
The Challenges of X86 Hardware

Virtualization

GCC- Virtualization: Rajeev Wankar 36

The Challenges of X86 Hardware

Virtualization

• X86 operating systems are designed to run

directly on the bare-metal hardware, so they

naturally assume they fully ‘own’ the computer

hardware

• X86 architecture offers four levels of privilege

known as Ring 0, 1, 2 and 3 to operating

systems and applications to manage access to

the computer hardware

GCC- Virtualization: Rajeev Wankar 37

The Challenges of X86 Hardware

Virtualization Conti..

GCC- Virtualization: Rajeev Wankar 38

Figure Courtesy: Understanding Full Virtualization, Paravirtualization, and Hardware Assist, VMware

The Challenges of X86 Hardware

Virtualization Conti..

• Virtualizing the X86 architecture requires

placing a virtualization layer under the

operating system to create and manage the

virtual machines that deliver shared resources.

• Some sensitive instructions can’t effectively be

virtualized as they have different semantics

when they are not executed in Ring 0.

GCC- Virtualization: Rajeev Wankar 39

The Challenges of X86 Hardware

Virtualization Conti..

• The difficulty in trapping and translating

these sensitive and privileged instruction

requests at runtime was the challenge that

originally made X86 architecture virtualization

look impossible.

GCC- Virtualization: Rajeev Wankar 40

Ring 3

Ring 2

Ring 1

Ring 0

Least privileged mode

(user mode)

Privileged modes

Most privileged mode

(supervisor mode)

Security Rings and Privileged Modes

• Ring 0 is used by the

kernel of the OS and

rings 1 and 2 are used

by the OS level

services and Ring 3 is

used by the user.

• Recent systems

support only two levels

with Ring 0 for the

supervisor mode and

Ring 3 for user mode

GCC-Virtualization: Rajeev Wankar 41

Supervisor mode

• If code is running in supervisor mode all the

instructions (privileged and non-privileged)

can be executed without any restriction.

• This mode is also called master mode, or

kernel mode and it is generally used by the

OS (or the hypervisor) to perform sensitive

operations on hardware level resources.

GCC-Virtualization: Rajeev Wankar 42

User mode

• If code running in user mode invokes the

privileged instructions, hardware interrupts

occur and trap the potentially harmful

execution of the instruction.

GCC-Virtualization: Rajeev Wankar 43

Five Abstraction Levels

GCC-Virtualization: Rajeev Wankar 44

Five Abstraction Levels

GCC-Virtualization: Rajeev Wankar 45

Five Abstraction Levels

GCC-Virtualization: Rajeev Wankar 46

Five Abstraction Levels

GCC-Virtualization: Rajeev Wankar 47

Five Abstraction Levels

GCC-Virtualization: Rajeev Wankar 48

Five Abstraction Levels

GCC-Virtualization: Rajeev Wankar 49

Instruction Set Architecture Level

• Virtualization is performed by emulating a

given ISA by the ISA of the host machine.

– MIPS binary code can run on an X86-based

host machine

• The basic emulation method is through code

interpretation

– interprets the source instructions to target

instructions one by one

GCC-Virtualization: Rajeev Wankar 50

Instruction Set Architecture Level Conti..

• For better performance, dynamic binary

translation is used. This approach translates

basic blocks of dynamic source instructions to

target instructions

• Instruction set emulation requires binary

translation and optimization.

• V-ISA thus requires adding a processor-

specific software translation layer to the

compiler.

GCC-Virtualization: Rajeev Wankar 51

Five Abstraction Levels

GCC-Virtualization: Rajeev Wankar 52

Hardware Level Virtualization

• Virtualization technique that provides an

abstract execution environment in terms of

computer hardware on top of which a guest

operating system can run.

• In this model, the guest is represented by the

OS, the host by the physical computer

hardware, the virtual machine by its

emulation, and Virtual Machine Manager by

the hypervisor

GCC-Virtualization: Rajeev Wankar 53

Hardware Level Virtualization Conti…

• Hardware level virtualization is also called

system virtualization, since it provides ISA to

VMs, which is the representation of the

hardware interface of a system.

• This is to differentiate from process virtual

machines, which expose ABI to VMs.

GCC-Virtualization: Rajeev Wankar 54

Hardware Virtualization Reference Model

GCC-Virtualization: Rajeev Wankar 55

Host

VMM

Virtual Machine

binary translation

instruction mapping

interpretation

……

Guest
In memory

representation

Storage
Virtual Image

Host emulation

Virtualization

Execution

Environment

Storage

Network

….

Emulation

High-Level VM

Multiprogramming

Hardware-assisted

Virtualization

Process Level

System Level

Paravirtualization

Full Virtualization

How it is done? Technique Virtualization Model

Application

Programming

Language

Operating

System

Hardware

Partial Virtualization

GCC-Virtualization: Rajeev Wankar 56

Expose ABI to VMs

Expose ISA to VMs

Hypervisors

• A fundamental element of hardware

virtualization is the hypervisor, or Virtual

Machine Manager (VMM).

