
Programming Methodology Notes

Anupama Potluri
School of Computer and Information Sciences

University of Hyderabad

August 20, 2020

Contents

1 Introduction 4

2 Specification 4

3 Design of Algorithms 5
3.1 Algorithmic Primitives . 6

4 “Finding the Maximum” problem 7
4.1 Specification 1 . 7
4.2 Design 1 . 8
4.3 Specification 2 . 8
4.4 Design 2 . 9
4.5 Specification 3 . 9
4.6 Design 3 . 10

5 “Finding the Mode” problem 11
5.1 Mode: Specification 1 . 11
5.2 Mode: Design 1 . 11
5.3 Mode: Specification 2 . 11
5.4 Mode: Design 2 . 11
5.5 Mode: Specification 3 . 11
5.6 Mode: Design 3 . 12
5.7 Mode: Specification 4 . 12
5.8 Mode: Design 4 . 12

6 Set Operations Problem 12

7 Testing and Debugging 12
7.1 Unit Testing . 13
7.2 Integration Testing . 13
7.3 Code Coverage . 13
7.4 Design of Test Cases . 14

8 C language discussion 14
8.1 Declaration versus Definition . 15
8.2 Global Variables and Side Effects . 16
8.3 Scope and Extent of Variables . 17
8.4 Parameter Passing Mechanisms . 19
8.5 File Operations . 20
8.6 Pointers . 21
8.7 Bit Manipulations . 24
8.8 Pre-processor directives . 26
8.9 Command Line Arguments . 28
8.10 typedef and union . 29

8.10.1 typedef . 30
8.10.2 union . 30

9 Some Common Compiler Errors and What They Mean 31
9.1 warning: implicit declaration of function printf 31
9.2 warning: val may be used uninitialized in this function 31
9.3 sqrt max.c:7:1: error: expected , or ; before int 32
9.4 error: i undeclared . 32
9.5 sqrt max.c:(.text+0x6a): undefined reference to ‘sqrt’ 33

10 Coding Standards 33
10.1 Meaningful Names . 33
10.2 Constants/Macros . 34
10.3 Column width of 75-78 . 34
10.4 Indentation . 34
10.5 Comments . 34
10.6 Good Parenthesisation . 34
10.7 Braces for Functions vs Other Compound statements 35
10.8 Block Coding . 35

1 Introduction

Programming is primarily about solving problems. It is about capturing the process of how
the human brain solves the problem and writing it in terms that the computer can understand.
Unlike human beings, computers have to be told every small detail – not even a small child
needs to be told in as much detail as a computer needs to be. That is what makes it challenging
because humans make many hidden assumptions that are not easy for them to assess and
capture them in explicit statements. But, when programming is approached in this fashion,
i.e., as a process of our own brain examining itself, it can be a lot of fun.

Programming starts with somebody asking us to make the computer do a task. An
example would be “Find the maximum of the given set of numbers”. Sounds simple to a
human and most people would do it, including pretty small children. The usual response of
humans is to start listening for numbers or see if somebody writes the numbers on the board.
They know when the person has stopped giving them numbers by the cues of conversation
such as a long enough pause in speech or the person stops writing. Now, the computer,
in typical scenarios (if we ignore all the new-fangled AI personal assistants) cannot see or
hear. The input is given to them quite differently. And, the problem starts here. How do we
give the input to the computer? So, the statement above is not enough to start instructing
the computer how to solve the problem. Much more information is needed. The process
of extracting all the relevant information is therefore the first step in solving problems by
computer. The output of this extraction is a Specification.

Once the relevant information is all available, the human captures the logic or functioning
of their brain in a series of logical steps. These steps should result in the correct answer under
all normal and abnormal conditions. The steps should also be done at some point, i.e., the
computer must halt its computation at some point when following these steps. Such a series
of steps is called an Algorithm. An algorithm is independent of the computer hardware,
the operating system and the computer language in which it may finally be executed in the
computer. This abstraction of details specific to particular environments make it a powerful
tool to solve the problem without getting lost in nitty gritty details. This process is called
Design and is at the heart of programming.

When designing solutions to problems, users have to think through all possible conditions,
especially error conditions and what are called boundary conditions. Most solutions fail under
these conditions. The design process needs to give emphasis to these conditions.

Once design is done, the programmer needs to come up with test cases that will be used
to verify if the algorithm is correct or not. Based on these test cases, the algorithm is traced
with different inputs. If the algorithm gives correct results in all the test cases, then, we can
proceed to implement the algorithm in a specific language on a specific system. Of course,
the tracing may not be possible for complex systems but we will see how even for reasonable
systems, these steps can be done without undue strain.

2 Specification

Let us go back to the problem posed in the previous section: “Find the maximum of the given
set of numbers”. This is called a Requirement.

What is missing in this statement for a computer? How do we go about finding the missing
information? Are there ambiguities in the question? If so, what are they?

4

Disambiguating the requirement and ensuring all the necessary information without any
hidden assumptions is obtained, as we said earlier is the first step. This is written down in clear
terms and is called Specification. In other words, a specification consists of unambiguously
identifying all the input to the computer and how and in what format it is given and
similarly for the output – all the output for all possible conditions and in what
format is it given.

Let us see what information is missing in the above requirement. As we noted earlier, a
human knows how the numbers are being given and when no more numbers are forthcoming
from other cues. For the computer, the numbers can be given through a keyboard or they
may be read from a file which is on a specific device such as a hard disk, a CD or a pen drive
or it may come over the network etc. We need to inform the computer where from the data
needs to be read. If it is a file or a network, there may be ways for the computer to determine
that it has reached the end of the input. But, if we are typing the data with the keyboard,
there needs to be some signal to the computer that the data has all been given.

In our example, we may say that the input is given from the keyboard, that when a value
of -1 is entered, it means end of input. Here, there is a hidden assumption that no negative
values (or at least -1) are part of the input data whose maximum we have to find. On the
other hand, we may say that first we will give an input of how many numbers will be entered
and then enter that many numbers. So, we first enter a value N followed by N values. We
return the maximum of the numbers entered at the end.

Examining the problem further, we can ask ourselves if the data consists of duplicates.
We can ask if it matters if there are duplicates? It does if the user is expecting, but does
not specify, that the output will print the location of the maximum. If the location needs to
be printed, then the question is whether to print all locations, only the first occurrence or
only the last occurrence. Based on the answer to these questions, the way we write our logic
changes. Thus, you can see that a specification has an impact on the design of the algorithm.

3 Design of Algorithms

This is, of course, the heart of problem solving or programming – how to solve the problem.
There are five essential qualities for a good program. They are:

1. Generality: Make the solution to the problem as general as possible.

2. Modularity: This is the process of breaking the given problem into small sub-problems,
each of which appears almost trivial but put together, lead to the overall solution to
the problem.

3. Portability: This relates more to the implementation in a specific computer language
than design. This should be written such that the program can be run on any hardware
or operating system without modifications.

