
1
 GC: XML: Rajeev Wankar

EXtensible Markup Language

XML

Main source: W3C School tutorials

2
 GC: XML: Rajeev Wankar

Mark-up Languages

• A way of describing information in a document.

• Standard Generalized Mark-Up Language (SGML) - a

specification for a mark-up language ratified in 1986.

• Key aspect - using pairs of tags that surround information

- a begin tag <tag_name> and a matching end tag

</tag_name>.

Example

<title> Grid Computing Home Page </title>

3
 GC: XML: Rajeev Wankar

HyperText Markup Language (HTML)

A mark-up language used in web pages.

“Hypertext” refers to the text’s ability to link to other

documents.

“Markup” refers to providing information to tell browser how

to display page and other things.

4
 GC: XML: Rajeev Wankar

XML

• Very important standard mark-up language - a

“simplified” SGML.

• Developed to represent textual information in a

structured manner that could be read and interpreted by

a computer.

• A foundation for web services and grid services.

5
 GC: XML: Rajeev Wankar

What is XML?

• XML stands for EXtensible Markup Language

• XML is a markup language much like HTML

• XML was designed to describe data

• XML tags are not predefined. We must define our

own tags

• XML uses a Document Type Definition (DTD) or

an XML Schema to describe the data

• XML with a DTD or XML Schema is designed to be

self-descriptive

• XML is a W3C Recommendation

6
 GC: XML: Rajeev Wankar

The main difference between XML and HTML

• XML was designed to carry data.

• XML is not a replacement for HTML.

• XML and HTML were designed with different goals:

• XML was designed with the focus on what data is.

HTML was designed with the focus on how data looks.

• HTML is about displaying information, while XML is

about describing information.

7
 GC: XML: Rajeev Wankar

XML vs SGML

• SGML:

– SGML is the Standard Generalized Markup

Language

– Not well suited to serving documents over the web

– Hard for browsers to handle

• XML specifies neither semantics nor a tag set.

– meta-language for describing markup languages

– Restricted form of SGML

8
 GC: XML: Rajeev Wankar

XML Application Areas

• Used for two applications areas:

– Document-centric XML

– Data-centric XML

9
 GC: XML: Rajeev Wankar

Document-Centric XML

• Documents usually meant for humans,

although could be processed by computers.

• Semi-structured - some tags can be placed

more-or-less anywhere, similar to HTML tags.

10
 GC: XML: Rajeev Wankar

Data-Centric XML

• Usually generated and meant to be read by
computer programs.

• Structured.

• Nesting useful to create a clearly structured and
computer-readable document.

11
 GC: XML: Rajeev Wankar

Sample data-centric XML

<poid= “53912” submitted= “2/13/2015”>

<billTo>

 <name>Department of Computer and Information

Sciences</name>

 <company>University of Hyderabad</company>

 <street>Gochibowli</street>

 <city>Hyderabad</city>

 <state>AP</state>

 <postalCode>500046</postalCode>

</billTo>

12
 GC: XML: Rajeev Wankar

XML does not DO anything

• XML was not designed to DO anything.

• XML was created to structure, store and to send

information.

• The following example is a note to Murali from Bala,

stored as XML:

<note>

<to>Bala</to>

<from>Murali</from>

<heading>Reminder</heading>

<body>Bring chocolates for me</body>

</note>

13
 GC: XML: Rajeev Wankar

• XML tags are not predefined. We must "invent" our

own tags.

• The tags used in HTML documents are predefined.

We can only use tags that are defined in the HTML

standard.

• XML allows the author to define his own tags and his

own document structure.

• The tags in the last example (like <to> and <from>)

are not defined in any XML standard. These tags are

"invented" by the author of the XML document.

XML is free and extensible

14
 GC: XML: Rajeev Wankar

• XML is not a replacement for HTML.

• In Web development XML is used to describe the data,

while HTML is used to format and display the same

data.

• XML is a cross-platform, software and hardware

independent tool for transmitting information.

• It is important to remember that XML was designed to

store, carry, and exchange data. XML was not designed

to display data.

XML is a complement to HTML

15
 GC: XML: Rajeev Wankar

• With XML, our data is stored outside the HTML.

• When HTML is used to display data, the data is stored

inside our HTML. With XML, data can be stored in

separate XML files.

• XML data can also be stored inside HTML pages as

"Data Islands". We can still concentrate on using HTML

only for formatting and displaying the data.

