Department of Computer \& Information Sciences
 ALGORITHMICS (M.Tech AI) MINOR 1

22 August 2011 Total Marks: 20 Duration: 1 1/2 hours

1. $[\mathbf{3}+\mathbf{2}$ Marks $]$
(a) Order the following functions by their rate of growth. Partition the list into equivalence classes such that $f(n)$ snd $g(n)$ are in the same class if and only if $f(n)=\Theta(g(n))$.

$$
(3 / 2)^{n}, n^{3}, \lg (n), 2^{\log n}, 2^{n}, n \log n, n, 2 n
$$

(b) Prove that $2 n+(3 / 2) \log n=\Theta(n)$.
2. $[\mathbf{1 + 2 + 2}$ Marks]
(a) Explain optimality principle.
(b) Give an example of a problem where optimality principle does not hold.
(c) In the 0/1-knapsack problem suppose the items can be ordered such that profits(p) are in decreasing order with corresponding weights(w) in increasing order with p / w in decreasing order, can you propose a solution more efficient than the usual dynamic programming method? Explain.
3. [6 Marks] Propose three algorithms to solve the Select-Min problem. Analyze the efficiency of your algorithms.
4. [4 Marks]
A. A permutation on the set of integers $A_{N}=\{1,2, \ldots, N\}$ is an ordered sequence $\left\{a_{1}, a_{2}, \ldots a_{N}\right\}$ in which each integer a_{i} from the set A appears exactly once. For example, $(3,1,2)$ is a permutation of A_{3}.
i. Design an algorithm which, given an integer N and a sequence P of integers of length N, checks whether P is a permutation of A_{N}.
ii. Analyze the time complexity for your algorithm.

OR

B. A d-ary heap is like a binary heap, but instead of 2 children, nodes have d children.
i. How would you represent a d-ary heap in an array?
ii. Derive the height of a d-ary heap of n elements in terms of n and d.
iii. Describe an implementation for Extract-Min. Analyze its running time in terms of d and n.

