
1
 GC-02: Distributed Computing: Rajeev Wankar

Distributed Systems

Concepts and Architectures

2
 GC-02: Distributed Computing: Rajeev Wankar

Objectives

• To explain the advantages and disadvantages of

different distributed systems architectures

• To discuss client-server and distributed object

architectures

• To introduce service-oriented architectures as new

model of distributed computing

• To introduce communication models

3
 GC-02: Distributed Computing: Rajeev Wankar

Distributed System Architectures

Topics Covered

• Distributed system characteristics and

disadvantages

• Client-server architectures

• Distributed object architectures

4
 GC-02: Distributed Computing: Rajeev Wankar

Definition of a Distributed System

 A distributed system is:

• a collection of independent computers that appears to its
users as a single coherent system

• This definition deals with two aspects

– Hardware: Machines are autonomous

– Software: Users think that they are dealing with a
single system

5
 GC-02: Distributed Computing: Rajeev Wankar

Definition of a Distributed System

• A distributed system is organized by means of a

middleware.

• The middleware layer extends over multiple machines.

Machine A

Local OS

Machine B

Local OS

Machine C

Local OS

Distributed Application

Middleware layer

Network

6
 GC-02: Distributed Computing: Rajeev Wankar

Transparency is the basis of a

Distributed System

7
 GC-02: Distributed Computing: Rajeev Wankar

Transparency in a Distributed System

Different forms of transparency in a distributed system.

Transparency Description

Access
Hide differences in data representation and how a

resource is accessed

Location Hide where a resource is located (Naming plays IMP. role)

Migration Hide that a resource may move to another location

Relocation
Hide that a resource may be moved to another location

while in use

Replication Hide that a resource may be copied at several locations

Concurrency
Hide that a resource may be shared by several

competitive users (consistent state of resource is IMP)

Failure
Hide the failure and recovery of a resource (Ex. requested

time out in web page accessing)

Persistence
Hide whether a (software) resource is in memory or on

disk

8
 GC-02: Distributed Computing: Rajeev Wankar

Distributed system characteristics

• Resource sharing

– Sharing of hardware and software
resources. (Printer/HPC systems/files)

• Openness

– Offer services (normally interfaces,
described in IDL) according to the standard
rules, describing syntax and semantics. Use
of equipment and software from different
vendors.

• Concurrency

– Concurrent processing to enhance
performance.

9
 GC-02: Distributed Computing: Rajeev Wankar

Distributed system characteristics

• Scalability

– Increased throughput by adding new

resources.

• Add user

• Geographical

• With multiple admin domain

• Fault tolerance

– The ability to continue in operation after a

fault has occurred.

10
 GC-02: Distributed Computing: Rajeev Wankar

Distributed system disadvantages

• Complexity

– Typically, distributed systems are more complex

than centralised systems.

• Security

– More vulnerable to external attack.

• Manageability

– More effort required for system management.

• Unpredictability

– Unpredictable responses depending on the

system organisation and network load.

11
 GC-02: Distributed Computing: Rajeev Wankar

Distributed systems architectures

• Client-server architectures

– Distributed services which are called on by clients.

– Servers that provide services are treated differently
from clients that use services.

– Communication between C&S can be implemented
using connectionless (IP,UDP) protocol if the
network is reliable, otherwise it is connection
oriented (TCP, DCCP, Phone Call: user must dial
the telephone, get an answer before transmitting
data, ATM, Frame Relay)

– In connection less protocol it is difficult to predict if
the delay is due to a failure or a communication
delay

12

Where is the Origin

 First invented in the 1960s. It was called

Procedural Programming in those days, and it

featured this neat abstraction where:

• A procedure can take requests called

“Procedure Calls”

• Given a well-formed request, a procedure will

provide a response

• A procedure can use other procedures

 GC-02: Distributed Computing: Rajeev Wankar

13

Where is the Origin

• In 1981 or thereabouts, Bruce Jay Nelson

got the bright idea that one should be able to

call procedures on other systems

This was called a remote procedure call, a

remarkably simple name.

 GC-02: Distributed Computing: Rajeev Wankar

14
 GC-02: Distributed Computing: Rajeev Wankar

Clients and Servers

• General interaction between a client and a server.