XML can Separate Data from HTML

16
 GC: XML: Rajeev Wankar

• With XML, data can be exchanged between

incompatible systems.

• In the real world, data lie in incompatible formats. One

of the most time-consuming challenges for developers

has been to exchange data between such systems over

the Internet.

• Converting the data to XML can greatly reduce this

complexity and create data that can be read by many

different types of applications.

XML is used to Exchange Data

17
 GC: XML: Rajeev Wankar

• Since XML data is stored in plain text format, XML

provides a software- and hardware-independent way

of sharing data.

• This makes it much easier to create data that

different applications can work with. It also makes it

easier to expand or upgrade a system to new

operating systems, servers, applications, and new

browsers.

XML can be used to Share Data

18
 GC: XML: Rajeev Wankar

• With XML, plain text files can be used to store data.

• XML can also be used to store data in databases.

Applications can be written to store and retrieve

information from the store, and generic applications can

be used to display the data.

XML can be used to Store Data

19

XML-Databases

• Two major classes of XML database exist:

• XML-enabled: these may either map XML to traditional

database structures (such as a relational database),

accepting XML as input and rendering XML as output, or

more recently support native XML types within the

traditional database. This term implies that the database

processes the XML itself (as opposed to relying on

middleware).

• Native XML (NXD): the internal model of such

databases depends on XML and uses XML documents

as the fundamental unit of storage, which are, however,

not necessarily stored in the form of text files.

 GC: XML: Rajeev Wankar

20

XML enabled

• XML enabled databases typically offer one or more of the

following approaches to storing XML within the traditional

relational structure:

– XML is stored into a CLOB (Character large object)

– XML is `shredded` into a series of Tables based on a

Schema

– XML is stored into a native XML Type as defined by

the ISO

• RDBMS that support the ISO XMLType are:

– IBM DB2 (pureXML)

– Microsoft SQL Server

– Oracle Database

– PostgreSQL

 GC: XML: Rajeev Wankar

21

Native XML Databases

• BaseX

• eXist

• MarkLogic

• Sedna

 GC: XML: Rajeev Wankar

22
 GC: XML: Rajeev Wankar

• XML is the mother of WAP and WML.

• The Wireless Markup Language (WML), used to

markup Internet applications for devices like mobile

phones, is written in XML.

XML can be used to Create new Languages

23
 GC: XML: Rajeev Wankar

 XML elements must follow these naming rules:

• Names can contain letters, numbers, and other

characters

• Names must not start with a number or punctuation

character

• Names must not start with the letters xml (or XML, or

Xml, etc)

• Names cannot contain spaces

• The ":" should not be used in element names because

it is reserved to be used for something called

namespaces (more on it in later slides)

Element Naming

24
 GC: XML: Rajeev Wankar

• The first line in the document - the XML declaration -

defines the XML version and the character encoding

used in the document. In this case the document

conforms to the 1.0 specification of XML and uses the

ISO-8859-1 (Latin-1/West European) character set.

• The next line describes the root element of the

document (indicating: "this document is a note"):

An example XML document
<?xml version="1.0" encoding="ISO-8859-1"?>

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

25
 GC: XML: Rajeev Wankar

• The next 4 lines describe 4 child elements of the root

(to, from, heading, and body):

• And finally the last line defines the end of the root

element:

An example XML document
<?xml version="1.0" encoding="ISO-8859-1"?>

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

27
 GC: XML: Rajeev Wankar

• In HTML some elements do not have to have a closing

tag. The following code is legal in HTML

 <p>This is a paragraph

• In XML all elements must have a closing tag, like this:

 <p>This is a paragraph</p>

• IMP: XML declaration doesn't have a closing tag. This

is not an error. The declaration is not a part of the XML

document itself. It is not an XML element, and it should

not have a closing tag.

All XML elements must have a closing tag

28
 GC: XML: Rajeev Wankar

• Unlike HTML, XML tags are case sensitive.

• With XML, the tag <Letter> is different from the tag

<letter>.

• Opening and closing tags must therefore be written with

the same case

• All XML elements must be properly nested

• Improper nesting of tags makes no sense to XML.
<i>This text is bold and italic</i>

• Valid in HTML but not in XML

XML tags are case sensitive

29
 GC: XML: Rajeev Wankar

• All XML documents must contain a single tag pair

to define a root element (need not named as root)

• All other elements must be within this root element.

