Definition: The cost of a PRAM computation is the product of the parallel time complexity and the number of processors used.

Various PRAM models differ in how they handle the read or write conflicts;

- EREW (Exclusive Read Exclusive Write): Read and write conflicts are not allowed
- CREW (Concurrent Read Exclusive Write):

Concurrent read allowed (i.e. multiple processors are allowed to read from the same memory location), but concurrent write is not allowed (Default PRAM)

CRCW: Concurrent read and concurrent write is allowed (W-RAM). There are different policies to handle the concurrent write operation.

- COMMON: All processors writing to the same memory location must write same value.
- ARBITRARY: If multiple processors concurrently write to the same global address, one of the competing processors is arbitrarily chosen and its value is written into the register.
- PRIORITY: If multiple processors concurrently write to the same global address, the processor with the lowest index succeeds its value into the memory location.

Relative strength of the models

Lemma: (Cole [88]) A p-processor EREW PRAM can sort a p-element array stored in global memory in $(\log n)$ time.

Theorem: A p-processors PRIORITY PRAM can be simulated by a p-processor EREW PRAM with the time complexity increased by a factor of $(\log n)$.

Parallel Computing (Intro-02): Rajeev Wankar

Two statements are used in the algorithm description

1. spawn (< processor names>) $(\log p)$ time needed
2. for all <processor list> do <\{statement name\} endfor

Binary tree is one of the most important data structure which can be exploited for the parallel algorithm design.
top down

1. Broadcast
2. Divide and Conquer

- bottom up fan-in or reduction

Balanced Binary tree method

Parallel Computing (Intro-02): Rajeev Wankar

Balanced Binary tree method structure

for levels $m-1, m-2, \ldots, 0$ do for each vertex \mathbf{v} at internal node in parallel do value[v] = value[LeftChild[v]] op value[RightChild[v]] output = value[root];

Maximum of $\mathrm{n}=2^{\mathrm{m}}$ numbers stored in an array A of dimension (2n-1) from $A(n), A(n+1), \ldots, A(2 n-1)$. At the end $A(1)$ stores the result.
for $\mathrm{k}=\mathrm{m}-1$ step -1 to 0 do for all $\mathrm{j}, 2^{k} \leq j \leq 2^{k+1}-1$, in parallel do

$$
A(j)=\max \{A(2 j), A(2 j+1)\}
$$

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15
							4	3	5	1	7	9	4	0

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15
	$\mathbf{5}$	$\mathbf{9}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{9}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{7}$	$\mathbf{9}$	$\mathbf{4}$	$\mathbf{0}$

- No of processors used, Parallel time required (8)

```
SUM (EREW PRAM)
Global n, A[0,...,(n-1)],j
begin
    spawn (P0,P1,...,P\n/2\rfloor-1)
    for all Pi where 0 }\leq\textrm{i}\leq\lfloorn/2\rfloor-1 d
        for j = 0 to \lceillogn-1\rceildo
            if (i mod 2j})=0\mathrm{ and (2i + 2j})<n\mathrm{ then
                A[2i] = A[2i] + A[2i + 2j ]
            endif
        endfor
        endfor
end
```


Applications of Prefix Computation

- Knapsack Problem
- Job Sequencing with deadline
- Compiler Design
- Computational Biology
- Evaluation of Polynomials
- Solving System of Linear Equations
- Polynomial Interpolation

PREFIX.SUMS (CREW PRAM)

Global $n, A(0), A(1), \ldots, A(n-1), j$
begin
$\operatorname{spawn}\left(P_{1}, P_{2}, \ldots, P_{n-1}\right)$
for all P_{i} where $0 \leq i \leq n-1$ do

$$
\text { for } \mathrm{j}=0 \text { to }\lceil\log n\rceil-1 \text { do }
$$

if $\left(i-2^{j}\right)>=0$ then
$A[i]=A[i]+A[i-2 i]$
endif
endfor
endfor
end

Exercise: $n=2^{m}$ numbers stored in an array A of dimension (2n-1) from $A(n), A(n+1), \ldots, A(2 n-1)$. Write an algorithm for obtaining the prefix sum of these numbers, at the end $A(i)$, $1 \leq i \leq n$ stores the result.

Doubling techniques

Normally applied to an array or to a list of elements. The computation proceeds by a recursive application of the computation in hand to all the elements.

Linked List Ranking

- Given a linked list, stored in an array, compute the distance of each element from the end (either end) of the list.
- Called Pointer Jumping when using pointers.
- Don't destroy original list!

The distance doubles in successive steps. Thus after \mathbf{k} iterations computation to all elements at distance 2^{k} is performed.