4. Readability: The program should be easily understood when it is read. Therefore, the
names used for variables, functions etc. should be meaningful and convey immediately
their purpose.

5. Maintainability: A readable code with clear comments wherever the logic is complex
helps in maintenance of the code. Maintenance is needed whenever some bugs are
encountered or new features need to be added to the existing software.

5

The most important lesson in programming is “Think First, Code Later”. There are two
methods of problem solving – bottom-up or top-down. Normally, we use a top-down approach,
where we take the given problem and break it down into small pieces. Then, we take the
small pieces and break them down into even smaller pieces until the piece is easily doable.
An e.g. would be finding mode of given set of numbers. We can say that this consists of two
steps: find the frequency of each value and then the maximum of the frequencies. Then, each
of these sub-problems can be done separately. An example of how to work through the entire
problem may be seen in Prof.Chakravarthy’s notes on “How to Program” [4].

3.1 Algorithmic Primitives

The logic of the solution is captured in algorithmic primitives which are independent of any
language.

Data stored in the computer can be of two basic types – simple data type or complex data
type. A simple data type is either an integer, long integer, float (for real numbers), double
(for double precision reals), character. These can be combined in multiple ways to create
complex data types. Two such data types are discussed in items 2 and 3 below.

The following are the standard primitives in algorithms:

1. Variables and Constants: Variables are those which change value in the course of
execution of the program. Constants are those which do not change in value. It is a
convention that all constants are named in uppercase letters and variables use all lower
case or a combination of upper and lower case characters. It is also important to name
these such that their function is immediately apparent from the name. So, if there is a
variable which holds the maximum value found so far, it should be name max and not
x or a etc. Similarly, a constant for the size of a string may be called MAX STR.

2. Arrays: Arrays are contiguous memory spaces where each element of the array has
the same data type and can be accessed using the location or index operator []. For
example, if we have a variable for a table of integers which is an array, say Table, each
element of the table can be addressed as follows: Table[1], Table[2] and so on until the
last element. The total size of an array is usually declared using a constant as follows:
Table[MAXV AL].

3. Structures: Structures can also be called Records. The elements of a structure, unlike
the elements of an array, have different data types. For e.g., if we want to store student
information, we need to store the Name which is a string, Reg.No. which can be a
string or an integer, CGPA which is a float. We can then have arrays of such structures
to maintain information of multiple students. Such data types are called complex data
types.

4. Assignment Operator: Whenever a variable needs to be assigned a value, the assign-
ment operator is used as in the following statement:

max←− num

5. Conditional Statements A conditional statement is executed only if the condition
being tested is TRUE. We can also have alternate statements if the condition is FALSE.
An example is the following:

if N < 0 then

6

Print “Error: N must be greater than or equal to 0”
end if
if N = 0 then
Print “No input is given”

end if

6. Logical Operators: These allow one to combine conditions such as the following:

if N > 0 and i < N then
max←− Table[i]

end if

7. Arithmetic Operators: These are standard arithmetic operator for addition, sub-
traction, multiplication and division represented by the standard symbols. However,
the remainder function is represented using the “%” symbol. Thus a % b would mean
the remainder of a divided by b.

8. Looping Statements: There are situations in programs where we want to repeat the
same operation or set of statements on multiple data points. We use looping statements
for such purposes. An e.g. would be to find the sum of the first N integers. We need
to repeat the addition of the current value to a variable called sum. This is done as
follows:

for i := 1 to N do
sum←− sum+ i

end for

When we need to repeat as long as a condition is TRUE, we use thewhile loop construct.
Thus if we need to read values and add them up until a negative value is entered, we
write it as follows:

Read num
sum←− 0
while num > 0 do
sum←− sum+ num

end while

4 “Finding the Maximum” problem

In this section, we will look at different specifications for finding the maximum problem and
for each such specification, we will write the algorithm. This shows how the specification
impacts design even for such a trivial problem.

4.1 Specification 1

We find maximum of N numbers.

There are no duplicates in the given values.

Only the maximum value needs to be given as output.

7

If any value other than a number is given as input, it should print an error string “Error in
giving input...must be a number”.

If no values are given (N = 0), it should print a message “No values have been given”.

If N < 0, it should print the message “N must be > 0”.

Based on this specification, we write the algorithm in the next section.

4.2 Design 1

The algorithm for the specification in 4.1 is given in Algorithm 1.

Read N
if N < 0 then
Print “N must be > 0”
return

end if
if N = 0 then

Print “No input to find maximum”
end if
Read max
if max not an integer then
Print “Wrong Input”

end if
for i←− 1 to N − 1 do

Read val
if val not an integer then

Print “Wrong Input”
end if
if val > max then

max←− val
end if

end for
Print “Maximum of values input = ” max
return

Algorithm 1: Algorithm for “Finding Maximum” with Specification 1

4.3 Specification 2

We find maximum of numbers input where the input ends if a negative value is encountered.

There are duplicates in the given values.

The maximum value and the last location it occurs in are to be given as output.

If any value other than a number is given as input, it should print an error string “Error in
giving input...must be a number” and exit.

8

If no values are given (i.e., if the first number is negative), it should print a message “No
values have been given”.

4.4 Design 2

The algorithm for the specification in 4.3 is given in Algorithm 2.

Read val
if val not an integer then

Print “Wrong Input”
return

end if
if val < 0 then

Print “No input to find maximum”
return

end if
max←− val
loc←− 1
i←− 1
while val ≥ 0 do

Read val
if val not an integer then

Print “Wrong Input”
return

end if
i←− i+ 1
if val ≥ max then

max←− val
loc←− i

end if
end while
Print “Maximum of values input = ” max
Print “and its last occurrence is at ” loc
return

Algorithm 2: Algorithm for “Finding Maximum” with Specification 2

4.5 Specification 3

We find maximum of numbers input where the input ends if a negative value is encountered.

There are duplicates in the given values.

The maximum value and all the locations it occurs in are to be given as output.

If any value other than a number is given as input, it should print an error string “Error in
giving input...must be a number”.

If no values are given (first value input is negative), it should print a message “No values
have been given”.

9

4.6 Design 3

This is left as an exercise for the user.

10

5 “Finding the Mode” problem

This is another illustration of how the specification impacts design. Four different specifica-
tions are given with hints on how the design changes. The actual design of the problems is
left as an exercise for the user.

5.1 Mode: Specification 1

In this the user is given N integers as input in sorted order. The mode of the given numbers
has to printed as output along with its frequency. If there are multiple values with the same
frequency, the last value with the highest frequency is to be printed as the mode. Boundary
conditions such as all numbers being unique should be taken care of. In this case, all values
are modes with frequency=1. Error conditions on the value of N need to be taken care of as
illustrated for the max problem.

5.2 Mode: Design 1

In the solution to this problem, we read the values one by one and at the end of reading the
input, we should be able to print the mode since the values are in sorted order. There is no
need to use arrays or any other complex storage mechanisms to solve this problem.