• All elements can have sub elements (child elements).

Sub elements must be correctly nested within their

parent element

All XML documents must have a root element

 <root>

 <child>

 <subchild>.....</subchild>

 </child>

 </root>

30
 GC: XML: Rajeev Wankar

• With XML, it is illegal to omit quotation marks

around attribute values.

• XML elements can have attributes in name/value pairs

just like in HTML.

Attribute values must always be quoted

<?xml version="1.0" encoding="ISO-8859-1"?>

<note date=12/11/2002>

<to>Tove</to>

<from>Jani</from>

</note>

<?xml version="1.0" encoding="ISO-8859-1"?>

<note date=“12/11/2002”>

<to>Tove</to>

<from>Jani</from>

</note>

31
 GC: XML: Rajeev Wankar

• The syntax for writing comments in XML is similar to

that of HTML.

 <!-- This is a comment -->

• Unlike HTML, the white space in XML document is not

truncated.

• With XML, CR / LF is converted to LF.

• With XML, a new line is always stored as LF.

Some other facts

32
 GC: XML: Rajeev Wankar

XML Elements are Extensible

<note>

 <to>Tove</to>

 <from>Jani</from>

 <body>Don't forget me this weekend!</body>

</note>

MESSAGE

To: Tove

From: Jani

Don't forget me this weekend!

<note>

 <date>2002-08-01</date>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

33
 GC: XML: Rajeev Wankar

Elements are related as parents and children.

My First XML

Introduction to XML

• What is HTML

• What is XML

XML Syntax

• Elements must have a closing tag

• Elements must be properly nested

34
 GC: XML: Rajeev Wankar

Elements are related as parents and children.

<book>

 <title>My First XML</title>

 <prod id="33-657" media="paper"></prod>

 <chapter>Introduction to XML

 <para>What is HTML</para>

 <para>What is XML</para>

 </chapter>

 <chapter>XML Syntax

 <para>Elements must have a closing tag</para>

 <para>Elements must be properly nested</para>

 </chapter>

</book>

Root element

Child element of book

35
 GC: XML: Rajeev Wankar

• An XML element is everything from (including) the

element's start tag to (including) the element's end tag.

• An element can have element content, mixed content,

simple content, or empty content. An element can also

have attributes.

• In the example presented, book has element content,

because it contains other elements. Chapter has mixed

content because it contains both text and other

elements.

Elements have Content

36
 GC: XML: Rajeev Wankar

• para has simple content (or text content) because it

contains only text. prod has empty content, because it

carries no information.

• In the example above only the prod element has

attributes. The attribute named id has the value "33-

657". The attribute named media has the value "paper".

Elements have Content

37
 GC: XML: Rajeev Wankar

Elements are related as parents and children.

<book>

 <title>My First XML</title>

 <prod id="33-657" media="paper"></prod>

 <chapter>Introduction to XML

 <para>What is HTML</para>

 <para>What is XML</para>

 </chapter>

 <chapter>XML Syntax

 <para>Elements must have a closing tag</para>

 <para>Elements must be properly nested</para>

 </chapter>

</book>

Element content

Empty content

Mixed content

Simple or text content

Attribute id has

value

38
 GC: XML: Rajeev Wankar

• XML elements can have attributes.

• In XML attributes provide additional information about

elements:

• Attribute values must always be enclosed in quotes, but

either single or double quotes can be used. For a

person's sex, the person tag can be written like this:

<person sex="female"> or like this:

<person sex='female'>

XML Attributes

39
 GC: XML: Rajeev Wankar

• Data can be stored in child elements or in attributes.

 <person sex="female"> Attribute

 <firstname>Sonia</firstname>

<lastname>Gandhi</lastname>

 </person>

 <person>

 <sex>female</sex> Element

 <firstname>Sonia</firstname>

<lastname>Gandhi</lastname>

 </person>

Use of Elements vs. Attributes

40
 GC: XML: Rajeev Wankar

<note date="12/11/2002">

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

Example

<note>

<date>12/11/2002</date>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

41
 GC: XML: Rajeev Wankar

<note>

<date>

<day>12</day>

<month>11</month>

<year>2002</year>

</date>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

Example

42
 GC: XML: Rajeev Wankar

Some of the problems with using attributes are:

• attributes cannot contain multiple values (child elements

can)

• attributes are not easily expandable (for future changes)

• attributes cannot describe structures (child elements can)

• attributes are more difficult to manipulate by program

code

• attribute values are not easy to test against a XML

Schema or Document Type Definition (DTD) - which is

used to define the legal elements of an XML document

• Exception: an unique identifier that is not a part of the

note data in the XML file may be an attribute.