Value in an array next represents linked list

Value in an array position contain original distance of each element from end of the list.

Global: n, position[0..(n-1)], next[0..(n-1)], j
LIST.RANKING(CREW PRAM)
begin
$\operatorname{spawn}\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots ., \mathrm{P}_{\mathrm{n}-1}\right)$
for all P_{i} where $0 \leq i \leq n-1$ do
if next[i] $=i$ then position[i] := 0
else position[i]:=1
endif
for $\mathrm{j}=1$ to $\lceil\log n\rceil-1$ do
position[i] := position[i] + position[next[i]]
next[i] = next[next[i]]
endfor
endfor
end
Parallel Computing (Intro-02): Rajeev Wankar

Step 1:

1
1
1
1
1
1

Parallel Computing (Intro-02): Rajeev Wankar

Work Analysis

- Number of Steps: Tp = O(Log N)
- Number of Processors: N
- Work $=\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- Sequential = $\mathrm{O}(\mathrm{N})$
- Optimal??

Applications of List Ranking

- Expression Tree Evaluation
- Parentheses Matching
- Tree Traversals
- Ear-Decomposition of Graphs
- Euler tour of trees
- - - many others

- Merging two sorted lists

Best known sequential algorithm needs $\mathrm{O}(\mathrm{n})$ time. Every processor finds the position of its own element on the other list using binary search, making an algorithm that takes $O(\log n)$ parallel time.

Assumption: Two lists and their unions have disjoint values.

```
Global A[1..n]
MERGE.LISTS(CREW PRAM):
Local x, low, high, index
begin
    spawn( }\mp@subsup{P}{1}{},\mp@subsup{P}{2}{},\ldots.,\mp@subsup{P}{n}{}
    for all }\mp@subsup{P}{i}{}\mathrm{ where 1 
    if (i<= n/2) then
        low := (n/2)+1
        high := n
        else
            low := 1
            high := n/2
        endif
```

Parallel Computing (Intro-02): Rajeev Wankar
\{Each processor performs binary search\}
$\mathrm{x}:=\mathrm{A}[\mathrm{i}]$
repeat
index:= $\lfloor($ low + high) $/ 2\rfloor$
if x < A [index] then
high := index-1
else
low := index + 1
endif
until (low > high)
\{put values in correct position on merged list\}
A[high+i-n/2]:= x
endfor
end

Parallel time = ?,
No. of processors = ?

Do we need so many processors

(Cost) Optimal parallel algorithm: One in which the product of number of processor p used and parallel time t is linear in problem size \mathbf{S}, i.e. $\mathbf{p t}=\mathbf{O}(\mathbf{S})$

Reducing the number of processors

Suppose we have designed an algorithm working in parallel time t with p processors, here we assume that p is the maximum number of operations executed in the same parallel step.

Maximum finding algorithm takes $\mathrm{O}(\log \mathrm{n})$ time with the $p \geq n / 2$ processors, in fact $n / 2$ processors are required only at the beginning of the procedure. Most of the processors are sitting idle.
suppose we have $\mathrm{p}<\mathrm{n} / 2$ processors. Partition \mathbf{n} elements in \mathbf{p} groups. $\mathbf{p - 1}$ such group will be having $\lceil n / p\rceil$ elements and remaining group contains

$$
(\mathrm{n}-(\mathrm{p}-1)\lceil\mathrm{n} / \mathrm{p}\rceil<=8) \text { elements. }
$$

suppose we have $p<n / 2$ processors. Partition \mathbf{n} elements in \mathbf{p} groups. $\mathbf{p - 1}$ such group will be having $\lceil n / p\rceil$ elements and remaining group contains

$$
(n-(p-1)\lceil n / p\rceil<=\lceil n / p\rceil) \text { elements. }
$$

Assign a processor to each group which finds maximum in $\lceil n / p\rceil-1$ time each, in parallel, later $\log p$ time using balanced binary tree method.

Thus overall time is $\lceil n / p\rceil-1+\log p$ with $p<n / 2$ processors.

$$
\text { What if } p=n / \log n
$$

Brent's theorem: Let A be a given parallel algorithm with computation time \boldsymbol{t}, if parallel algorithm performs \boldsymbol{m} computational operations then \boldsymbol{p} processors can execute algorithm \mathbf{A} in time $0(\mathbf{m} / \mathbf{p}+\mathbf{t})$.

Definition: The set $(\operatorname{logn})^{0(n)}$ is called the set of polylogarithmic function.

Theorem(Parallel computation thesis): The class of problems solvable in time $T(n)^{0(n)}$ by a PRAM is equal to the class of problems solvable in work space $T(n)^{0(n)}$ by a RAM, if $T(n)>=\log n$.

