. First, it helps aggregate traffic from mul-
tiple jobs to create long duration traffic that is suitable for circuit
switched paths. Second, it ensures that an earlier task does not
become starved by later tasks. The batch processing can be imple-
mented as a simple extension to Hadoop job scheduling.

105

8-to-4
shuffling

9

1 2 3 4 5 6 7 8

10 11 12

2D Torus
topology 9

1 10 6 11

5 2 12 4

7 8 3

Figure 3: 8-to-4 Shuffling Using Torus Topology

3.3 Topology and Routing for Aggregation
Patterns

A major challenge in configuring the network for Hadoop tasks
is to handle aggregation traffic among mappers and reducers3. Each
reducer will collect intermediate results from a set of mappers.
With a batch of map and reduce tasks, the traffic among them is
a mix of multiple aggregations. Depending on where mappers and
reducers are placed, these aggregations could end up as a single ag-
gregation, a many-to-many shuffling pattern, or a partially overlap-
ping aggregation pattern across multiple racks. Below we will dis-
cuss how to configure the network for single aggregation and shuf-
fling patterns, and then how to use these configurations as building
blocks to handle multiple potentially overlapping aggregations.

Single aggregation pattern: We start from the single aggrega-
tion pattern, where reducers on one rack need to collect data from
mappers on other racks. Using multiple optical circuits available
on each rack, we can construct a tree topology among all the racks
to support the aggregation traffic in an application-aware network
configuration. As shown in earlier in Figure 2, using 3 optical up-
links, we can construct a 2-hop aggregation tree to finish an 8-to-
1 aggregation pattern without reconfiguring the network. All the
racks can send to the aggregator rack through multi-hop optical
paths, and we can use OpenFlow flow rules on the ToR switches to
setup the routes.

Neighbor selection and routing: Two issues need to be ad-
dressed when constructing these multi-hop topologies, neighbor
selection and routing. To reduce the traffic sending over multi-hop
optical paths, we want to place racks with higher traffic demand
closer to the aggregator in the tree. One simple strategy to achieve
this is to rank all the racks based on the traffic demand, and add
racks into the tree topology in the order of high demand to low de-
mand. The aggregation traffic can be easily routed along the tree
towards the aggregator target.

Data shuffling pattern: When reduce tasks are placed on mul-
tiple racks, the traffic among reducers and mappers creates the com-
mon cross-rack data shuffling pattern in many MapReduce jobs. In
general, we can describe a N − to −M data shuffling as follows:
a N − to −M data shuffling is a traffic pattern from source set S
to destination set D, |S| = N, |D| = M , where data will be ag-
gregated from all the nodes in S to each of the nodes in D. When
S = D, we have an all-to-all shuffling pattern.

We can build more densely connected topologies using optical
links to support shuffling traffic. Recently proposed server-based
data center network architectures, such as BCube [19] and Cam-
Cube [5], leverage Hypercube and Torus topologies originally de-
veloped in the HPC community to build network with high path re-

3Traffic due to data loading and result writing is mostly point to
point bulk transfer, which can be handled relatively easily with
point-to-point optical circuits.

dundancy. These topologies are designed with balanced structures
to avoid hotspots or single point bottlenecks, which makes them
suitable to exploit multi-pathing for shuffling traffic. In our case,
we can build a Hypercube or Torus-like topology among racks to
support data shuffling. For example, Figure 3 shows a 2-D Torus
topology we can construct to support a 8-to-4 rack data shuffling
using 4 optical uplinks on each rack.

Neighbor selection and routing: The construction and routing
of Torus topology is more complicated. We want to place racks
with high traffic demand close to each other to reduce the amount
of data over multi-hop paths. Finding an optimal Torus topology
for a shuffling pattern is difficult due to the large search space in
the topology construction. However, a greedy heuristic algorithm
can be used to construct the Torus network. Building a 2-D Torus
topology essentially places racks into a 2-D coordinate space and
connects each row and each column into rings. Given an N − to−
M shuffling pattern with R unique racks involved, we can build
a X × Y Torus topology with X racks in each row and Y racks
in each column, where X = d(

√
R) and Y = d(R

X
). The Torus

network is constructed as follows:

1. Find four neighbors for each rack based on the traffic demand
and rank all the racks based on the overall traffic demand to
its neighbors.

2. Start constructing the Torus from the highest ranked rack
S. Connect two rings around rack S with X and Y racks
in the rings respectively. Similarly, racks with higher traf-
fic demand to rack S will be placed closer to S in the ring.
These two rings will be the “framework” for the Torus topol-
ogy, which map to coordinates (0, 0), ..., (0, X − 1) and
(0, 0), ..., (Y − 1, 0) in the 2-D Torus space.