This is known as request-reply behavior.

Fig. Curtsey: Distributed Systems: Principles and Paradigms by Tannenbaum

15
 GC-02: Distributed Computing: Rajeev Wankar

Distributed systems architectures

• Distributed object architectures

– No distinction between clients and servers.

– Any object on the system may provide and use

services from other objects.

16
 GC-02: Distributed Computing: Rajeev Wankar

Layered application architecture

• Presentation layer

– Concerned with presenting the results of a

computation to system users and with collecting

user inputs.

• Application processing layer

– Concerned with providing application specific

functionality e.g., in a banking system, banking

functions such as open account, close account,

etc.

• Data management layer

– Concerned with managing the system databases.

17
 GC-02: Distributed Computing: Rajeev Wankar

Application layers

Presentation layer

Application processing

layer

Data management layer

At Data
management
layer if the
database is
relational,
separation is
very clear but at
OORDB, this
layer has to play
bigger role

18
 GC-02: Distributed Computing: Rajeev Wankar

Processing Level

The general organization of an Internet search engine into three different layers

Fig. Curtsey: Distributed Systems: Principles and Paradigms by Tannenbaum

Or

Application level

19
 GC-02: Distributed Computing: Rajeev Wankar

Alternative client-server organizations

Fig. Curtsey: Distributed Systems: Principles and Paradigms by Tannenbaum

20
 GC-02: Distributed Computing: Rajeev Wankar

Client-server architectures

• The application is modelled as a set of services that

are provided by servers and a set of clients that use

these services.

• Clients know of servers but servers need not know of

clients.

• Clients and servers are logical processes

• The mapping of processors to processes is not

necessarily 1 : 1.

21
 GC-02: Distributed Computing: Rajeev Wankar

A client-server system

s1

s2 s3

s4 c1

c2 c3 c4

c5

c6
c7 c8

c9

c1 0

c1 1

c1 2

Client process

Server process

22
 GC-02: Distributed Computing: Rajeev Wankar

Application layers

Presentation layer

Application processing

layer

Data management layer

23
 GC-02: Distributed Computing: Rajeev Wankar

Thin and Thick/Fat clients

• Thin-client model

– In a thin-client model, all of the application

processing and data management is carried out

on the server. The client is simply responsible

for running the presentation software.

• Thick/Fat-client model

– In this model, the server is only responsible for

data management. The software on the client

implements the application logic and the

interactions with the system user.

24
 GC-02: Distributed Computing: Rajeev Wankar

Thin and Thick/Fat clients

Thin Client

model

Thick/Fat

Client model Client

Client

Server

Data management

Application processing

Presentation

Server

Data management

Presentation

Application processing

25
 GC-02: Distributed Computing: Rajeev Wankar

Thin client model

• Used when legacy systems are migrated to client

server architectures.

– The legacy system acts as a server in its own right

with a graphical interface implemented on a client.

• A major disadvantage is that it places a heavy

processing load on both the server and the network.

26
 GC-02: Distributed Computing: Rajeev Wankar

Thick/Fat client model

• More processing is delegated to the client as the

application processing is locally executed.

• Most suitable for new C/S systems where the

capabilities of the client system are known in

advance.

• More complex than a thin client model especially for

management. New versions of the application have

to be installed on all clients.

27
 GC-02: Distributed Computing: Rajeev Wankar

A client-server ATM system

Account server

Customer
account

database

Tele-
processing

monitor

ATM

ATM

ATM

ATM

28
 GC-02: Distributed Computing: Rajeev Wankar

Alternative client-server organizations

Thin client Thick client

29
 GC-02: Distributed Computing: Rajeev Wankar

Three-tier architectures

• In a three-tier architecture, each of the application

architecture layers may execute on a separate

processor.

• Allows for better performance than a thin-client

approach and is simpler to manage than a thick-client

approach.

• A more scalable architecture - as demands increase,

extra servers can be added.