5.3 Mode: Specification 2

In this problem, the numbers are not in sorted order. However, the values are in the fixed
closed interval [1 · · ·R]. The data is read from a file unlike in the other cases so far. Therefore,
the name of the file needs to be taken as input. Error conditions on accessing the file need to
be taken care of. Boundary conditions such as an empty file need to be taken care of. The
other part of the specification is as in Specification 1 regarding occurrence of multiple modes
in the data etc.

5.4 Mode: Design 2

For solving this problem, we need to maintain an array of dimension R as this is the range of
values that can occur. It is a question of finding the frequency of each value and determining
the highest frequency. So, it can be thought of as two subproblems – finding the frequency
of occurrence of each value and then finding the maximum of the frequencies. However, as in
the previous case, the solution can be found in a single pass over the input values. In other
words, as the values are read, the mode can be calculated. We dont need to go back and do
any additional operations to find the mode.

5.5 Mode: Specification 3

In this problem, we do away with both the sorted values as well as the limited range of values
restrictions. However, there is a restriction on how many unique values are present in the
input. For e.g., the input may consist of any number of occurrences of only three unique
values – 10, 100, 10000 – in any order in the file. We need to print the mode as in the
previous examples. The last value encountered which has the highest frequency is the mode.
So, if 10 and 10000 have the same frequency but the very last value in the file is 10, then, 10

11

is the mode as the requirement is that the last occurring value in the file is the mode, not
the maximum of equal frequency values. All error and boundary conditions need to be taken
care of as usual.

5.6 Mode: Design 3

To solve this problem, we will need to maintain an array of structures. The dimension of
the array will be the number of unique values in the input. The structure will consist of the
value and its frequency. When a value is read, the structure array has to be walked to find
the value and increment the frequency. Once again, this does not require the user to do more
than one pass over the input to find the solution.

5.7 Mode: Specification 4

The final specification has no restrictions on input. The value can be in any order, in any
range and no restriction on the number of unique values.

5.8 Mode: Design 4

To solve this problem, we will need to maintain a linked list of structures at the very least
because now the dimension of an array will be unknown. Therefore, this requires knowledge
of data structures to solve the problem.

These two examples should amply demonstrate that specification has an immense impact
on the design and choice of data structures for a problem.

6 Set Operations Problem

In this problem, we need to read integers from one or more input files and do various set
operations such as find if a value is a member of the set, Union, Intersection, Difference etc.
It involves reading integers from files into arrays before set operations are done. Since this is
repeated more than once, it is a classic example of how modularity helps.

We can create a separate module for opening and reading from the file including handling
all error conditions related to file operations. This module is completely independent of the
set operations problem. It can be reused for all other problems that require reading integers
from a file into an array. We can then build a module for set operations which take arrays of
integers as input for the sets to be operated on.

Each of the modules above can become part of a library we construct for ourselves just as
we have standard C library functions. These modules can be reused as long as the prototypes
do not change from problem to problem. Therefore, design of the prototypes for such functions
can be carefully done to be generalised such that they can be used in multiple problems.

7 Testing and Debugging

Testing and Debugging of programs is an art as well as a science. It is not just giving some
random inputs to the program. There are some well-defined rules for how we proceed with
testing.

12

Testing consists of many levels. At the beginners stage that we are discussing there are
at least two stages of testing, namely, unit testing and integration testing. Modularity
plays a big role in reducing the complexity and time taken for testing.

7.1 Unit Testing

Taking the example of set operations in Section 6, we pointed out there are two modules – file
operations module and a set operations module. Unit testing will mean that we implement
the file operations module and then test it by printing out the values of the arrays to ensure
that the values match those found in the file(s). Once this is confirmed, we can be pretty
sure we have a correct file operations module.

We can then proceed to implementing the set operations. Even in this, we implement
only one set operation at a time and test it before proceeding to the other. Thus, at every
stage we are ensuring that what we have done so far is correct. At the end, puttting it all
together is trivial.

This logic of dividing a large problem into smaller sub-problems, design, implement and
test each module separately helps in reducing the probability of bugs even in highly complex
softwares.

Typically, when doing unit testing, we will need either input from some other module or
we will produce output for some other module. However, that module may not yet be ready.
In such cases, where we are testing a module which needs input from some other module,
we build a dummy function which passes the needed input in the needed format as part of
testing. Such a function is called a driver software. In other cases, we need a function to
which we are passing input and which returns output to us. But, this function is not yet ready.
We then build a dummy function which returns meaningful return value/output parameter
values in expected format. Such a dummy function is called stub software.

7.2 Integration Testing

For Integration testing, we have all modules which have been developed and unit tested using
driver and stub software. Therefore, we are confident that individually each module works
fine. We put together all modules and test them together as part of integration testing. The
functions which belong to a particular module and are called by other modules are called
interfaces between the modules.

As long as the interfaces have been well designed with the input and output parameters
clear and return values that convey clearly the success or failure and which failure as needed,
integration can be trivial.

However, it must be noted that most of the software fails during integration because these
interfaces are usually not well defined. In fact, the very first step of design must be to not
only identify the modules but the interfaces between modules. After that, each module can
be independently developed by different programmers also without any loss of coherence.

7.3 Code Coverage

When testing the code, it is best that every statement in the program is actually executed as
part of testing. The % of statements of a program that are executed when all test cases are
combined together is called code coverage of the test cases. It seems a trivial statement to
make that 100% code coverage will mean that bugs in the program will be minimized. But,

13

for highly complex software, it is not easy to come up with nor run all possible test cases.
Hence, in many cases there remain hidden bugs in software. The duty of a good programmer
is to design test cases such that the code coverage is as close to 100% as possible.

7.4 Design of Test Cases

When designing test cases, just as in the case of design, we need to look at the boundary
and error conditions. Let us take the “find max” problem in Section 4.3 and see how do you
design test cases to understand the process better.

In this specification, there are two exceptions listed – one is that there is no input and
the other is that the input value is not what is expected. So, we MUST have two test cases
for each of these exceptions.

Now, to test the regular condition of no errors, we need to look at the problem. It is a
question of finding maximum of given values.

1. A boundary condition would be that only one value is entered. Did we design our
code correctly to handle this? Many times such boundary conditions are missed in the
design. Such errors are called off-by-one errors and are some of the most common errors
in software.

2. If we have more than one number, another boundary condition for this problem would
be two or more values are input and all of them have the same value since duplicates
are allowed. The output in this case should print the last location for the occurrence of
the value.

3. Another test case would be more than one number and all values are unique. In this
case, there are sub-testcases – the maximum is the first value or some middle value or
last value.

4. Another test case is where more than one value is input and there are duplicates of the
maximum value. The proper location is printed for the maximum in this case.

As can be seen above, there are many test cases for as simple a problem as “finding the
maximum value”. For each such test case, we need to give the proper input which satisfies
the conditions specified in the test case. We know what is the expected output and verify it
against the output from the program. If the output from the program does not match the
expected output then, there is a bug in the program corresponding to that test case.