3. Select racks for row 2 to row Y one by one based on the
coordinates. Given a coordinate {(x, y), x > 0, y > 0},
select the rack with the highest overall demand to neigh-
boring racks with coordinates {(x− 1, y), (x, y − 1), ((x+
1) mod X, y), (x, (y+1) mod Y)}. If a neighbor rack has
not been placed, the demand will be ignored.

Previous work has proposed different routing schemes over a
Torus topology to explore multiple paths in the topology [5]. A
routing scheme well-suited for data shuffling traffic is per-destination
rack spanning tree, which is similar to the source-based spanning
tree scheme for multicast traffic. The idea is to build a spanning tree
rooted at each aggregator rack. Traffic sent to each aggregator will
be routed over its spanning tree. When an optical link is selected
for a spanning tree, we can increase its link weight to favor other
links for other spanning trees. By doing that we can exploit all the
available optical links in the Torus topology to achieve better load
balancing and multi-pathing among multiple spanning trees. In our
ongoing work, we plan to evaluate the performance implications
of this routing scheme on Hadoop performance. In addition to the
routing scheme, recent studies have also explored in-network par-
tial aggregation on server-based Torus topologies [5, 11]. A similar
in-network partial aggregation service can also be explored on the
rack level using a Torus topology constructed with optical circuits.

Partially overlapping aggregations: Data shuffling can be
treated as multiple aggregations sharing the same sources, which
is a special case of overlapping aggregation patterns. In the general
case, aggregation patterns may have partially overlapping sources
and aggregators. For these patterns, the traffic demand among racks
could be sparse. If we build a big Torus network among these racks,
many optical links may not be highly utilized. We discuss how to

106

D1 D2

S1 S2
S2

’ S1
’ S3

’

Figure 4: Scheduling two partial-overlapping aggregations

divide general aggregation patterns into multiple single aggregation
and shuffling patterns and schedule circuits among them.

As shown in Figure 4, given two aggregation patterns T1 =
{S1 → D1} and T2 = {S2 → D2} where Si is the set of source
racks and Di is the aggregator racks. We have: S′

1 = S1 \ S2,
S′
2 = S1 ∩ S2, S′

3 = S2 \ S1. T1 and T2 can be divided into
four sub-patterns: T ′

1 = {S′
1 → D1}, T ′

2 = {S′
2 → D1},

T ′
3 = {S′

2 → D2}, T ′
4 = {S′

3 → D2}. Among the four pat-
terns, T ′

1 and T ′
4 have different source sets and different aggrega-

tors. They can be scheduled as two independent aggregations. T ′
2

and T ′
3 have the same source set and different aggregators, which

is essentially a N − to − 2 shuffling pattern. Therefore, we can
divide general aggregation tasks T1 and T2 into two independent
aggregations {T ′

1, T
′
4} and one shuffling pattern {T ′

2, T
′
3}.

We can use the configuration algorithms discussed before to sched-
ule the network for each pattern. Depending on the number of
available optical links on aggregator racks, the two groups of sub-
patterns can be scheduled concurrently or one after another. Us-
ing this mechanism, we can iteratively organize multiple general
aggregation patterns into multiple groups of independent aggrega-
tions and shuffling patterns and scheduling them accordingly. The
re-organization of aggregation patterns allows us to explore path
sharing among them and improve the utilization of optical circuits.

4. IMPLEMENTATION AND OVERHEADS
To implement the topology construction and routing schemes

discussed above, we need to install OpenFlow rules on ToR switches
and issue commands to reconfigure optical switches. Commer-
cially available MEMS switches take less than 10 ms to set up a
new configuration [26, 18, 15]. However, run-time routing config-
uration for big data jobs over a dynamic network topology requires
rapid and frequent flow table updates over a potentially large num-
ber of switches. With high arrival rate of jobs, the routing config-
uration has to be done within a short period of time. This imposes
significant challenges on the SDN controller in terms of its scala-
bility and how fast it can update network-wide routing state.

We want to use as few rules as possible to implement the rout-
ing configuration, not only because of limited flow table size on
switches, but also in order to reduce delays in reconfiguring the
network. Since the routing setup happens at rack level, one way to
reduce the required number of rules is to tag packets based on their
destination rack. We can use the VLAN field to tag the packets,
with each rack assigned to one VLAN id4. Packets sent to a des-
tination rack will be tagged with the same VLAN id. We can then
set up forwarding rules at ToR switches based on the VLAN id in
packets. Packet tagging can be implemented in the server’s kernel
as in c-Through [26] or using OpenFlow rules on a hypervisor vir-
tual switch like Open vSwitch [4]. Servers can look up the VLAN
tag in a centralized repository based on the destination address of
4MPLS labels can also be used with support from the new version
of OpenFlow protocol v 1.2.

packets. Packet tagging is set up on demand when the traffic is first
sent to a destination server, so it is not necessary to install all the
rules when the network is reconfigured for dynamic tasks.