• It recreates a hardware environment, where

guest operating systems are installed.

GCC-Virtualization: Rajeev Wankar 57

VMM Design Requirements

1. The VMM is responsible for allocating

hardware resources for programs;

2. it is not possible for a program to access any

resource not explicitly allocated to it; and

3. it is possible under certain circumstances for

a VMM to regain control of resources already

allocated.

• Not all processors satisfy these requirements

for a VMM.

GCC-Virtualization: Rajeev Wankar 58

• There are two major types of hypervisors:

– Type I and

– Type II.

GCC- Virtualization: Rajeev Wankar 59

Five Abstraction Levels

GCC-Virtualization: Rajeev Wankar 60

Type I Hypervisor

• Type I hypervisors run directly on top of the

hardware. Therefore, they take the place of

the operating systems.

• Interact directly with the ISA interface

exposed by the underlying hardware, and

emulate ISA interface in order to allow the

management of the guest OS.

• This type of hypervisors is also called native

virtual machine, since it run natively on

hardware.

GCC-Virtualization: Rajeev Wankar 61

Type II Hypervisor

• Type II hypervisors require the support of an

OS to provide virtualization services.

• Type II hypervisors are programs managed

by the OS, that interacts with OS through the

ABI and emulate the ISA of virtual hardware

for the guest OS.

• This type of hypervisors is also called hosted

virtual machine, since it is hosted within an

operating system.

GCC-Virtualization: Rajeev Wankar 62

Hosted (left) and Native (right) VM

GCC-Virtualization: Rajeev Wankar 63

ABI

Hardware

Operative System

ISA

Virtual Machine Manager

Emulated

ISA

VM VM VM VM

Hardware

ISA

Virtual Machine Manager

Emulated

ISA

VM VM VM VM

Hosted (left) and Native (right) VM

GCC-Virtualization: Rajeev Wankar 64

VMware Workstation

KVM

Virtual PC & Virtual Server

VMware ESX

Xen

Hyper-V

Internal Organization of VMM

• dispatcher,

allocator, and

interpreter are

three main

modules that

coordinate

activity in order

to emulate the

underlying

hardware:

GCC-Virtualization: Rajeev Wankar 65

Virtual Machine Manager

ISA

Virtual Machine Instance

Instructions (ISA)

Interpreter

Routines

Interpreter

Routines

Allocator

Dispatcher

VMM Internal

• Dispatcher:

entry point of

the monitor

and reroutes

the instructions

issued by the

virtual machine

instance to one

of the two

other modules

GCC-Virtualization: Rajeev Wankar 66

Virtual Machine Manager

ISA

Virtual Machine Instance

Instructions (ISA)

Interpreter

Routines

Interpreter

Routines

Allocator

Dispatcher

VMM Internal

• Allocator: is

responsible for

deciding the

system

resources to be

provided to the

VM

GCC-Virtualization: Rajeev Wankar 67

Virtual Machine Manager

ISA

Virtual Machine Instance

Instructions (ISA)

Interpreter

Routines

Interpreter

Routines

Allocator

Dispatcher

VMM Internal

GCC-Virtualization: Rajeev Wankar 68

Virtual Machine Manager

ISA

Virtual Machine Instance

Instructions (ISA)

Interpreter

Routines

Interpreter

Routines

Allocator

Dispatcher

• Interpreter: it

consists of

interpreter

routines. These

are executed

whenever a VM

executes a

privileged

instruction: a trap

is triggered and the

corresponding

routine is

executed.

VM Architecture

• The hypervisor provides hypercalls*** for the

guest OSes and applications. Depending on

the functionality, a hypervisor can assume a

micro-kernel hypervisor architecture Or it can

• assume a monolithic hypervisor architecture for

server virtualization

 ***“A hypercall is a software trap from a domain (domain is one of

the virtual machines that run on the system) to the hypervisor, just

as a syscall is a software trap from an application to the kernel”

GCC-Virtualization: Rajeev Wankar 70

Continue..

• A micro-kernel hypervisor includes only the

basic and unchanging functions ex.

 physical memory management and

 processor scheduling

• The device drivers and other changeable

components are outside the hypervisor.

GCC-Virtualization: Rajeev Wankar 71

Continue…

• A monolithic hypervisor implements all the

aforementioned functions, including those of

the device drivers.

• Therefore, the size of the hypervisor code of a

micro-kernel hypervisor is smaller than that of

a monolithic hypervisor

GCC-Virtualization: Rajeev Wankar 72

Monolithic Vs Microkernel Hypervisor

GCC-Virtualization: Rajeev Wankar 73

Hardware

Hypervisor

VM 1

Parent

Virtualization

Stack

Drivers Drivers
Drivers

VM 2

Child

VM 3

Child

Drivers Drivers
Drivers

Drivers Drivers
Drivers

Hardware

Hypervisor

VM 1

Admin

Virtualization Stack

Drivers Drivers
Drivers

VM 2

Child

VM 3

Child

• More simple than a modern

kernel, but still complex

• Implements a driver model

• Third party vulnerability of

drivers

• Simple partitioning functionality

• Increase reliability and minimizes

Trusted Computing Base (TCB)

• No third-party code

• Drivers run within guests

V-Alternatives for X86 architecture

• Three alternative techniques exist for handling

sensitive and privileged instructions to

virtualize the CPU on the X86 architecture:

– Full virtualization using binary translation

– OS assisted virtualization or paravirtualization

– Hardware assisted virtualization (first

generation)

GCC- Virtualization: Rajeev Wankar 74

Binary Translation of Guest OS Requests

Using a VMM

• This system puts the VMM at Ring 0 and the

guest OS at Ring 1.