Designing test cases such that there is maximum code coverage is very important for
reliability of software. Once again, as pointed above, modularity comes to the rescue of the
programmer. Unit testing is done per module and test case design per module will ensure a
much better code coverage than if someone were to test complex software without doing unit
testing. In fact, that is the reason why there are many levels of testing in software – to ensure
that all test cases are taken care of in a methodical and scientific manner.

8 C language discussion

In this section, we will discuss some of the interesting aspects of the C programming lan-
guage. For a comprehensive and detailed exposition, the user is directed to read “The C
Programming Language” by Kernighan and Ritchie.

14

8.1 Declaration versus Definition

Function Declaration versus Definition Let us first discuss the difference between dec-
laration and definition of functions. A function declaration or prototype specifies only the
name of the function, the parameters passed to it in terms of data types and the return value
data type. It does NOT include the actual logic of the function. The function definition
is where the logic of the function is specified. Declarations may be needed if the definition
follows a call by another function or the function is defined in some .c file and called by a
function in another .c file. Declarations of functions which are used across .c files are given
in .h files. Such .h files are included in all .c files where these functions are called or defined.

Global versus Local Variables A variable which is declared within a function definition
is called a local variable. A variable which is defined outside the definitions of functions is
called a global variable. In the example code in Program 1, max is a global variable and
i,N, val are local variables.

Program 1: Finding Maximum (in a single .c file)

#inc lude <s t d i o . h>

i n t max = −1;

i n t main (void)
{

i n t i , val , N;

/∗ Read N from the user ∗/
f o r (i = 0 ; i < N; i++) {

/∗ Read value from user ∗/
i f (va l > max)
max = va l ;

}

p r i n t f (‘ ‘Max = %d\n” , max) ;
e x i t (0) ;

}

Variable Declaration versus Definition For a variable, the Declaration is specification
of the data type of the variable. Definition is allocation of storage for the variable.

Program 2: Finding Maximum (main.c file)

#inc lude <s t d i o . h>

#de f i n e MAX 1000
#de f i n e MAXSTR 128

i n t i = 0 ;
i n t Table [MAX] ;

15

i n t main (void)
{

char f i l ename [MAXSTR] ;

/∗ Open F i l e and check e r r o r s ∗/
whi l e (f r ead (&Table [i] , s i z e o f (i n t) , 1 , fp) != 0) {

i++;
}

p r i n t f (‘ ‘Max = %d\n” , findmax (i)) ;
e x i t (0) ;

}

The same code for finding maximum can be written in two files – main.c for reading data
from a file into an array as shown in Program 2 and max.c to find the maximum of the values
in the array shown in Program 3.

The variable i is declared and defined as a global variable in main.c However, it is only a
declaration in max.c which means that it informs the compiler that the variable is an integer
data type but does not allocate any memory for it. The extern keyword also informs the
compiler that the definition is external to this file.

Program 3: Finding Maximum (max .c file)

#inc lude <s t d i o . h>

extern i n t i ;
i n t findmax (i n t N)
{

i n t max = −MAXINT;

whi l e (i < N) {
i f (Table [i] > max)
max = Table [i] ;

i++;
}

p r i n t f (‘ ‘Max = %d\n” , max) ;
r e turn max ;

}

8.2 Global Variables and Side Effects

An observant reader would have noticed a bug in the code given in Programs 3 and 2. The
variable i is used in main.c to read data from the file into the array. So, when the function
max() is called, the value of i = N , where N is the total number of values read from the file.
When we start using i in max.c, we are actually starting with a value of N and not 0! So,
the value of max that is returned is the highest negative value −MAXINT !

16

This illustrates one of the major issues with using global variables – the problem of side
effects. Modifying the value of a variable in one location has an impact on the logic in another
location because the changes are carried over to multiple locations.

Therefore, a good programming principle is to minimize the use of global
variables and limit them to only those cases where it makes absolute sense to use
them.

8.3 Scope and Extent of Variables

Scope of a variable is the region of code that it is visible, i.e., its spatial visibility. Extent
defines the lifetime of the variable, i.e., how long does a variable live during the execution of
the program. The scope and extent can be modified through the use of the keyword static
in C.

Let us look at the example Programs 4 and 5. In Program 4, two variables are declared
(and defined) outside the main function. As we saw earlier these are global variables. However,
the difference is that the variable N now has the keyword static before it. The scope of the
variable sum is the entire program which consists of two source files, i.e., both in Programs
4 and 5. On the other hand, the scope of N is only Program 4. All variables declared inside
a function such as i, sum1 in all functions have a scope limited to that function. Hence, i in
main is not seen anywhere else and vice versa. The variable N referred to in Program 5 is
the formal parameter passed and not the N in Program 4.

When we have the word static in front of a function, the meaning is exactly the same as
for a variable – this function is visible only in that .c file and not from any of the other .c
files that make up the final executable file. Hence, we cannot call read val() from Program 5.

Now, as for the extent of the variables – all global variables live as long as the program is
executing. Hence, the extent of N and sum is the entire life of the program. All local variables
of functions have a lifetime of the function, i.e., they are instantiated when the function is
entered and die when the function exits. What this actually means is that the memory
location containing these values is no longer valid once the function exits. It, however, does
not mean that the memory is erased. The memory location will be overwritten whenever it
is reused at a later point of time by the operating system for whatever purpose.

Program 4: Main Program for Illustrating Scope and Extent

#inc lude <s t d i o . h>
i n t sum ;
s t a t i c i n t N;

i n t main (void)
{

i n t va l [N] , i ;

s can f (‘ ‘%d” , &N) ;
r ead va l (va l) ;

sum odd (val , N) ;
p r i n t f (‘ ‘Sum of odd va lue s = %d\n” , sum) ;

17

sum odd (val , N) ;
p r i n t f (‘ ‘Sum of odd va lue s = %d\n” , sum) ;

e x i t (0) ;
}

s t a t i c void r ead va l (i n t ∗ va l)
{

i n t i ;

f o r (i = 0 ; i < N; i++)
scan f (‘ ‘%d” , &va l [i]) ;

}

18

Program 5: Program containing Module logic for Illustrating Scope and Extent

#inc lude <s t d i o . h>
sum odd (i n t ∗ tab le , i n t N)
{

i n t i ;
s t a t i c i n t sum1 = 0 ;

f o r (i = 0 ; i < N; i++) {
i f (t ab l e [i] % 3 == 0)

sum += tab l e [i] ;
e l s e

sum1 += tab l e [i] ;
}

p r i n t f (‘ ‘Sum of va lue s that are not odd = %d\n” , sum1) ;
re turn ;

}

One final point is regarding the extent of the variable sum1 in Program 5. When the
keyword static is used before a variable within a function, it means that its extent is the
entire program even though the scope is only the function. Hence, we will not be able to
print the value of sum1 from main() function. But, the variable’s value will be preserved
across multiple invocations of the function. Since we are calling the sum odd() function twice
in the main(), the first time it will print the sum of all values that are not odd. This value
will be retained in this variable. So, the next time we call the function sum odd(), the initial
value of this variable is the sum calculated in the previous call. When we print the value the
second time, therefore, the value will be double the previous value.

