Department of Computer & Information Sciences ALGORITHMICS (M.Tech AI) MINOR 1

22 August 2011 Total Marks: 20 Duration: 1 1/2 hours

- 1. [3 + 2 Marks]
 - (a) Order the following functions by their rate of growth. Partition the list into equivalence classes such that f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$.

 $(3/2)^n$, n^3 , lg(n), 2^{logn} , 2^n , nlogn, n, 2n

- (b) Prove that $2n + (3/2)logn = \Theta(n)$.
- 2. [1+2+2 Marks]
 - (a) Explain optimality principle.
 - (b) Give an example of a problem where optimality principle does not hold.
 - (c) In the 0/1-knapsack problem suppose the items can be ordered such that profits(p) are in decreasing order with corresponding weights(w) in increasing order with p/w in decreasing order, can you propose a solution more efficient than the usual dynamic programming method? Explain.
- 3. [6 Marks] Propose three algorithms to solve the Select-Min problem. Analyze the efficiency of your algorithms.
- 4. [4 Marks]
 - A. A permutation on the set of integers $A_N = \{1, 2, ..., N\}$ is an ordered sequence $\{a_1, a_2, ..., a_N\}$ in which each integer a_i from the set A appears exactly once. For example, (3,1,2) is a permutation of A_3 .
 - i. Design an algorithm which, given an integer N and a sequence P of integers of length N, checks whether P is a permutation of A_N .
 - ii. Analyze the time complexity for your algorithm.

OR

- B. A *d-ary heap* is like a binary heap, but instead of 2 children, nodes have *d* children.
 - i. How would you represent a *d*-ary heap in an array?
 - ii. Derive the height of a d-ary heap of n elements in terms of n and d.
 - iii. Describe an implementation for **Extract-Min**. Analyze its running time in terms of d and n.