• The VMM scans the instruction stream and

identifies the privileged, control and behavior-

sensitive instructions.

• When these instructions are identified, they are

trapped into the VMM, then VMM emulates

the behavior of these instructions.

• The method used in this emulation is called

binary translation.

GCC-Virtualization: Rajeev Wankar 76

Binary Translation of Guest OS Requests

Using a VMM Conti…

GCC-Virtualization: Rajeev Wankar 77

Figure Courtesy: Understanding Full Virtualization, Paravirtualization, and Hardware Assist, VMware

Binary Translation of Guest OS Requests

Using a VMM Conti…

• Therefore, full virtualization combines binary

translation and direct execution.

• The guest OS is completely decoupled from

the underlying hardware.

• Consequently, the guest OS is unaware that it

is being virtualized.

• The method is known a Full Virtualization with

binary translation.

GCC-Virtualization: Rajeev Wankar 78

OS Assisted Virtualization or

Paravirtualization

• Paravirtualization refers to the communication

between the guest OS and the hypervisor to

improve performance and efficiency

• It involves modifying the OS kernel to replace

non-virtualizable instructions with hyper calls

that communicate directly with the virtualization

layer hypervisor.

GCC-Virtualization: Rajeev Wankar 79

Syscall and Hypercall

• A system call, or syscall, is the mechanism

used by an application program to request

service from the operating system.

• A hypervisor call, or hypercall, referred to the

paravirtualization interface, by which a guest

operating system could access hypervisor

services.

GCC- Virtualization: Rajeev Wankar 80

X86 processor Para-Virtualization

Architecture

• Ex. Xen, KVM, and VMware ESX

GCC-Virtualization: Rajeev Wankar 81

Figure Courtesy: Understanding Full Virtualization, Paravirtualization, and Hardware Assist, VMware

OS Assisted Virtualization or

Paravirtualization

• The hypervisor also provides hypercall

interfaces for other critical kernel operations

such as memory management, interrupt

handling and time keeping

• Paravirtualization is different from full

virtualization, where the unmodified OS does

not know it is virtualized and sensitive OS calls

are trapped using binary translation.

• Paravirtualization cannot support unmodified

operating systems (e.g. Windows 2000/XP)

GCC-Virtualization: Rajeev Wankar 82

KVM

• KVM (Kernel-Based VM) is a Linux para-

virtualization (2.6.20 kernel)

• Memory management and scheduling activities

are carried out by the existing Linux kernel.

The KVM does the rest

• KVM is a hardware-assisted para-virtualization

tool

GCC-Virtualization: Rajeev Wankar 83

Para-Virtualization with Compiler Support

• While full virtualization architecture intercepts

and emulates privileged and sensitive

instructions at runtime, para-virtualization

handles these instructions at compile time.

• Ex. Xen assumes such a para-virtualization

architecture

• Guest OS running in a guest domain may run

at Ring 1 instead of at Ring 0.

GCC-Virtualization: Rajeev Wankar 84

Hardware Assisted Virtualization

• Hardware vendors are rapidly accepting the

virtualization and developing new features to

simplify virtualization techniques.

• Intel Virtualization Technology (VT-x) and

AMD’s AMD-V are the first wave.

• Above both target privileged instructions with a

new CPU execution mode feature that allows

the VMM to run in a new root mode below

ring 0.

GCC- Virtualization: Rajeev Wankar 88

The hardware assist approach to X86

virtualization

GCC-Virtualization: Rajeev Wankar 89

Figure Courtesy: Understanding Full Virtualization, Paravirtualization, and Hardware Assist, VMware

Hardware Assisted Virtualization

• Privileged and sensitive calls are set to

automatically trap to the hypervisor, removing

the need for either binary translation or

paravirtualization

• The guest state is stored in Virtual Machine

Control Structures (VT-x) or Virtual Machine

Control Blocks (AMD-V).

• First appeared on the IBM System/370 in 1972
– Ex. Linux KVM, VMware Workstation, VMware Fusion,

Microsoft Hyper-V, Microsoft Virtual PC, Xen, Parallels

Desktop for Mac, Oracle VM Server for SPARC, VirtualBox

and Parallels Workstation.

GCC- Virtualization: Rajeev Wankar 90

Intel Hardware-Assisted CPU Virtualization

GCC-Virtualization: Rajeev Wankar 91