8.4 Parameter Passing Mechanisms

When a function is called, we pass parameters to it. A parameter whose value is filled in
when calling the function and which is used inside the function for computing the output is
called an input parameter. A parameter which is a place holder for passing back the output
to the calling function is called an output parameter. A parameter that is used to pass data
to the function and also back from the function is called an I/O parameter.

Parameters are stored in a special memory called stack in the process. A stack has the
property that the last element inserted is the first one removed. Whenever a function calls
another function, we need to return to the calling function. Thus, we need to store the address
of the memory location which has the next instruction in the calling function. We push this
into the stack first. Then, we push the parameters into the stack. The called function pops
the parameters, uses them for computation and finally pops the return address from the stack
to return to the calling function.

There are different parameter passing mechanisms in programming languages. One is
called Call by Value where the parameter values are copied into a different location on the
stack. The C programming language uses this mechanism only for all of its parameter passing.
This is illustrated in Fig. 1 [1].

19

Figure 1: Parameter Passing: Call by Value [1]

8.5 File Operations

There are many C library functions to access data in files. These include fgetc, fputc, fgets,
fputs, fread, fwrite, fprintf and fscanf. Each of them has a distinct reason for its existence.

The functions fprintf() and fscanf() are for dealing with files that have formatted data
where the formatting of the files is clearly specified.

The functions fread() and fwrite() deal with binary files. Therefore, their contents cannot
be read by using regular text editors unlike all the other file operations which deal with text
files.

Functions fgetc() and fputc access one character at a time from the file. It should be used
only in exceptional circumstances because file operations that fetch one character at a time
are highly inefficient. Of course, the operating system takes care of this by buffering data in
kernel memory but still it is NOT good practice to read one character at a time in the typical
case.

Functions fgets() and fputs() are highly recommended for use with text files, even for
formatted text files. It is better to use fgets() followed by function sscanf() than fscanf()
to ensure that any formatting errors do not result in the program being stuck in an infinite
loop. It is also good to use fgets() to ensure that any input accepted from the user does not
result in buffer overflow which can happen in other cases. Buffer overflow problem is a major
weakness that is exploited by viruses etc. and compromises system security.

20

8.6 Pointers

Pointers are addresses of memory locations where data is located. We can understand pointers
through a simple real-life example. Let us say that there is a room called visiting faculty room
in a building. The address of this can be S101 within the particular building. The person
who is currently sitting in the room may be Prof. A. How does this map to C concepts?

When we declare a variable such as int i, i is equivalent to visiting faculty room. The
address of i, i.e., &i is equivalent to S101 and the value stored in i when we initialise it as in
i = 1 is equivalent to saying Prof. A is currently in visiting faculty room. If Prof. A leaves
and Prof. B starts using the room S101, then it is equivalent to saying i = 2, i.e., the value
has changed in that memory location. The address has not changed however. Now, supposing
we build an extension to the building and decide that the visiting faculty room will in future
be the room N105, then, this is saying that the variable has been moved to a new location in
memory. In other words, it is like saying

int vfac_room1, vfac_room2, *vfac_room_addr;

vfac_room_addr = &vfac_room1;

/* A is currently in the room */

*vfac_room_addr = A;

...

/* B is currently in the room */

*vfac_room_addr = B;

/* Now, change the address visiting_faculty_room is pointing to */

vfac_room_addr = &vfac_room2;

/* where vfac_room1_addr=S101 and vfac_room2_addr=N105 for the */

/* room example above */

Given a pointer, the value stored in the address pointed to can be obtained by dereferencing
the pointer. Given that ptr is a pointer, the value stored in that location is obtained by the
expression ∗ptr. Any variable in C consists of four parameters that define it: the variable
name, data type, address and value. The data type will determine the amount of memory
occupied by that variable in bytes. So, typically, an int variable occupies 4B whereas a char
occupies 1B and so on.

Why do we need pointers? C is the only language to support them other than C++
which is derived from C, of course! We should remember that C is a systems programming
language. Operating systems are written in C. Typically, an OS needs to access specific
memory locations to store data in those locations. So, C, which was invented to write the
Unix operating system comes with this powerful mechanism.

21

When swap() function is called
x is copied to u and y to v

After swap() is called
values of u and v are
swapped but not of x and y

u = a
v = b

u = b

v = a

x = a
y = b

x = a
y = b

Figure 2: Memory snapshot when swap function is called and after swap is executed. x, y
are actual parameters and u, v are formal parameters.

Let us look at the first version of swap function as given in K&R’s book on C [5].

Program 6: Function to swap two variables

void swap (char u , char v)
{

char temp ;

temp = u ;
u = v ;
v = temp ;

p r i n t f (‘ ‘ swap : U = %c , V = %c\n” , u , v) ;
r e turn ;

}

Now, the function swap is called by the main function with actual parameters x, y as
shown in Program 7.

22

Program 7: Main function calling swap function

i n t main (void)
{

char x = ‘a ’ , y = ‘b ’ ;

swap (x , y) ;
p r i n t f (‘ ‘ main : X = %c , Y = %c\n” , x , y) ;
e x i t (0) ;

}

We will find that the values are NOT swapped in the main function. However, the values
are found to be swapped in the swap function. This is because the parameters are passed
using Call-by-Value as discussed earlier in Section 8.4. The memory in the system can be
represented as shown in Fig. 2. Each slot shown represents one byte each. The memory
locations x and y are different from the locations u and v. So, when swap returns to main
the values in x, y do not change. At the same time since the extent of the variables u, v is the
function swap, these memory locations are no longer available to the program.

Program 8: Program to swap two variables whose pointers are passed to the swap function

void swap (char ∗u , char ∗v)
{

char temp ;

temp = ∗u ;
∗u = ∗v ;
∗v = temp ;

p r i n t f (‘ ‘ swap : U = %c , V = %c\n” , ∗u , ∗v) ;
r e turn ;

}

i n t main (void)
{

char x = ‘a ’ , y = ‘b ’ ;

swap(&x , &y) ;
p r i n t f (”X = %c , Y = %c\n” , x , y) ;

e x i t (0) ;
}

To achieve swapping of variables, we will have to pass the pointers of the actual variables
to the swap() function as shown in Program 8. When we pass pointers, the memory of the
system is as shown in Fig. 3. Here, the actual parameters are the addresses of variables x, y,
i.e., &x,&y as seen in main() function in Program 8. In other words, the parameters u and
v contain the addresses of variables x and y as shown in Fig. 3. Therefore, ∗u refers to the
value in location pa or in other words ∗u is a and similarly ∗v is b. When we swap ∗u and
∗v as shown in Program 8, we are swapping values in locations pa and pb. Therefore, at the

23

end of the swap function, the values of x, y are swapped but the values of u, v do not change
in the function. Of course, as stated earlier, u, v are no longer accessible once we exit the
function.

u = pa
v = pb

x = a
y = b

x = b
y = a

pa

pb

pa
pb

u = pa
v = pb

When swap() is called
the addresses of variables
x and y are copied into u, v

In swap, the contents of
pa and pb are swapped −−
so x and y are swapped but
values of u and v do not change

*u *v

Figure 3: Memory snapshot when swap function is called with pointers and after swap is
executed.