Should we avoid using attributes?

43
 GC: XML: Rajeev Wankar

• A "Well Formed" XML document has correct XML

syntax.
• A "Valid" XML document also conforms to a DTD.
• A "Valid" XML document is a "Well Formed" XML

document, which also conforms to the rules of a DTD

or Schema:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE note SYSTEM "InternalNote.dtd">

<note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

"Valid" & "Well Formed" XML documents

45
 GC: XML: Rajeev Wankar

Well Formed XML Document

• Contains exactly one root element (the document

element), and all the child elements are nested

properly within each other.

<?xml version="1.0"?>

<pizzas>

 <pizza highfat="dream on">

 <name>DoubleCheeze</name>

 <description>Greasy and good.</description>

 <price>150</price>

 </pizza>

</pizzas>

46
 GC: XML: Rajeev Wankar

XML Document Schema

• Database schemas constrain what information can be
stored, and the data types of stored values

• XML documents are not required to have an associated
schema

• However, schemas are very important for XML data
exchange

– Otherwise, a site cannot automatically interpret data
received from another site

• Two mechanisms for specifying XML schema

– Document Type Definition (DTD)

• Widely used earlier

– XML Schema

• Increasing use

47
 GC: XML: Rajeev Wankar

Document Type Definition (DTD)

• The type of an XML document can be specified using a DTD

• DTD constraints structure of XML data

– What elements can occur

– What attributes can/must an element have

– What subelements can/must occur inside each element,

and how many times.

• DTD does not constrain data types

– All values represented as strings in XML

• DTD syntax

– <!ELEMENT element (subelements-specification) >

– <!ATTLIST element (attributes) >

Source: Silberschatz, Korth and Sudarshan

48
 GC: XML: Rajeev Wankar

Element Specification in DTD

• Sub-elements can be specified as

– names of elements, or

– #PCDATA (parsed character data), i.e., character strings

– EMPTY (no subelements) or ANY (anything can be a

subelement)

• Example

 <! ELEMENT depositor (customer_name account_number)>
 <! ELEMENT customer_name (#PCDATA)>
 <! ELEMENT account_number (#PCDATA)>

• Subelement specification may have regular expressions

 <!ELEMENT bank ((account | customer | depositor)+)>

• Notation:

– “|” - alternatives

– “+” - 1 or more occurrences

– “*” - 0 or more occurrences

Source: Silberschatz, Korth and Sudarshan

49
 GC: XML: Rajeev Wankar

• A DTD defines the legal elements of an XML document.

• The purpose of a DTD is to define the legal building

blocks of an XML document. It defines the document

structure with a list of legal elements.

• XML Schema is an XML based alternative to DTD.

XML Schema

50
 GC: XML: Rajeev Wankar

XML Primitive Data Types

Binary Base 2 number

Boolean True or false value

decimal Base 10 number

double 64-bit float

float 32 bit, base 10 number

recurringDuration A period of time that is recurring

string Finite sequence of chars

timeDuration Some duration of time

uriReference Network or system resource reference

51
 GC: XML: Rajeev Wankar

• Raw XML files can be viewed in Mozilla, Firefox, Opera,

Internet Explorer, and in Netscape 6+.

• However, to make XML documents to display like nice

web pages, you will have to add some display

information.

• With CSS (Cascading Style Sheets) you can add

display information to an XML document.

• Alternatively, with eXtensible Stylesheet Language

(XSL) we can add display information to our XML

document (W3C's XSL standard)

A general XML Viewer

52
 GC: XML: Rajeev Wankar

Querying and Transforming XML Data

• Translation of information from one XML schema
to another and Querying on XML data are
closely related, and handled by the same tools

• Followings are the XML querying/translation
languages (based on the tree model of XML)

– XPath

• Simple language consisting of path
expressions

– XQuery

• An XML query language with a rich set of
features

53
 GC: XML: Rajeev Wankar

XPath

• XPath is used to select parts of documents using

 path expressions

• A path expression is a sequence of steps separated by “/”

– Similar to the file name path

• Result of path expression is the set of values that along

with their containing elements/attributes matching the

specified path

• E.g. /bank-2/account/balance evaluated on the bank-2

data returns
<balance> 500 </balance>

• E.g. /bank-2/account/balance/text()

 returns the same names, but without the enclosing tags

54
 GC: XML: Rajeev Wankar

XPath (Cont.)

