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The Challenges of X86 Hardware 

Virtualization 

• X86 operating systems are designed to run 

directly on the bare-metal hardware, so they 

naturally assume they fully ‘own’ the computer 

hardware 

• X86 architecture offers four levels of privilege 

known as Ring 0, 1, 2 and 3 to operating 

systems and applications to manage access to 

the computer hardware 
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The Challenges of X86 Hardware 

Virtualization Conti..  
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Figure Courtesy: Understanding Full Virtualization, Paravirtualization, and Hardware Assist, VMware 



The Challenges of X86 Hardware 

Virtualization Conti..  

• Virtualizing the X86 architecture requires 

placing a virtualization layer under the 

operating system to create and manage the 

virtual machines that deliver shared resources. 

• Some sensitive instructions can’t effectively be 

virtualized as they have different semantics 

when they are not executed in Ring 0. 
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The Challenges of X86 Hardware 

Virtualization Conti..  

• The difficulty in trapping and translating 

these sensitive and privileged instruction 

requests at runtime was the challenge that 

originally made X86 architecture virtualization 

look impossible. 
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Ring 3 
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Ring 1 

Ring 0 

Least privileged mode 

(user mode) 

Privileged modes 

Most privileged mode 

(supervisor mode) 

Security Rings and Privileged Modes  

• Ring 0 is used by the 

kernel of the OS and 

rings 1 and 2 are used 

by the OS level 

services and Ring 3 is 

used by the user.  

• Recent systems 

support only two levels 

with Ring 0 for the 

supervisor mode and 

Ring 3 for user mode  
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Supervisor mode  

• If code is running in supervisor mode all the 

instructions (privileged and non-privileged) 

can be executed without any restriction.  

• This mode is also called master mode, or 

kernel mode and it is generally used by the 

OS (or the hypervisor) to perform sensitive 

operations on hardware level resources.  

 

GCC-Virtualization: Rajeev Wankar                             42  



User mode 

• If code running in user mode invokes the 

privileged instructions, hardware interrupts 

occur and trap the potentially harmful 

execution of the instruction.  
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Five Abstraction Levels 
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Five Abstraction Levels 
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Instruction Set Architecture Level 

• Virtualization is performed by emulating a 

given ISA by the ISA of the host machine. 

– MIPS binary code can run on an X86-based 

host machine 

• The basic emulation method is through code 

interpretation 

– interprets the source instructions to target 

instructions one by one 
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Instruction Set Architecture Level Conti..  

• For better performance, dynamic binary 

translation is used. This approach translates 

basic blocks of dynamic source instructions to 

target instructions 

• Instruction set emulation requires binary 

translation and optimization.  

• V-ISA thus requires adding a processor-

specific software translation layer to the 

compiler. 
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Five Abstraction Levels 

 

GCC-Virtualization: Rajeev Wankar                             52  



Hardware Level Virtualization  

• Virtualization technique that provides an 

abstract execution environment in terms of 

computer hardware on top of which a guest 

operating system can run. 

• In this model, the guest is represented by the 

OS, the host by the physical computer 

hardware, the virtual machine by its 

emulation, and Virtual Machine Manager by 

the hypervisor  
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Hardware Level Virtualization Conti… 

• Hardware level virtualization is also called 

system virtualization, since it provides ISA to 

VMs, which is the representation of the 

hardware interface of a system.  

• This is to differentiate from process virtual 

machines, which expose ABI  to VMs.  
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Hardware Virtualization Reference Model  
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Expose ABI to VMs 

Expose ISA to VMs 



Hypervisors  

• A fundamental element of hardware 

virtualization is the hypervisor, or Virtual 

Machine Manager (VMM).  

• It recreates a hardware environment, where 

guest operating systems are installed.  
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VMM Design Requirements 

1. The VMM is responsible for allocating 

hardware resources for programs;  

2. it is not possible for a program to access any 

resource not explicitly allocated to it; and  

3. it is possible under certain circumstances for 

a VMM to regain control of resources already 

allocated.  

• Not all processors satisfy these requirements 

for a VMM. 
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• There are two major types of hypervisors:  

 

– Type I   and  

– Type II.  
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Five Abstraction Levels 
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Type I Hypervisor 

• Type I hypervisors run directly on top of the 

hardware. Therefore, they take the place of 

the operating systems. 

• Interact directly with the ISA interface 

exposed by the underlying hardware, and 

emulate ISA interface in order to allow the 

management of the guest OS.  

• This type of hypervisors is also called native 

virtual machine, since it run natively on 

hardware.  
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Type II Hypervisor 

 

• Type II hypervisors require the support of an 

OS to provide virtualization services.  

• Type II hypervisors are programs managed 

by the OS, that interacts with OS through the 

ABI and emulate the ISA of virtual hardware 

for the guest OS.  

• This type of hypervisors is also called hosted 

virtual machine, since it is hosted within an 

operating system.  
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Hosted (left) and Native (right) VM 
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Hosted (left) and Native (right) VM 
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VMware ESX 
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Internal Organization of VMM 

• dispatcher, 

allocator, and 

interpreter are 

three main 

modules that 

coordinate 

activity in order 

to emulate the 

underlying 

hardware: 
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VMM Internal 

• Dispatcher: 

entry point of 

the monitor 

and reroutes 

the instructions 

issued by the 

virtual machine 

instance to one 

of the two 

other modules  
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VMM Internal 

• Allocator: is 

responsible for 

deciding the 

system 

resources to be 

provided to the 

VM 
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VMM Internal 
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Virtual Machine Manager 

ISA 

Virtual Machine Instance 

Instructions (ISA) 

Interpreter  

Routines 

Interpreter  

Routines 

Allocator 

Dispatcher 

• Interpreter: it 

consists of 

interpreter 

routines. These 

are executed 

whenever a VM 

executes a 

privileged 

instruction: a trap 

is triggered and the 

corresponding 

routine is 

executed.  



