Definition: The cost of a PRAM computation is the product of the parallel time complexity and the number of processors used.

Various PRAM models differ in how they handle the read or write conflicts;

Parallel Computing (Intro-02): Rajeev Wankar

Relative strength of the models

Lemma: (Cole [88]) A p-processor EREW PRAM can sort a p-element array stored in global memory in (log n) time.

Theorem: A p-processors PRIORITY PRAM can be simulated by a p-processor EREW PRAM with the time complexity increased by a factor of (log n).

Parallel Computing (Intro-02): Rajeev Wankar

12

PREFIX.SUMS (CREW PRAM) Global n, A(0), A(1),...,A(n-1), j begin $spawn(P_1, P_2, ..., P_{n-1})$ for all P_i where $0 \le i \le n-1$ do for j = 0 to [logn]-1 do if (i -2^j) >= 0 then A[i] = A[i] + A[i -2^j] endif endfor endfor endfor

Parallel Computing (Intro-02): Rajeev Wankar

Exercise: $n = 2^m$ numbers stored in an array A of dimension (2n-1) from A(n), A(n+1),...,A(2n-1). Write an algorithm for obtaining the prefix sum of these numbers, at the end A(i), $1 \le i \le n$ stores the result.

Doubling techniques

Normally applied to an array or to a list of elements. The computation proceeds by a recursive application of the computation in hand to all the elements.

The distance doubles in successive steps. Thus after **k** iterations computation to all elements at distance 2^k is performed.

Value in an array *next* represents linked list

Value in an array *position* contain original distance of each element from end of the list.

26

Merging two sorted lists

Best known sequential algorithm needs O(n) time. Every processor finds the position of *its own* element on the other list using binary search, making an algorithm that takes $O(\log n)$ parallel time.

Assumption: Two lists and their unions have disjoint values.

```
Global A[1..n]

MERGE.LISTS(CREW PRAM):

Local x, low, high, index

begin

spawn(P<sub>1</sub>, P<sub>2</sub>, ..., P<sub>n</sub>)

for all P<sub>i</sub> where 1 \le i \le n do

if (i <= n/2) then

low := (n/2)+1

high := n

else

low := 1

high := n/2

endif
```

28

```
{Each processor performs binary search}
x := A[i]
repeat
index:= [(low+high)/2]
if x < A[index] then
high := index-1
else
low := index + 1
endif
until (low > high)
{put values in correct position on merged list}
A[high+i-n/2] := x
endfor
end
```

Parallel Computing (Intro-02): Rajeev Wankar

Reducing the number of processors

Suppose we have designed an algorithm working in parallel time t with p processors, here we assume that p is the maximum number of operations executed in the same parallel step.

Maximum finding algorithm takes $O(\log n)$ time with the $p \ge n/2$ processors, in fact n/2 processors are required only at the beginning of the procedure. Most of the processors are sitting idle.

Parallel Computing (Intro-02): Rajeev Wankar

suppose we have p<n/2 processors. Partition **n** elements in **p** groups. **p-1** such group will be having $\lceil n/p \rceil$ elements and remaining group contains (n-(p-1) $\lceil n/p \rceil$ <= O) elements.

Parallel Computing (Intro-02): Rajeev Wankar

Thus overall time is $\lceil n/p \rceil - 1 + \log p$ with p < n/2 processors. What if $p = n / \log p$ Brent's theorem: Let A be a given parallel algorithm with computation time *t*, if parallel algorithm performs *m* computational operations then *p* processors can execute algorithm A in time 0(m/p + t).

Parallel Computing (Intro-02): Rajeev Wankar

Definition: The set (logn)⁰⁽ⁿ⁾ is called the set of polylogarithmic function.

Theorem(Parallel computation thesis): The class of problems solvable in time $T(n)^{0(n)}$ by a PRAM is equal to the class of problems solvable in work space $T(n)^{0(n)}$ by a RAM, if $T(n) \ge \log n$.

Parallel Computing (Intro-02): Rajeev Wankar