
1

Overview and parsing

JSON

2

What is JSON

• JSON: JavaScript Object Notation.

• JSON is a syntax for storing and exchanging

data.

• JSON is text, written with JavaScript object

notation.

• Commonly used in Web as a vehicle to

describe data being sent between systems

3

Exchanging Data

• When exchanging data between a browser

and a server, the data can only be text.

• JSON is text, and we can convert any

JavaScript object into JSON, and send JSON

to the server.

• We can also convert any JSON received from

the server into JavaScript objects.

• This way we can work with the data as

JavaScript objects, with no complicated

parsing and translations.

4

JSON Syntax Rules

• JSON syntax is derived from JavaScript

object notation syntax:

• Data is in name/value pairs

• Data is separated by commas

• Curly braces hold objects

• Square brackets hold arrays

5

JSON example

• Despite the name, JSON is a (mostly) language-independent
way of specifying objects as name-value pairs

{
 "skillz": {
 "web": [{
 "name": "html",
 "years": 5
 }, {
 "name": "css",
 "years": 3
 }],
 "database": [{
 "name": "sql",
 "years": 7
 }]
 }
}

6

JSON vs XML

• Both JSON and XML can be used to receive data

from a web server.

• JSON Example

{"employees":[

 { "firstName":"Srinivas", "lastName":”Jandhyala" },

 { "firstName":“Ruchi", "lastName":"Sharma" },

 { "firstName":“Imran", "lastName":“Khan" }

]}

7

JSON vs XML

XML Example

<employees>

 <employee>

 <firstName>Srinivas</firstName> <lastName>Jandhyala</lastName>

 </employee>

 <employee>

 <firstName>Ruchi</firstName> <lastName>Sharma</lastName>

 </employee>

 <employee>

 <firstName>Imran</firstName> <lastName>Khan</lastName>

 </employee>

</employees

8

JSON vs XML

JSON is Like XML Because

• Both JSON and XML are "self describing" (human

readable)

• Both JSON and XML are hierarchical (values within

values)

• Both JSON and XML can be parsed and used by

lots of programming languages

• Both JSON and XML can be fetched with an

XMLHttpRequest

9

Parsing JSON

• When we parse JSON, it means we are converting

the string into a JSON object by following the

specification, where we can subsequently use in

whatever way we want.

• For example in javascript

var jsonStr = ‘{“name”: “Ritwik”}’;

var obj = JSON.parse(jsonStr);

console.log(obj.name); // prints “Ritwik”

 CC: JSON: Rajeev Wankar

10

Parsing JSON

• Before parsing, it is just a regular string - we cannot

access the data encoded inside.

• After parsing, it becomes a Javascript object where u

can access the various data within.

 CC: JSON: Rajeev Wankar

11

JSON vs XML

JSON is Unlike XML Because

• JSON doesn't use end tag

• JSON is shorter

• JSON is quicker to read and write

• JSON can use arrays

• The biggest difference is: XML has to be parsed

with an XML parser (DOM, SAX, Xerces etc.)

• JSON can be parsed by a standard JavaScript

function (JSON.parse(jsonString)).

12

Valid Data Types

In JSON, values must be one of the following data

types:

• a string

• a number

• an object (JSON object)

• an array

• a boolean

• null

13

Invalid data types

• JSON values cannot be one of the following data

types:

• a function

• a date

• undefined

14

JSON Strings, Numbers, Objetcs

• Strings in JSON must be written in double quotes.

 { "name":"Srinivas" }

• Numbers in JSON must be an integer or a floating

point.

 { "age":30 }

• Values in JSON can be objects.

{

"employee":{ "name":"Srinivas", "age":30, "city":

"Hyderabad" }

}

15

JSON Arrays, Booleans, null

• Values in JSON can be arrays.

{

"employees":["Srinivas", “Ruchi", "Imran"]

}

• Values in JSON can be true/false.

{ "sale":true }

• Values in JSON can be null.

{ "middlename":null }

16

JSON Objects

• { "name":"Srinivas", "age":30, "car":null }

• JSON objects are surrounded by curly braces {}.

• JSON objects are written in key/value pairs.

• Keys must be strings, and values must be a valid

JSON data type (string, number, object, array,

boolean or null).

• Keys and values are separated by a colon.

• Each key/value pair is separated by a comma.