• The initial “/” denotes root of the document (above the top-

level tag)

• Path expressions are evaluated left to right

– Each step operates on the set of instances produced by

the previous step

• Selection predicates may follow any step in a path, in []

– E.g. /bank-2/account[balance > 400]

• returns account elements with a balance value greater

than 400

• Attributes are accessed using “@”

– E.g. /bank-2/account[balance > 400]/@account_number

• returns the account numbers of accounts with balance

> 400

55
 GC: XML: Rajeev Wankar

Functions in XPath

• XPath provides several functions

– The function count() at the end of a path counts the
number of elements in the set generated by the path

• E.g. /bank-2/account[count(./customer) > 2]

– Returns accounts with > 2 customers

– Also function for testing position (1, 2, ..) of node
w.r.t. siblings

• Boolean connectives and and or and function not() can
be used in predicates

56
 GC: XML: Rajeev Wankar

More XPath Features

• Operator “|” used to implement union

– E.g. /bank-2/account/id(@owner) | /bank-2/loan/id(@borrower)

• Gives customers with either accounts or loans

• However, “|” cannot be nested inside other operators.

• “//” can be used to skip multiple levels of nodes

– E.g. /bank-2//customer_name

• finds any customer_name element anywhere under the

/bank-2 element, regardless of the element in which it is

contained.

– “//”, described above, is a short from for specifying “all

descendants”

– “..” specifies the parent.

57
 GC: XML: Rajeev Wankar

Xquery (W3C Standard)

• XQuery is a general purpose query language for XML data

• It is derived from the Quilt query language, which itself
borrows from SQL, XQL and XML-QL

• XQuery uses a

 for … let … where … order by …return …

• Syntax

 for SQL from [Series of variable]
 where SQL where
 order by SQL order by

 return SQL select
 let allows temporary variables := complicated
 expression

58
 GC: XML: Rajeev Wankar

FLWOR Syntax in XQuery

• Simple FLWOR expression in XQuery

– find all accounts with balance > 400, with each result enclosed
in an <account_number> .. </account_number> tag

 for $x in /bank-2/account
 let $acctno := $x/@account_number [let gives variable]
 where $x/balance > 400
 return <account_number> { $acctno } </account_number>

– Items in the return clause are XML text unless enclosed in {},
in which case they are evaluated

• If done In XPath. Query can be written as:

 for $x in /bank-2/account[balance>400]
 return <account_number> { $x/@account_number }
 </account_number>

59
 GC: XML: Rajeev Wankar

 In Firefox and Internet Explorer

• Open the XML file - The XML document will be displayed

with color-coded root and child elements. A plus (+) or

minus sign (-) to the left of the elements can be clicked to

expand or collapse the element structure. To view the raw

XML source (without the + and - signs), select "View Page

Source" or "View Source" from the browser menu.

 In Netscape 6

• Open the XML file, then right-click in XML file and select

"View Page Source". The XML document will then be

displayed with color-coded root and child elements.

Viewing XML Files

60
 GC: XML: Rajeev Wankar

• To read and update - create and manipulate - an XML

document, you will need an XML parser

• Microsoft's XML parser (MSXML Parser 3.x) is a COM

component (Explorer 6.0 and higher & XP). Once

Internet Explorer is installed, the parser is available to

scripts.

• Microsoft's XML parser supports all the necessary

functions to traverse the node tree, access the nodes

and their attribute values, insert and delete nodes, and

convert the node tree back to XML.

XML parser

62
 GC: XML: Rajeev Wankar

• Most browsers have a build-in XML parser to read and

manipulate XML.

• The parser converts XML into a JavaScript accessible

object.

• The parser reads XML into memory and converts it into

an XML DOM object that can be accesses with

JavaScript.

• http://www.w3schools.com/xml/xml_parser.asp

XML parser

63
 GC: XML: Rajeev Wankar

• XML Namespaces provide a method to avoid element

name conflicts.