Some Important Dos and Don’ts with Pointers Whenever pointers are used, the most
important thing to keep in mind is to initialize it to NULL. If the pointer is not intialized,
like any other variable, it is occupying a memory location which may contain any value. The
problem with this is that this is considered to be an address by the program when using it.
So, if one is lucky, the program segment faults and exits. Otherwise, it is possible that the
memory location is valid for the program which may result in corruption of data or even
instructions. This is the memory corruption problem, one of the worst bugs anyone can be
called upon to debug. One can make life much easier on themselves by initializing pointers
to NULL.

8.7 Bit Manipulations

One more interesting feature in C is bit manipulation. Once again, the use stems from systems
programming. Operating systems maintain information about free memory etc. as a series
of 1s and 0s where a 1 can mean the memory is free and 0 that it is occupied. It is also

24

extensively used in Computer Networks where different bits represent different functionality.
Bits need to be set or checked if they are set and so on.

The standard operations with bits are AND (&), OR (|), XOR (ˆ), NOT (∼), left shift
(<<) and right shift (>>) with the symbols used by C for these operations in parentheses.

1 1 0 0 11 0 1

0 0 1 1 10 0 0

0 0 1 1 00 1 1

Original Data item that is
to be shifted

Data after shifting it left
by two bits

Data after shifting it right
by two bits

Figure 4: Illustrating the left and right shift operations

The result of these operations for different combinations of 1 and 0 is:

1. AND: When 1 and 0 are ANDed, a 0 is the result whereas 1 is the result when 1 is
ANDed with 1.

2. OR: When 1 is ORed with either 0 or 1, the result is 1.

3. XOR: When 0 is XORed with 0 or 1 with 1, the result is 0 whereas 0 XORed with 1
results in 1.

4. NOT: NOT is the complement of the bit – so, 1 becomes 0 and vice versa.

5. LEFT/RIGHT SHIFT: When a data item is left shifted, the rightmost bits become
zero. It is the reverse for right shift; the leftmost bits become zero. Thus, if the data
item is 11001101, if it is left shifted by 2 bits, the value becomes 00110100. The two
leftmost bits are shifted out and the two rightmost bits become 0. If we do right shift
of the same data, the result will be 00110011. This is shown in Fig. 4.

Is a bit set? Now, if the problem is to determine if a bit is set, we need to do the following:
let us say that we are dealing only with a single byte. So, there are only 8 bits (or locations).
We want to verify if bit 3 is set or not where we are starting bit positions from 0. The easiest
way to do this is to shift the data so that bit 3 now becomes bit 0 (or the rightmost/least
significant bit) and AND it with 1. If the bit is 1, the result will be 1; otherwise it will be 0.
This is shown in Fig. 5.

25

1 1 0 0 11 0 1

bit 3 is set
Original Data to test if

6 45 3 2 1 07 Bit positions

0 0 0 1 01 0 1

Data right shifted by 3 bits

(a)

(b)

0 0 0 0 00 0 1(d)

0 0 0 0 00 0 1

Bit 1 with which the byte
in (b) will be ANDed

(c)

Result of the AND operation
of (b) and (c)

Figure 5: Illustration of steps in checking whether bit 3 is set or not

Set a bit To set a bit, operation OR is used. So, if we need to set bit 3 as in the previous
example, we take bit 1, left shift it by 3 bits and OR it with the original data. Since all the
other bits in the value 1 are all 0s, the original contents will not be modified. When we OR
with 1, irrespective of whether the original data had 0 or 1, the result will be 1. Thus, the
bit is set.

Clear a bit Clearing a bit means setting it to 0 always. To clear a bit, we do OR with a
0. The operation is exactly the same as in Set a bit.

Extracting the value in a set of bits In computer networks, we usually need to do an
operation such as determining the value in a particular set of bits, say from 4-6 positions.
The way this can be achieved is to use the operations we have described so far. So, for this
example, we right shift such that position 4 bit is now in bit 0 position. Then, we take a byte
which has 1 in all bit positions. This is achieved by taking a 0 and doing a NOT operation on
it. Then, left shift this by 3 bits (since we want to find the value in 3 bits, i.e., bit positions
4, 5 and 6). This will result in the rightmost 3 bits being 0 and all other bits being 1. Now,
NOT the value such that the bits are reversed. Now, an AND of the original data which was
rightshifted with this value will give the value in the bit positions we are interested in. This
operation is shown in Fig. 6.

8.8 Pre-processor directives

Preprocessing is the first step in C where the pre-processor directives are processed. The
most commonly used pre-processor directives are #include and #define. Any directive with

26

1 1 0 0 11 0 1

6 45 3 2 1 07 Bit positions

0 0 0 0 11 0 0

Data right shifted by 4 bits

(a)

(b)

1 1 1 1 01 0 0(c)

Original data whose bits
4−6 are to be extracted

NOT of 0 left shifted by 3 bits
since we need to extract 3 bits

0 0 0 0 10 0(e)

AND of (b) and (d)

0

0 0 0 0 10 1 1(d)

NOT of (c)

Figure 6: Illustration of steps for extracting bits 4-6 from the given data byte

a “#” in front of it is a pre-processor directive.
The #include directive essentialy copies the contents of the specified file into the file where

this directive is included. Normally, this is used with .h files in which the function prototypes
are declared as well as any possible global variable declarations. The .h files may also contain
#define primitives which define constants and macros.

In addition, the other important pre-processor directive is #ifdef. This has to be used to
ensure that no data is multiply defined if the same file is ‘included’ in multiple .c files. If,
say, we define a global variable in a .h file which is included in multiple .c files, then, there is
an attempt to define that variable multiple times which is an error. This can be handled by
using the #ifdef directive around the contents of the .h file as shown in Program 9.

#ifndef is checking if the macro LINK H has not been defined earlier. If that is true, it
defines it in the next line. So, if multiple .c files include this file, the first file which includes
it will find the variable not defined and will include the file in the .c file. The next file which
attempts to do so will find this variable defined and so the file will not be included again thus
avoiding multiple definitions of the global variable head.

Program 9: .h file showing the use of the #ifdef pre-processor directive

#i f n d e f LINK H
#de f i n e LINK H

typede f s t r u c t node s {
i n t va lue ;

27

s t r u c t node s ∗next ;
} node t ;

node t head = NULL;

#end i f

8.9 Command Line Arguments

When we run a command on Unix/Linux systems, we give arguments to them as in the
following example:

cp a.c b.c

where “a.c” and “b.c” are arguments to the command cp.
Similarly, whenever we write a program, the input we need can be taken as command line

arguments.
Many students have the bad habit of fixing file names by hardcoding them inside their

programs. The issue with this is that if the program has to be tested with another filename,
either the file has to be renamed to be what the program is expecting (just think how absurd
this is!) or the program has to be modified and recompiled before it can be used for this file
(an even more absurd solution!).