30
 GC-02: Distributed Computing: Rajeev Wankar

3-tiered Architectures

An example of an application server, acting as a client for the DB server

Fig. Curtsey: Distributed Systems: Principles and Paradigms by Tannenbaum

31
 GC-02: Distributed Computing: Rajeev Wankar

A 3-tier C/S architecture

32
 GC-02: Distributed Computing: Rajeev Wankar

An internet banking system

Database server

Customer
account
database

Web serverClient

Client

Account service
provision

SQL

SQL query

HTTP interaction

Client

Client

33
 GC-02: Distributed Computing: Rajeev Wankar

Where to use which C/S architectures?

Architecture Applications

Two-tier C/S

architecture

with thin

clients

Legacy system applications where separating application processing and data

management is impractical.

Computationally-intensive applications such as compilers with little or no data

management.

Data-intensive applications (browsing and querying) with little or no

application processing.

Two-tier C/S

architecture

with fat

clients

Applications where application processing is provided by off-the-shelf software

(e.g. Microsoft Excel) on the client.

Applications where computationally-intensive processing of data (e.g. data

visualisation) is required.

Applications with relatively stable end-user functionality used in an

environment with well-established system management.

Three-tier or

multi-tier C/S

architecture

Large scale applications with hundreds or thousands of clients

Applications where both the data and the application are volatile.

Applications where data from multiple sources are integrated.

36
 GC-02: Distributed Computing: Rajeev Wankar

Service-oriented architectures

• Based around the notion of externally provided

services (web services).

• A web service is a standard approach to making a

reusable component available and accessible across

the web

– A tax filing service could provide support for users

to fill in their tax forms and submit these to the

Income tax office.

39
 GC-02: Distributed Computing: Rajeev Wankar

Client and Server Stubs

• Principle of RPC between a client and server program was proposed by

Birrel and Nelson in 1984 which says: “When a process on machine A

call procedure B, calling process is suspended, execution on called

procedure starts on B”.

Andrew D. Birrell, Bruce Jay Nelson, Implementing remote procedure calls, Journal ACM Transactions on Computer

Systems (TOCS) Volume 2 Issue 1, February 1984

40
 GC-02: Distributed Computing: Rajeev Wankar

Conventional Procedure Call

a) Parameter passing in a local procedure call: the stack before the

call to read(fd, buf, bytes)

b) The stack while the called procedure is active

Fig. Curtsey: Distributed Systems: Principles and Paradigms by Tannenbaum

1. Return value

to a register

2. Removes the

return address

3. Control is

transferred to

the caller

4. Caller

removes

parameter

from the stack

41
 GC-02: Distributed Computing: Rajeev Wankar

Client and Server Stubs

• Principle of RPC between a client and server program was proposed by

Birrel and Nelson in 1984 which says: “When a process on machine A

call procedure B, calling process is suspended, execution on called

procedure starts on B”.

Andrew D. Birrell, Bruce Jay Nelson, Implementing remote procedure calls, Journal ACM Transactions on Computer

Systems (TOCS) Volume 2 Issue 1, February 1984

42
 GC-02: Distributed Computing: Rajeev Wankar

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

43
 GC-02: Distributed Computing: Rajeev Wankar

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

44
 GC-02: Distributed Computing: Rajeev Wankar

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

45
 GC-02: Distributed Computing: Rajeev Wankar

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

46
 GC-02: Distributed Computing: Rajeev Wankar

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

47
 GC-02: Distributed Computing: Rajeev Wankar

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

48
 GC-02: Distributed Computing: Rajeev Wankar

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

49
 GC-02: Distributed Computing: Rajeev Wankar

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

50
 GC-02: Distributed Computing: Rajeev Wankar

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

51
 GC-02: Distributed Computing: Rajeev Wankar

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

52
 GC-02: Distributed Computing: Rajeev Wankar

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

53
 GC-02: Distributed Computing: Rajeev Wankar

Passing Value Parameters & Marshaling

Fig. Curtsey: Distributed Systems: Principles and Paradigms by Tannenbaum

54
 GC-02: Distributed Computing: Rajeev Wankar

Interface definition language

• Once RPC is known, client and server stubs are

needed to be implemented

• Stubs for the same protocol with different

procedures differ only in their implementations

• Interface is a collection of procedures implemented

by server & called by the client

• Interface is generally available in same

programming language (not necessarily always)