• Since element names in XML are not predefined, a

name conflict will occur when two different documents

use the same element names

XML Namespaces

64
 GC: XML: Rajeev Wankar

• This XML document carries information in a table:
<table>

<tr>

<td>Apples</td>

<td>Bananas</td>

</tr>

</table>

• This XML document carries information about a table (a piece of

furniture):
<table>

<name>African Coffee Table</name>

<width>80</width>

<length>120</length>

</table>

 If these two XML documents are added together, there would be

an element name conflict

XML Namespaces

65
 GC: XML: Rajeev Wankar

<h:table>

<h:tr>

<h:td>Apples</h:td>

<h:td>Bananas</h:td>

</h:tr>

</h:table>

<f:table>

<f:name>African Coffee Table</f:name>

<f:width>80</f:width>

<f:length>120</f:length>

</f:table>

Solving Name Conflicts using a Prefix

66
 GC: XML: Rajeev Wankar

Using Namespaces

<h:table xmlns:h="http://www.w3.org/TR/html4/">

<h:tr>

<h:td>Apples</h:td>

<h:td>Bananas</h:td>

</h:tr>

</h:table>

<f:table xmlns:f="http://www.w3s.com/furniture" >

<f:name>African Coffee Table</f:name>

<f:width>80</f:width>

<f:length>120</f:length>

</f:table>

Instead of using only prefixes, we have added an xmlns

attribute to the <table> tag to give the prefix a qualified

name associated with a namespace.

67
 GC: XML: Rajeev Wankar

• The XML namespace attribute is placed in the start tag

of an element and has the following syntax:

 xmlns:namespace-prefix=“namespaceURI”

• All child elements with the same prefix are associated

with the same namespace defined in the start tag.

• “Address used to identify the namespace is not used by

the parser to look up information. The only purpose is to

give the namespace a unique name. However, very

often companies use the namespace as a pointer to a

real web page containing information about the

namespace”

The XML Namespace (xmlns) Attribute

68
 GC: XML: Rajeev Wankar

• A Uniform Resource Identifier (URI) is a string of

characters which identifies an Internet Resource. The

most common URI is the Uniform Resource Locator

(URL) which identifies an Internet domain address.

 Default Namespaces

• Defining a default namespace for an element saves us

from using prefixes in all the child elements. It has the

following syntax:

 xmlns="namespaceURI"

Uniform Resource Identifier (URI)

69
 GC: XML: Rajeev Wankar

Uniform Resource Identifier (URI)

<table xmlns="http://www.w3.org/TR/html4/">

<tr>

<td>Apples</td>

<td>Bananas</td>

</tr>

</table>

<table xmlns="http://www.w3s.com/furniture" >

<name>African Coffee Table</name>

<width>80</width>

<length>120</length>

</table>

70
 GC: XML: Rajeev Wankar

• XML files can be stored on an Internet server exactly

the same way as HTML files.

• Start Windows Notepad and write the following lines:

 <?xml version="1.0" encoding="ISO-8859-1"?>

<note>

<from>Jani</from>

<to>Tove</to>

 <message>Remember me this weekend </message>

</note>

• Save the file on your web server with a proper name

like "note.xml".

Storing XML on the Server

71
 GC: XML: Rajeev Wankar

• XML can be generated from a database without any

installed XML software.

• One can use ASP and Microsoft's XMLDOM object to

create and save the XML file.

• One can be benefited from using a professional XML

Editor.

Some facts

72
 GC: XML: Rajeev Wankar

• XML Schema to define XML structures and data types

• XSLT to transform XML data

• SOAP to exchange XML data between applications

• WSDL to describe web services

• RDF to describe web resources

• XPath and XQuery to access XML data

• SMIL (Synchronized Multimedia Integration Language)

to define graphics

Why an XML Editor?

73
 GC: XML: Rajeev Wankar

• A Professional XML editors that will help you to write

error-free XML documents, validate your XML against a

DTD or a schema, and force you to stick to a valid XML

structure.

 An XML editor helps you to:

• Add closing tags to your opening tags automatically

• Force you to write valid XML

• Verify your XML against a DTD

• Verify your XML against a Schema

• Color code your XML syntax

Serna Free, oXygen are other editors to look for

Altova's XMLSPY

74
 GC: XML: Rajeev Wankar

 XML DOM

• The XML DOM defines a standard way for accessing

and manipulating XML documents.

 XSLT

• XSLT is the style sheet language for XML files.

• With XSLT you can transform XML documents into

other formats, like XHTML.

 DTD and XML Schema

• The purpose of a DTD/Schema is to define what

elements, attributes and entities is legal in an XML

document.

 XML Schema has almost replaced DTD.