The next most popular method used by students is to prompt the user to enter the
input through keyboard. This is alright but different programmers may use different ways of
accepting input which is not standardised. Further, this is difficult from the perspective of
automating tasks through scripts.

Command line arguments are an elegant way of giving input. Normally, we do not use
command line arguments if the input is large. Instead, what we do is construct a file which
consists of all the data that needs to be input and give the name of this file as a command line
argument. Thus, by simply giving a different file name which consists of different input, the
program can be tested under different conditions very easily. This is the most preferred
form of accepting input from the user.

The command line arguments are passed through the parameters argc and argv of the
main() function.

int main(int argc, char *argv[])

argc gives the total number of arguments including the name of the executable file. The
array of character pointers argv contains the addresses of the strings which are the actual
arguments including the name of the executable file. Thus, from the cp command example
above, argv[0] = cp, argv[1] = a.c, argv[2] = b.c and argc =3.

The first thing we need to do when writing programs with command line arguments is to
verify if the number of arguments is equal to what we are expecting. cp command expects
a minimum of two arguments to it – the source and destination files. So, argc has to be 3.
Any value other than that would be wrong. We need to check this before we proceed with
the program. If we do not do it and proceed to use argv, we will hit a NULL pointer and
segment fault.

So, the cp program would start as follows:

28

Program 10: Program illustrating use of command line arguments

#inc lude <s t d i o . h>
i n t main (i n t argc , char ∗argv [])
{

i f (argc != 3) {
f p r i n t f (s tde r r , ‘ ‘ Usage : cp <src> <dest>\n ”) ;
e x i t (1) ;

}

/∗ c a l l the func t i on that cop i e s from f i l e 1 to f i l e 2 ∗/
copy (argv [1] , argv [2]) ;
e x i t (0) ;

}

Program 10 illustrates many good coding practices. When we find that the argc value
does not match the expected value, we need to print an error. We use fprintf with stderr
instead of printf because the error message will be printed on the terminal even if stdout is
redirected to a file. It is always good to differentiate between the normal print messages and
error messages. Error messages should always be printed to stderr.

Secondly, look at the use of the function/system call exit. The parameter passed to this
function is the return status of the program. By convention, Unix/Linux use 0 to indicate
success and any other value to indicate failure. So, whenever there is a failure to execute
and the program is exiting, it is useful to give a status value. In this case, we gave the value
1. If there are multiple errors, for each of which, the program exits, then, the status value
has to be different for each of them. We can check the status of the program by running the
command “$?” in Linux to get the status which will tell us where the program failed.

8.10 typedef and union

A structure is a collection of data which are not of the same type. Let us say that we define
a structure called std record as follows:

struct std_record {

char name[MAX_NAME];

char programme:4;

char year:4;

float cgpa;

}

The declarations for programme and year are stating that the number of bits allocated for
these fields is 4 each so that, together, they occupt one byte. (This is one of the interesting
facilities provided by C to reduce memory footprint. We have to remember that C is used
primarily for systems programming such as operating systems and every byte saved is useful
in that context. This is even more so in the context of embedded operating systems.)

29

8.10.1 typedef

Using the keyword typedef, a new data type can be defined in C. We can define a new data
type called std rec t as follows:

typedef struct std_record std_rec_t;

All future references can declare variables of this structure by using this new data type
instead of using the struct:

std_rec_t rec;

instead of

struct std_record rec;

We can also define new data types using basic data types themselves, e.g., we can define
a new data type called uint16 t which is an unsigned short in almost all the systems.

typedef unsigned short uint16_t;

uint16_t ip_protocol;

However, since the data type’s storage is not defined by the C language and it varies from
system to system, such a data type is useful to ensure that exactly the required storage is
allocated. This is extremely important in computer networking where systems of different
architectures and operating systems are connected together and all of them have to interpret
the messages exactly as per the protocol specifications.

8.10.2 union

The declaration of a union looks very similar to a structure declaration. Given below is one
such declaration:

union {

char data[4];

float f;

}

If the above were a structure, the storage space allocated to it would be the sum of the
space needed for both the variables – typically 8B. In a union, however, the storage allocated
is equal to the storage of the largest data item within the union definition. In the above
example, both the fields within the union have the same size of 4B and so the union will have
a storage space of 4B. But, if we had only a char along with a float, it would still be 4B as
normally float occupies 4B and char occupies 1B.

(Note: union can be used to define data types in such a way that it can lead to polymor-
phism in the context of object-oriented design.)

30

9 Some Common Compiler Errors and What They Mean

It is recommended to use gcc for compilation which is a default in Linux/Unix systems.
Compilation consists of two steps that we are interested in as a beginner of programming –
compiling and linking. The first step converts C language statements into machine language
which is nothing but a series of 0s and 1s. Linking is needed to get the C library code to be
linked with the source code we write where we use these library functions. Without this step,
the computer will not know what to do when a C library function is called.

When compiling, it is good to enable all warnings and take care of them. We will discuss
why this is important when we come to the specific warning. The command to compile a C
program is given below:

gcc -Wall hello.c -o hello

The option “-Wall” enables all warnings. As everyone knows, the C compiler creates an
executable file with the name a.out by default. However, you are strongly discouraged to do
this! We observe that if you have many programs, at any point of time, you can have exactly
one(!) executable program because every time you recompile some source code, it overwrites
the existing executable file!

Instead, use the option “-o” to name the executable file. Please note that good program-
ming practice consists of naming files properly. A typical naming strategy is to have the
executable file name to be the same as the name of the source file containing the main func-
tion but without the .c extension. Please also note that the extension “.o” is for object files
– i.e., for files which contain the machine language equivalent of the C code, but which are
not executable. An executable file consists of such object files and also is linked with library
files which provide the code for the C library functions we use.

We now look at some of the common C compilation errors and how to fix them:

9.1 warning: implicit declaration of function printf

This error is seen when we forget to include the .h file containing the prototype of the function.
Hence, the compiler does not know what the data types of the arguments passed to the
function should be and cannot verify them. This results in this warning. Always make sure
you remove this warning by including the right .h file. To know which .h file to include, execute
the command man ¡function¿. In our example warning above, we execute the command man
printf. The man page of printf will be displayed and under the SYNOPSIS, the needed include
file(s) information will be given. Include these into the source file where the function is used
to solve this warning.