• Interfaces are specified using Interface Definition

Language

• Interfaces are then compiled into stub and skeleton

55
 GC-02: Distributed Computing: Rajeev Wankar

Interface definition language

• Interface definition works as a glue that hold every

thing

• It permits procedure declaration resembling

prototype declaration in ANSI C

• Crucial element of every IDL is globally unique

identifier for specified interface (normally 128 bit

number represented as ASCII string in hexadecimal

number)

• IDL file is edited for filling name of the remote

procedure and parameter

56
 GC-02: Distributed Computing: Rajeev Wankar

Writing a Client and a Server

The steps in writing a client and a server in C

2-14

Unique ID, type

defn., const. defn,

function prototypes

Unique ID,

remote

procedures and

parameters

Actual

procedures to

be called by the

client program

57
 GC-02: Distributed Computing: Rajeev Wankar

Distributed Objects in RPC way

Fig. Curtsey: Distributed Systems: Principles and Paradigms by Tannenbaum

Separation between interface and the objects implementing these

interfaces is crucial in distributed systems

58
 GC-02: Distributed Computing: Rajeev Wankar

• Object may implement multiple interfaces

• When a client binds to a distributed object, an

implementation of the object’s interface called proxy

is loaded in the client address space

• Proxy does marshalling of method invocation into

message

59
 GC-02: Distributed Computing: Rajeev Wankar

Distributed object architectures

• Actual objects resides at a server, where it offers the

same interface

• Skeleton unmarshals the message into a method

invocation at the object’s interface at the server

• Such objects are referred to as the remote objects

60
 GC-02: Distributed Computing: Rajeev Wankar

Communication

Client

MathBox obj = new(MathBoxCL());

integer result = obj.add(obj.add(10,20));

…..

Server Implementation

int add (int x, int y);

{return x+y; }

…..

MathBoxCL (PROXY)

int add(int x, int y)

{ Msg msg = new Msg();

 msg.Marshall(x);

 msg.Marshall(y);

 sendReqMsg(HOST,IP,msg);

}

MathBoxCL (SKELETON)

int invoke (msg msg)

 { int x, y;

 x = msg.Unmarshall(INT);

 y = msg.Unmarshall(INT);

 res = serverImpl.add(x, y);

 Msg msg = new Msg();

 msg.marshal(res);

 sendRespMsg(HOST,IP,msg);

}

61
 GC-02: Distributed Computing: Rajeev Wankar

Advantages of distributed object architecture

• It allows the system designer to delay decisions on

where and how services should be provided.

• It is a very open system architecture that allows new

resources to be added to it as required.

• The system is flexible and scaleable.

• It is possible to reconfigure the system dynamically

with objects migrating across the network as

required.

63
 GC-02: Distributed Computing: Rajeev Wankar

Common Object Request Broker Architecture

• CORBA is an international standard for an Object
Request Broker - middleware to manage
communications between distributed objects.

 Middleware for distributed computing is required
at two levels:

– At the logical communication level, the
middleware allows objects on different
computers to exchange data and control
information;

– At the component level, the middleware
provides a basis for developing compatible
components.

64
 GC-02: Distributed Computing: Rajeev Wankar

Berkeley Sockets

• Socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

65
 GC-02: Distributed Computing: Rajeev Wankar

The Message-Passing Interface (MPI)

• Some of the most intuitive message-passing primitives of MPI.

Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send a message and wait until copied to local or remote buffer

MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts

MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

66
 GC-02: Distributed Computing: Rajeev Wankar

Programming Issues

67
 GC-02: Distributed Computing: Rajeev Wankar

Naming Convention for Classes, Variables & Methods

• Use full words – avoid abrvtns

Pascal Casing

• Capitalize the first character of each word

• SomeClassName

Camel Casing

• Capitalize the first character of each word except the

first word

• someVariableName

68
 GC-02: Distributed Computing: Rajeev Wankar

Names

“Finding good names is the hardest part of OO Programming”

“Names should fully and accurately describe the entity the

variable represents”

What role does the variable play in the program?

Data Structure Role, function

 InputRec EmployeeData

 BitFlag PrinterReady

Some Examples of Names, Good and Bad

TrainVelocity Velt, V, X, Train

CurrentDate CD, Current, C, X

LinesPerPage LPP, Lines, L, x

