
1
 GC: Web Services Part 3: Rajeev Wankar

Web Services

2
 GC: Web Services Part 3: Rajeev Wankar

Let us write our Web Services

Part III

3
 GC: Web Services Part 3: Rajeev Wankar

SOAP Engine

• Major goal of the web services is to provide language-

neutral platform for the distributed applications.

• What is the SOAP engine?

• A (Java) SOAP engine is the set of Java classes that

facilitate the server side programming of SOAP

applications.

• SOAP engine contains core classes to perform the

following operations. (Next slide)

4
 GC: Web Services Part 3: Rajeev Wankar

SOAP operations

• Serialize method call into SOAP packet

• De-serialize SOAP packet into Java calls

• Wrap XML document into SOAP packets

• Unwrap XML document from SOAP packets

• Submit SOAP requests and handle the responses

• Accept SOAP requests and return the responses

5
 GC: Web Services Part 3: Rajeev Wankar

List of few SOAP engines

• Apache SOAP 2.2 (does not support WSDL)

• Apache SOAP 3.0 (Known as Apache eXtensible Interaction

System)

• Apache Axis2/Java v1.4.1, Apache Axis2/C v1.4.1 (2008)

• Web Service developer pack (from SUN) includes JAX-RPC,

JAXP (Java API for XML processing)

• IBM Web service toolkit (WSTK)

• IBM WebSphere SDK for Web Service

6
 GC: Web Services Part 3: Rajeev Wankar

Apache AXIS SOAP

• Apache Extensible Interaction System

– Apache SOAP is predecessor

– AXIS has better performance

– Pluggable architecture

– AXIS engine is used to take SOAP message from

transport (e.g. HTTP) to Web service and back.

• SOAP services are deployed into a Tomcat server as a

web application

– need to understand Tomcat and servlets and what a

web application is

7
 GC: Web Services Part 3: Rajeev Wankar

What is Axis?

• Axis is essentially a SOAP engine -- a framework for

constructing SOAP processors such as clients,

servers gateways (The Client/Server Gateway is a

JavaScript API that provides a very simply—yet

powerful—method for passing JavaScript data objects

between the browser and the server)

• The Java, C++ and Perl implementation of the client

side of Axis is available.

8
 GC: Web Services Part 3: Rajeev Wankar

What is Axis?

• Axis isn't just a SOAP engine -- it also includes:

– simple stand-alone server,

– a server which plugs into servlet engines such as

Tomcat, WebSphere etc.

– extensive support for the Web Service Description

Language (WSDL),

– emitter tooling that generates Java classes from

WSDL.

– a tool for monitoring TCP/IP packets

9
 GC: Web Services Part 3: Rajeev Wankar

AXIS

• Vendor neutral offering

• Many uses AXIS in their J2EE server, Ex. Jrun from

Micro Media

• AXIS provides an implementation of JAX-RPC.

• Flexible

10
 GC: Web Services Part 3: Rajeev Wankar

Web Service Deployment Descriptor

• A web service is deployed into an Axis message
processing node using a deployment descriptor:

– Web Service Deployment Descriptor (WSDD).

• WSDD describes how the various components
installed in the Axis node are to be 'chained' together
to process incoming and outgoing messages to the
service.

– These chain definitions are 'compiled' and made
available at runtime through registries.

– At run-time, the SOAP request flows through
chains of handlers that potentially alter the
message (add/remove headers, manipulate the
body, and so on).

11
 GC: Web Services Part 3: Rajeev Wankar

Web Service Processing Provider’s view

12
 GC: Web Services Part 3: Rajeev Wankar

Web Service Processing Consumer’s view

13
 GC: Web Services Part 3: Rajeev Wankar

AXIS installation comments: is AXIS installed?

• Follow instructions located at:

– [APPS]/axis-1_3/docs/install.html

– Very good & clear (relatively speaking)

• Sending this browser query:
http://localhost:8080/axis/

Should return main axis web page

• Click on ‘validate’

– Will run happyaxis.jsp

– Returns status info about install

• Samples can be found in:

– $APPS_DIR/axis-1_3/samples

14
 GC: Web Services Part 3: Rajeev Wankar

AXIS Home: http://localhost:8080/axis

15
 GC: Web Services Part 3: Rajeev Wankar

Testing Axis Installation:

http://localhost:8080/axis/happyaxis.jsp

16
 GC: Web Services Part 3: Rajeev Wankar

Get Version:

http://localhost:8080/axis/services/Version?method=getVersion

17
 GC: Web Services Part 3: Rajeev Wankar

AXIS installation comments

• A complete document on how to install Apache

Tomcat Web server and AXIS, how to set the class

path and other things is available at course site.