9.2 warning: val may be used uninitialized in this function

The warning also gives the line where this is encountered. This is from the Program 1 and
shows the following statement:

if (val > max)

because I just had the comment “read val” but no valid statement initializing val. Same
warning will be noticed for N too. This is a very important warning because any uninitialized
variable has unpredictable value and can lead to wrong output from the program. Hence,

31

make sure all variables are properly initialized. Fixing this warning at compile time can save
hours of debugging time trying to figure out why an error in output occurs at run time. This
is especially true if we assume val = 0 and say, most of the time the computer does find a
memory location with 0 in it. However, once in a while, the program may allocate a memory
location which does not have 0 in it. Only under such conditions will the program fail. So,
the program will run fine for some runs and maybe even for years and then suddenly fail one
day. Such errors can be a nightmare for debugging. And, all it needed was to ensure there
was no warning during compilation to avoid this nightmare!

Program 11: Program illustrating the linking error “Undefined Reference”

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <math . h>

i n t max = −1;

i n t main (void)
{

i n t i , val , N;

/∗ Read N from the user ∗/
scan f (‘ ‘%d” , &N) ;
f o r (i = 0 ; i < N; i++) {

/∗ Read value from user ∗/
scan f (‘ ‘%d” , &va l) ;
i f (va l > max)
max = va l ;

}

p r i n t f (‘ ‘ s q r t (max) = %d\n” , s q r t (max)) ;
e x i t (0) ;

}

9.3 sqrt max.c:7:1: error: expected , or ; before int

If in Program 11, we forget to include “;” after definition of the variable max, we get the error
that is the title of this subsection. As shown, typically, the compiler will give the number of
the line in the program where this error has occurred. We can look at that line (7 here) and
do the necessary changes to fix the error.

9.4 error: i undeclared

If we forget to declare the variable i in Program 11, we get the error of this subsection. In
addition, the error messages will be as follows:

sqrt_max.c: In function main:

sqrt_max.c:13:8: error: i undeclared (first use in this function)

32

for (i = 0; i < N; i++) {

^

sqrt_max.c:13:8: note: each undeclared identifier is reported only once

for each function it appears in

It shows that the error occurs in Line 13. In fact, every time i is referred to in the program,
this error occurs. However, as given in the error message, the compiler gives it only for the
first occurrence. Once the proper declaration of int i is given, this error disappears from all
occurrences.

9.5 sqrt max.c:(.text+0x6a): undefined reference to ‘sqrt’

Here is a program (Program 11) that computes maximum of given positive numbers and then
its square root. Note that we need to include the file “math.h” to use the built-in function
sqrt of the C library. When we compile this program with our usual gcc command, we get the
error (please note this is an error and not a warning) as given in the paragraph title above.
The issue here is not that the prototype was not found because we have included “math.h”
in our source file. The issue is the object code of the C library which contains the function
sqrt is not linked with our object code and so we get this error. The library for all math
functions is libm.so in Linux. To include this library into the compilation, we need to modify
our compilation command as follows:

gcc -Wall -lm sqrt_max.c -o sqrt_max

The “-lm” option means include “library” “m”. Similarly, there may be other programs
we write which may need specialized libraries, e.g., if we write multithreaded programs we
need to include the option “-lpthread” when compiling the code to access the pthread library
functions.

10 Coding Standards

Some good resources for coding standards are [2] and [3].

10.1 Meaningful Names

Names of files, functions and variables should all be meaningful so that the code is highly
readable. E.g., if we use the variables x, y instead of sum,mean, the purpose of these variables
is not immediately apparent in the case of the former whereas it is obvious with the use of
latter names. Array indices or total number of items etc. can use variables such as i, j,N
but all other names should be meaningful. At the same time, it is important to not take it to
extreme and make the names as long as a paragraph! The naming convention for variables
uses either “ ” between different words that make up the name such as visit fac room or they
capitalise the different words as in visitFacRoom. One of the two conventions may be chosen
and used consistently throughout the program. Do NOT mix the two conventions!!

33

10.2 Constants/Macros

Constants or Macros in programming are by convention always all in capital letters. Thus,
we define PI and not “pi” as a constant. As soon as any term is seen that is all in capital
letters, it should be obvious that this is either a constant or a macro. An example of a macro
is:

#define MAX(a, b) a > b ? a : b

MAX can then be used in the program. Both constants and macros will be expanded in
place before compilation as they are part of the pre-processor directives.

10.3 Column width of 75-78

When coding, ensure that no line in your code exceeds 75-78 columns. If you plan to debug, it
may sometimes be needed to print out the code to review it. If so, the lines will be truncated.
Even otherwise, the lines may wrap around the window of the editor leading to issues of
readability. Hence, it is recommended that all code be within the limit specified.

10.4 Indentation

Indentation is a very important part of programming for readability. While there are tools
that help to indent automatically and/or after the fact, it is more useful to develop the instinct
to program with indentation as almost a reflex action. Many a time, people try to indent the
code after finishing the testing, which is a superb waste of time. If we learn to indent as we
code, there is no need to revisit the code for indentation.

Indentation with tabs is easy but ends up possibly creating issues with column limits
if there are more than two levels of indentation. It is better to use a 4 space indentation.
However, whether you choose space or tab as your indentation strategy, be consistent! Do
NOT mix up spaces and tabs since then the indentation will be quite ruined based on tab
definition in different systems.

10.5 Comments

Whenever we write complicated programs, it is good to comment the parts of the code that
are difficult to understand. Explain the logic in English in terms easily understood that will
enhance the readability and maintainability of the program. In fact, a well commented code
can then be used to generate a design document using tools.

10.6 Good Parenthesisation

When using complicated arithmetic or logical expressions, it is useful if proper parenthesi-
sation is done. If not, even the programmer may not be completely sure of the precedence
of the operators and it may lead to a wrong expression. It will certainly be difficult for a
maintainer of the code to decode it! On the other hand, do not go to the extreme of total
parenthesisation which also leads to readability issues.

34

10.7 Braces for Functions vs Other Compound statements

Braces can be used either in K&R style or they can be on standalone lines when used with
looping or conditional statements. However, as cautioned in other cases, stick to one conven-
tion throughout and do NOT mix up the styles.

However, when starting and ending functions, it is advised to have the braces on separate
lines. This helps to navigate functions very fast in vi by using the “[[” and “]]” commands.

10.8 Block Coding

One good programming practice I would like you to include is block coding. Whenever a left
brace { is typed, type immediately the corresponding right brace }. This helps in incremental
compilation which is very essential for easy debugging. (Courtesy: Dr.Anjeneya Swami)

References

[1] http://www.equestionanswers.com/c/parameters-are-passed-call-by-value.php

[2] Rob Pike, Notes on Programming in C
http://www.lysator.liu.se/c/pikestyle.html

[3] Eric Laroche, C programming language coding guidelines
http://www.lrdev.com/lr/c/ccgl.html

[4] Chakravarthy Bhagvati, How to Program
http://scis.uohyd.ac.in/∼chakcs/howtoprogram.pdf

[5] Brian W Kernighan and Dennis M Ritchie, The C Programming Language 2nd edition,
Prentice Hall, 1988.

Acknowledgements

I wish to thank Dr.Anjeneya Swami for his comments and catching the errors in the earlier
drafts. Any remaining errors are obviously my responsibility.

35