VM Architecture 

• The hypervisor provides hypercalls*** for the 

guest OSes and applications. Depending on 

the functionality, a hypervisor can assume a 

micro-kernel hypervisor architecture Or it can 

• assume a monolithic hypervisor architecture for 

server virtualization 

 
 ***“A hypercall is a software trap from a domain (domain is one of 

the virtual machines that run on the system) to the hypervisor, just 

as a syscall is a software trap from an application to the kernel” 
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Continue.. 

• A micro-kernel hypervisor includes only the 

basic and unchanging functions ex. 

  physical memory management and   

 processor scheduling 

• The device drivers and other changeable 

components are outside the hypervisor. 
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Continue… 

• A monolithic hypervisor implements all the 

aforementioned functions, including those of 

the device drivers.  

• Therefore, the size of the hypervisor code of a 

micro-kernel hypervisor is smaller than that of 

a monolithic hypervisor 
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Monolithic Vs Microkernel Hypervisor 
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• More simple than a modern 

kernel, but still complex 

• Implements a driver model 

• Third party vulnerability of 

drivers  

• Simple partitioning functionality 

• Increase reliability and minimizes 

Trusted Computing Base (TCB) 

• No third-party code 

• Drivers run within guests 



V-Alternatives for X86 architecture  

• Three alternative techniques exist for handling 

sensitive and privileged instructions to 

virtualize the CPU on the X86 architecture: 

 

– Full virtualization using binary translation 

– OS assisted virtualization or paravirtualization 

– Hardware assisted virtualization (first 

generation) 
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Binary Translation of Guest OS Requests 

Using a VMM 

• This system puts the VMM at Ring 0 and the 

guest OS at Ring 1.  

• The VMM scans the instruction stream and 

identifies the privileged, control and behavior-

sensitive instructions.  

• When these instructions are identified, they are 

trapped into the VMM, then VMM emulates 

the behavior of these instructions.  

• The method used in this emulation is called 

binary translation.  
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Binary Translation of Guest OS Requests 

Using a VMM Conti… 
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Figure Courtesy: Understanding Full Virtualization, Paravirtualization, and Hardware Assist, VMware 



Binary Translation of Guest OS Requests 

Using a VMM Conti… 

• Therefore, full virtualization combines binary 

translation and direct execution.  

• The guest OS is completely decoupled from 

the underlying hardware.  

• Consequently, the guest OS is unaware that it 

is being virtualized. 

• The method is known a Full Virtualization with 

binary translation.   
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OS Assisted Virtualization or 

Paravirtualization 

• Paravirtualization refers to the communication 

between the guest OS and the hypervisor to 

improve performance and efficiency 

• It involves modifying the OS kernel to replace 

non-virtualizable instructions with hyper calls 

that communicate directly with the virtualization 

layer hypervisor. 
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Syscall and Hypercall 

• A system call, or syscall, is the mechanism 

used by an application program to request 

service from the operating system. 

 

• A hypervisor call, or hypercall, referred to the 

paravirtualization interface, by which a guest 

operating system could access hypervisor 

services. 
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X86 processor Para-Virtualization 

Architecture 

 

 

 

 

 

 

 

 

• Ex. Xen, KVM, and VMware ESX 
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Figure Courtesy: Understanding Full Virtualization, Paravirtualization, and Hardware Assist, VMware 



OS Assisted Virtualization or 

Paravirtualization 

• The hypervisor also provides hypercall 

interfaces for other critical kernel operations 

such as memory management, interrupt 

handling and time keeping 

• Paravirtualization is different from full 

virtualization, where the unmodified OS does 

not know it is virtualized and sensitive OS calls 

are trapped using binary translation. 

• Paravirtualization cannot support unmodified 

operating systems (e.g. Windows 2000/XP) 
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KVM  

• KVM (Kernel-Based VM) is a Linux para-

virtualization (2.6.20 kernel)  

• Memory management and scheduling activities 

are carried out by the existing Linux kernel. 

The KVM does the rest 

• KVM is a hardware-assisted para-virtualization 

tool 
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Para-Virtualization with Compiler Support 

• While full virtualization architecture intercepts 

and emulates privileged and sensitive 

instructions at runtime, para-virtualization 

handles these instructions at compile time. 

• Ex. Xen assumes such a para-virtualization 

architecture 

• Guest OS running in a guest domain may run 

at Ring 1 instead of at Ring 0. 
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Hardware Assisted Virtualization 

• Hardware vendors are rapidly accepting the 

virtualization and developing new features to 

simplify virtualization techniques. 

• Intel Virtualization Technology (VT-x) and 

AMD’s AMD-V are the first wave. 

• Above both target privileged instructions with a 

new CPU execution mode feature that allows 

the VMM to run in a new root mode below 

ring 0. 
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The hardware assist approach to X86 

virtualization 
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Figure Courtesy: Understanding Full Virtualization, Paravirtualization, and Hardware Assist, VMware 



Hardware Assisted Virtualization 

• Privileged and sensitive calls are set to 

automatically trap to the hypervisor, removing 

the need for either binary translation or 

paravirtualization 

• The guest state is stored in Virtual Machine 

Control Structures (VT-x) or Virtual Machine 

Control Blocks (AMD-V). 

• First appeared on the IBM System/370 in 1972 
– Ex. Linux KVM, VMware Workstation, VMware Fusion, 

Microsoft Hyper-V, Microsoft Virtual PC, Xen, Parallels 

Desktop for Mac, Oracle VM Server for SPARC, VirtualBox 

and Parallels Workstation. 
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Intel Hardware-Assisted CPU Virtualization 
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