• To run the AXIS we need only two files from the

Xerces package (XML parser)

– xercesImpl.jar (Containing all class files which

implement standard API’s, supported by the parser)

– xmlParserAPIs.jar (Containing all definitions of

the standard API’s, Implemented by the parser)

18
 GC: Web Services Part 3: Rajeev Wankar

Creating Web Services with Apache Axis

19
 GC: Web Services Part 3: Rajeev Wankar

Converter

Client

Axis

Server

Converter

Class

(1) “x” SOAP

Call

(2) ctof(“x”) Java Call (3) “fah” Java

double

(4) “fah” SOAP

Response

Using SimpleAxisServer without installing Apache tomcat

Example: Centigrade to Fahrenheit

20
 GC: Web Services Part 3: Rajeev Wankar

Creating Web Services with Apache Axis

• First, we will show the "easy to deploy" feature that

lets you drop a source file into the AXIS Web

application it becomes a Web service.

• Then we will use the new WSDL2Java and

Java2WSDL tools to see how we can quickly get a

WSDL descriptor and access the associated Web

service, and then how to easily expose some Java

code.

21
 GC: Web Services Part 3: Rajeev Wankar

Creating Web Services with Apache Axis

• Axis JWS Web Services are Java files saved in

webapps directory except WEB-INF

• Examples provided:

http://localhost:8080/axis/EchoHeaders.jws?method=list

• You can get any WSDL:

http://localhost:8080/axis/EchoHeaders.jws?wsdl

22
 GC: Web Services Part 3: Rajeev Wankar

Deploy a Java Class as a Web service

It is a two step process

1. Write a java class and copy it at as
TOMCAT_HOME%\webapps\axis*.jws

2. Write a java client at your working directory such
as c:\MyWebService and compile it.

Let us look at these steps one by one

23
 GC: Web Services Part 3: Rajeev Wankar

Deploy a Java Class as a Web service Step 1

Example: Convert Celsius to Fahrenheit and

Fahrenheit to Celsius

public class Converter {

 public double FtoC(double x)

 {

 return (5.0/9.0)*(x-32.0);

 }

 public double CtoF(double y)

 {

 return (1.8*y)+32.0;

 }

}

24
 GC: Web Services Part 3: Rajeev Wankar

Deploy a Java Class as a Web service Step 1

Just by having the code (with the .jws extension) in the

Web application deploys it and allows us to access it. If we

open a browser and access the file (e.g.

http://localhost:8080/axis/Converter.jws

we will be told that we are talking to a Web service.

25
 GC: Web Services Part 3: Rajeev Wankar

Deploy a Java Class as a Web service Step 2

Write a client to access this service:

1 import org.apache.axis.client.Call;

2 import org.apache.axis.client.Service;

3.import org.apache.axis.encoding.XMLType;

4 import org.apache.axis.utils.Options;

5 import javax.xml.rpc.ParameterMode;

6 public class ConClient {

7 public static void main(String [] args) throw Exception {

8 Options options = new Options(args);

9 String endpoint = "http://localhost:8080/axis/Converter.jws";

10 args = options.getRemainingArgs();

11 String method = args[0];

12 Double i = new Double (args[1]);

13 Service service = new Service();

14 Call call = (Call) service.createCall();

Used to generate

and handle the

SOAP call

Used to create a RPC

call

create new Service

and Call objects

Link

26
 GC: Web Services Part 3: Rajeev Wankar

Deploy a Java Class as a Web service Step 2

15 call.setTargetEndpointAddress(new java.net.URL(endpoint));

16 call.setOperationName(method);

17 call.addParameter("op1", XMLType.XSD_DOUBLE

ParameterMode.IN);

18 call.setReturnType(XMLType.XSD_DOUBLE);

19

20 Double result = (Double) call.invoke(new Object [] {i});

21

22 System.out.println("Got result : " + result);

 }

}

Gives us

remote URL

class

Link

27
 GC: Web Services Part 3: Rajeev Wankar

Deploy a Java Class as a Web service Step 2

• The imported org.apache.axis package contains

Axis’s implementation of the JAX-RPC package.

• The imported org.javax.xml package contains

declarations (without implementation) of the classes and

interfaces defined by JAX-RPC.

• call.setOperationName(method) name of

remote method to call.

• call.invoke(new Object [] {i}) is the actual

call to the method.

28
 GC: Web Services Part 3: Rajeev Wankar

Deploy a Java Class as a Web service Step 2

• On lines 13 and 14 we create new Service and Call

objects. Link

• These are the standard JAX-RPC objects that are used

to store metadata about the service to invoke.

• On line 15, we set up our endpoint URL - this is the

destination for our SOAP message. Link

• On line 16 we define the operation (method) name of

the Web Service. And on line 20 we actually invoke the

desired service, passing in an array of parameters - in

this case just one Double Object. Link

29
 GC: Web Services Part 3: Rajeev Wankar

Deploy a Java Class as a Web service Step 2

Compile it as

 javac ConClient.java

Run it like

 java ConClient -p8080 FtoC –22.0

 java ConClient -p8080 CtoF –22.0

 (Note that we may need to replace the "-p8080" with whatever port

your server is running on)

Important:

1. Axis automatically locates the file, compiles the class, and converts

SOAP calls correctly into Java invocations of our service class.