17

Accessing Object Values

• Can access the object values by using dot (.)

notation:

myObj = { "name":"Srinivas", "age":30, "car":null };

x = myObj.name;

• Can also access the object values by using bracket

([]) notation:

myObj = { "name":"Srinivas", "age":30, "car":null };

x = myObj["name"];

19

Nested JSON Objects

• Values in a JSON object can be another JSON

object.

• myObj = {

 "name":"Srinivas",

 "age":30,

 "cars": {

 "car1":"Audi",

 "car2":"BMW",

 "car3":"Benz"

 }

 }

20

Nested JSON Objects

• Access nested JSON objects by using the dot

notation or bracket notation:

• x = myObj.cars.car2;

//or:

x = myObj.cars["car2"];

• Can use the dot notation to modify any value in a

JSON object:

• myObj.cars.car2 = "Opel";

21

Delete Object Properties

• delete myObj.cars.car2;

22

JSON Arrays

• ["Audi", "BMW", "Benz"]

• In JSON, array values must be of type string,

number, object, array, boolean or null.

• Arrays in JSON Objects

• myObj = {

"name":"Srinivas",

"age":30,

"cars":["Audi", "BMW", "Benz"]

}}

23

JSON Arrays

• Access the array values by using the index number:

 x = myObj.cars[0];

24

Nested Arrays in JSON Objects

• Values in an array can also be another array, or even

another JSON object:

myObj = {

 "name":"Srinivas",

 "age":30,

 "cars": [

 { "name":"Audi", "models":["Q3", “Q8", "A2"] },

 { "name":"BMW", "models":["320", "X3", "X5"] },

 { "name":"Benz", "models":["E-Class", "G-Class", "GL-Class"] }

]

 }

25

JSON.parse()

• A common use of JSON is to exchange data to/from

a web server.

• When receiving data from a web server, the data is

always a string.

• Parse the data with JSON.parse(), and the data

becomes a JavaScript object.

26

JSON.parse()

• Imagine we received this text from a web server:

 '{ "name":"Srinivas", "age":30, "city":"Hyderabad"}'

• Use the JavaScript function JSON.parse() to convert

text Into a JavaScript object:

var obj = JSON.parse('{ "name"Srinivas", "age":30,

"city":"Hyderabad"}');

27

JSON From the Server

• Can request JSON from the server by using an AJAX

request

• As long as the response from the server is written in

JSON format, can parse the string into a JavaScript

object.

28

JSON From the Server

var xmlhttp = new XMLHttpRequest();

xmlhttp.onreadystatechange = function() {

 if (this.readyState == 4 && this.status == 200) {

 var myObj = JSON.parse(this.responseText);

 document.getElementById("demo").innerHTML = myObj.name;

 }

};

xmlhttp.open("GET", "json_demo.txt", true);

xmlhttp.send();

29

No. JSON XML

1) JSON stands for JavaScript
Object Notation.

XML stands for eXtensible Markup
Language.

2) JSON is simple to read and
write.

XML is less simple than JSON.

3) JSON is easy to learn. XML is less easy than JSON.

4) JSON is data-oriented. XML is document-oriented.

5) JSON doesn't provide display
capabilities.

XML provides the capability to display
data because it is a markup language.

6) JSON supports array. XML doesn't support array.

7) JSON is less secured than XML. XML is more secured.

8) JSON files are more human
readable than XML.

XML files are less human readable.

9) JSON supports only text and
number data type.

XML support many data types such as
text, number, images, charts, graphs etc.

Moreover, XML offers options for
transferring the format or structure of

the data with actual data.

30

No. JSON XML

1) JSON stands for JavaScript
Object Notation.

XML stands for eXtensible Markup
Language.

2) JSON is simple to read and
write.

XML is less simple than JSON.

3) JSON is easy to learn. XML is less easy than JSON.

4) JSON is data-oriented. XML is document-oriented.

5) JSON doesn't provide display
capabilities.

XML provides the capability to display
data because it is a markup language.

6) JSON supports array. XML doesn't support array.

7) JSON is less secured than XML. XML is more secured.

8) JSON files are more human
readable than XML.

XML files are less human readable.

9) JSON supports only text and
number data type.

XML support many data types such as
text, number, images, charts, graphs etc.

Moreover, XML offers options for
transferring the format or structure of

the data with actual data.