To realize the per-destination rack spanning tree, we need one
flow rule for each destination rack. For a topology with N racks,
we need at most N rules on each ToR switch to realize the rout-
ing configuration. Recent analysis of large production data center
traces [17, 21] shows that most MapReduce jobs last for tens of
seconds or longer, and many data intensive jobs run for hours. The
largest jobs run on a few hundred servers5. Commodity OpenFlow
switches can install a flow rule in a few ms. For example, commer-
cially available 10Gbps OpenFlow switches can install more than
700 new rules in a second depending on the load on the switch
and how many rules are batched together. For a large Hadoop job
running on 20 racks, it takes at most tens of ms to install 20 for-
warding rules on each ToR switch. Given the duration and size
of typical MapReduce jobs in production data centers, we believe
the latency to install rules is relatively small. Also note that the
network configuration can overlap with task startup process.

Nevertheless, challenges remain in addressing the consistency
issue when we reconfigure the physical connectivity and refresh
all the routing state on tens of switches simultaneously. We will
have to control the timing and order of topology reconfiguration
and route state updates on different switches to avoid potential tran-
sient errors and forwarding loops. Recent work [22] has proposed
solutions for the consistent update issues in the SDN context, but
the solution requires a significant number of extra rules on each
switches. It remains to be seen how much extra delay this approach
adds to achieve state consistency during the topology and routing
updates required by our system. In our future work, we plan to in-
vestigate schemes to ensure network-wide consistent updates while
adhering to the low latency requirement.

5. DISCUSSION AND FUTURE WORK
Our discussion has been focused on configuring physical topol-

ogy and routing for big data applications. Several other issues re-
main to be explored in future work to realize the full capability of
the integrated network control.

Fairness, priority and fault tolerance: On the fault tolerance
aspect, the SDN controllers, such as Floodlight [3], have built in
mechanisms to handle network device and link failures. Failed de-
vices and links will be updated in the topology by the SDN con-
troller. Most big data applications have also been designed to han-
dle failures. For example, Hadoop job tracker monitors the pro-
gression of all the jobs and failed tasks will be rescheduled onto
different servers. Therefore, in the integrated system, the failure
handling mechanisms can remain untouched with application man-
agers and the SDN controller handling failures at different levels.

Since network configuration is performed over batches of appli-
cation tasks, task-level fairness and priority scheduling within an
application can be done by the application job scheduler. How-
ever, the data center network infrastructure is normally shared by
multiple applications. Application managers could request network
configuration concurrently for their tasks. The fairness and priority
among different application requests must be handled by the SDN
controller. The scheduling policy of SDN controller for different
applications is an open question to be explored.

Traffic engineering for big data applications: Using Open-
Flow protocol, SDN controller can perform flow-level traffic en-
gineering for big data applications. There are multiple routes on
the rack level going through different optical paths and electrical
5Assuming 20-40 servers per racks, it amounts to roughly tens of
racks.

107

paths. Accurate traffic demand and structural pattern from appli-
cations can allow SDN controller to split or re-route management
and data flows on different routes (as discussed in Hedera [6], Mi-
croTE [9]). Although it remains to be seen how effectively the
flow-level traffic engineering can optimize the performance of big
data applications, these schemes could be useful if optical switches
are not available in production data centers. Implementing flow
level traffic engineering requires installing a rule for each selected
flow on ToR switches, which imposes additional overhead to the
network configuration. In future work, we will explore flow level
traffic engineering mechanisms for big data applications and the
efficient implementation of them using SDN controller.

6. RELATED WORK
In addition to aforementioned work using optical switches to re-

configure the data center network topology, Schares et al. have
discussed the use of optical switches for stream processing sys-
tem [16]. Several recent studies explore the use of OpenFlow to
adjust the routing for different applications. In [12], Das et al. pro-
pose to use OpenFlow to aggregation traffic for different services
over dynamic links on converged packet-circuit network. This work
is focused on wide-area network services. Topology switching [27]
is a recent proposal to isolate applications and use different rout-
ing mechanisms for them in fat-tree based data centers. Our work
explores more tight integration between applications and network
control. We focus on the run-time network reconfiguration for big
data applications and the dynamic interaction between application
components and the SDN controller in data centers. We study the
programmability on every layer of network from physical topology
to routing and flow level traffic engineering.