2. JWS web services are intended for simple web services. As the

code is compiled at run time we can not find out about errors until

after deployment.

30
 GC: Web Services Part 3: Rajeev Wankar

Monitoring SOAP Messages: tcpmon

• tcpmon intercepts client requests before they are sent to the
endpoint

– displays them in the GUI

– forwards requests to endpoint

• Intercepts server responses before they are returned to the
client

– displays them in the GUI

– forwards responses to client

31
 GC: Web Services Part 3: Rajeev Wankar

Axis

Server

Converter

Class

(3) “x”

SOAP Call

(4) ctof(“x”)

Java Call

(5) “fah” Java

double

(6) “fah” SOAP

Response

Using tcpmon utility without using apache tomcat

Converter

Client

tcpmon

tcpmon

GUI

(1) “x”

SOAP Call

(7) “fah” SOAP

Call

(2) “x” SOAP Call

(8) “fah” SOAP

Response

Port 8081

32
 GC: Web Services Part 3: Rajeev Wankar

Starting tcpmon

• Make sure that axis.jar is in your CLASSPATH

• Run:

java org.apache.axis.utils.tcpmon

– Parameters:

• listenPort: where clients send requests

• targetHost: set to endpoint host of web service

• targetPort: set to endpoint port of web service

• GUI will launch automatically

33
 GC: Web Services Part 3: Rajeev Wankar

Starting tcpmon

34
 GC: Web Services Part 3: Rajeev Wankar

Starting tcpmon

35
 GC: Web Services Part 3: Rajeev Wankar

Deploy a Java Class as a Web service Step 2

Write a client to access this service:

1 import org.apache.axis.client.Call;

2 import org.apache.axis.client.Service;

3.import org.apache.axis.encoding.XMLType;

4 import org.apache.axis.utils.Options;

5 import javax.xml.rpc.ParameterMode;

6 public class ConClient {

7 public static void main(String [] args) throw Exception {

8 Options options = new Options(args);

9 String endpoint = "http://localhost:1234/axis/Converter.jws";

10 args = options.getRemainingArgs();

11 String method = args[0];

12 Double i = new Double (args[1]);

13 Service service = new Service();

14 Call call = (Call) service.createCall();

Now submit request to

1234

36
 GC: Web Services Part 3: Rajeev Wankar

SimpleAxisServer

• We used the SimpleAxisServer but it is not
production worthy

• It is not robust

– When it crashes it stop all HTTP requests, which is not
worthy in production environment

• It is not secure

– There is no security mechanism

• It is not scalable

– Can serve only one request at a time it is single
threaded

So the solution is Apache Tomcat server

37
 GC: Web Services Part 3: Rajeev Wankar

Apache Tomcat Web Server

• Needed to host Apache SOAP services.

• It is a Servlet/JSP container.

• Implements standards created by the Java

Community Process.

39
 GC: Web Services Part 3: Rajeev Wankar

Installing Apache SOAP: Tomcat

• We need to install Tomcat Web Server.

– We need either 4.1(support starts from) or later

version

– Windows or Linux/OSX

• Download from here: (tomcat 8.x)

– http://tomcat.apache.org/download-80.cgi

– Should be present in your JAVA_HOME directories

• You need to set up an admin user who has admin role:

– Edit the $CATALINA_HOME/conf/tomcat-users.xml

– You can make your own username and password.

40
 GC: Web Services Part 3: Rajeev Wankar

Starting up Tomcat

• $CATALINA_HOME:

– CATALINA_HOME may point at your Catalina "build"

directory

• startup.sh and shutdown.sh:

– $CATALINA_HOME/bin

• If you are using Windows OS, you get the Startup and

Shutdown icons with version 4.X onwards.

• Check $CATALINA_HOME/logs for messages

41
 GC: Web Services Part 3: Rajeev Wankar

Axis inside Tomcat

• The Basic difference between the SimpleAxisServer

(stand alone) and Axis inside Tomcat is that the Tomcat

handles the HTTP request and passes them as

Servlet request to Axis.

42
 GC: Web Services Part 3: Rajeev Wankar

Converter

Client

Tomcat

Axis Servlet

(1) “x” SOAP

Call

(2) ctof(“x”)

HttpServlet request

(5) “fah” HttpServlet

response

(6) “fah” SOAP

Response

Using Axis inside Apache TomcatExample: Centigrade to

Fahrenheit

Converter

Class

(3) ctof(“x”) Java Call

(4) “fah” Java double