7. CONCLUSION
In this paper, we explore an integrated network control architec-

ture to program the network at run-time for big data applications us-
ing optical circuits with an SDN controller. Using Hadoop as an ex-
ample, we discuss the integrated network control architecture, job
scheduling, topology and routing configuration for Hadoop jobs.
Our preliminary analysis suggests the great promise of integrated
network control for Hadoop with relatively small configuration over-
head. Although our discussion has been focused on Hadoop, the
integrated control architecture can be applied to any big data ap-
plications with a centralized or logically centralized master. Since
data aggregation is common in big data applications, the network
configuration for aggregation patterns can be generally applied to
other applications too. We believe our study serves as a step to-
wards tight and dynamic interaction between applications and net-
work using SDN.

8. REFERENCES
[1] Apache Hadoop, http://hadoop.apache.org.
[2] Apache HBase, http://hbase.apache.org.
[3] Floodlight openflow controller.

http://floodlight.openflowhub.org/.
[4] Open vswitch. http://openvswitch.org/.
[5] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and

A. Donnelly. Symbiotic routing in future data centers. In
SIGCOMM’10, August 2010.

[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In USENIX NSDI’10, April 2010.

[7] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris. Reining in the outliers in
map-reduce clusters using mantri. In USENIX OSDI’10,
December 2010.

[8] T. Benson, A. Akella, A. Shaikh, and S. Sahu. Cloudnaas: A
cloud networking platform for enterprise applications. In
ACM SOCC’11, October 2011.

[9] T. Benson, A. Anand, A. Akella, and M. Zhang. Microte:
The case for fine-grained traffic engineering in data centers.
In ACM CoNEXT’11, December 2011.

[10] P. Chandra, A. Fisher, C. Kosak, T. S. E. Ng, P. Steenkiste,
E. Takahashi, and H. Zhang. Darwin: Resource management
for value-added customizable network service. In IEEE
ICNP’98, October 1998.

[11] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea.
Camdoop: Exploiting in-network aggregation for big data
applications. In USENIX NSDI’12, April 2012.

[12] S. Das, Y. Yiakoumis, G. Parulkar, P. Singh, D. Getachew,
P. D. Desai, and N. McKeown. Application-aware
aggregation and traffic engineering in a converged
packet-circuit network. In OFC’11, March 2011.

[13] B. Hindman et al. Mesos: A platform for fine-grained
resource sharing in the data center. In USENIX NSDI’11,
March 2011.

[14] H. Bazzaz et al. Switching the optial divide: Fundamental
challenges for hybrid electrical/optical data center networks.
In ACM SOCC’11, October 2011.

[15] K. Chen et al. OSA: An optical switching architecture for
data center networks with unprecedented flexibility. In
NSDI’12, April 2012.

[16] L. Schares et al. A reconfigurable interconnect fabric with
optical circuit switch and software optimizer for stream
computing systems. In OFC’09, March 2009.

[17] Y. Chen et al. Energy efficiency for large-scale mapreduce
workloads with significant interactive analysis. In ACM
EuroSys’12, April 2012.

[18] N. Farrington, G. Porter, S. Radhakrishnan, H. Bazzaz,
V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat.
Helios: A hybrid electrical/optical switch architecture for
modular data centers. In ACM SIGCOMM, August 2010.

[19] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. Bcube: A high performance,
server-centric network architecture for modular data centers.
In ACM SIGCOMM’09, August 2009.

[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed data-parallel programs from sequential building
blocks. In ACM EurySys’07, March 2007.

[21] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An
analysis of traces from a production mapreduce cluster. In
CMU Technical Report, December 2009.

[22] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In ACM
SIGCOMM’12, August 2012.

[23] J. Seedorf and E. Burger. Application-layer traffic
optimization (alto) problem statement. In RFC-5693, 2009.

[24] D. L. Tennenhouse, J. M. Smith, W. Sincoskie, D. Wetherall,
and G. Minden. A survey of active network research. In
IEEE Communications Magazine, January 1997.

[25] A. Vahdat, H. Liu, X. Zhao, and C. Johnson. The emerging
optical data center. In OFC’11, March 2011.

[26] G. Wang, D. Andersen, M. Kaminsky, K. Papagiannaki,
T. S. E. Ng, M. Kozuch, and M. Ryan. c-Through: Part-time
optics in data centers. In ACM SIGCOMM, August 2010.

[27] K. Webb, A. Snoeren, and K. Yocum. Topology switching for
data center networks. In USENIX Hot-ICE’11, March 2011.

[28] E. Weigle and W. Feng. A comparison of tcp automatic
tuning techniques for distributed computing. In IEEE
HPCS’02, July 2002.

[29] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. In
USENIX HotCloud’10, June 2010.

[30] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving mapreduce performance in
heterogeneous environments. In USENIX OSDI’08,
December 2008.

108

